
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

1

Software Reliability Growth Modeling with New Modified
Weibull Testing–effort and Optimal Release Policy

 S. M. K. Quadri N. Ahmad

 P. G. Department of Computer Sciences, Department of Statistics & Computer Applications,
 Kashmir University, Srinagar-190006, India T. M. Bhagalpur University, Bhagalpur, India

ABSTRACT
In software development life cycle, software testing is one of the
most important tasks; and in the testing, software reliably is very
important aspect for any category of software systems. A number
of testing-effort functions for software reliability growth model
based on non-homogeneous Poisson process (NHPP) have been
proposed in the past. Although these models are quite helpful for
software developers and have been widely accepted and applied in

the industries and research centers, we still need to put more
testing-effort functions into software reliability growth model for
accuracy on estimate of the parameters. In this paper, we will
consider the case where the time dependent behaviors of testing-
effort expenditures are described by New Modified Weibull
Distribution (NMWD). Software Reliability Growth Models
(SRGM) based on the NHPP are developed which incorporates
the (NMWD) testing-effort expenditure during the software-

testing phase. It is assumed that the error detection rate to the
amount of testing-effort spent during the testing phase is
proportional to the current error content. Model parameters are
estimated by Least Square and Maximum Likelihood estimation
techniques, and software measures are investigated through
numerical experiments on real data from various software
projects. The evaluation results are analyzed and compared with
other existing models to show that the proposed SRGM with
(NMWD) testing-effort has a fairly better faults prediction

capability and it depicts the real-life situation more faithfully. This
model can be applied to a wide range of software system. In
addition, the optimal release policy for this model, based on
reliability criterion is discussed.

Keywords: Software reliability growth model, optimal

software release policy, estimation method, testing-effort function,
mean value function, non-homogeneous Poisson process.

1. INTRODUCTION
Software Reliability Growth Model (SRGM) is a mathematical
model of how the software reliability improves as faults are
detected and repaired. SRGM can be used to predict when a
particular level of reliability is likely to be attained. Thus, SRGM
is used to determine when to stop testing to attain a given
reliability level. Software reliability is the probability that the

given software functions correctly under a given environment
during the specified period of time [19], [18], [17], [14].
Therefore, modeling of software reliability accurately and
predicting its possible trends are essential for determining overall
reliability of the software. Various SRGM have been developed
during the last three decades and they can provide very useful
information about how to improve reliability [19], [28], [17], [22].
One can be easily determined some important metrics like time

period, number of remaining faults, mean time between failures
(MTBF), and mean time to failure (MTTF) through SRGM.

Several SRGM based on Non-homogeneous Poisson process
(NHPP) have been proposed by many authors [36], [35], [29],

[32], [33], [11], [12], [13], [9], [7], [8], [16], [5], [4], [2], [24]
which incorporates the testing-efforts. The testing-effort can be
represented as the number of CPU hours; the number of executed
test cases; etc. [31], [36], [33]. Most of these works on SRGM
based on NHPP assuming that the time-dependent behavior of
test-effort expenditure is either exponential, Weibull, logistic or
generalized logistic curve. However, in many software testing
situations, it is sometimes difficult to describe the testing-effort

expenditure only by these curves, since actual software data show
various expenditure patterns.

The proposed framework is a generalization over the previous
works on SRGM with testing-effort such as [36], [35], [29], [32],
[33], [11], [12], [13], [23], [25], [24]. In this paper, we consider
software reliability growth modeling for the case where the time-
dependent behavior of testing-effort expenditures is described by

the New Modified Weibull (NMW) failure model [26]. Its curve
is flexible with a wide variety of possible expenditure patterns.
Hence, these curves are called NMW testing-effort, which
includes the exponential, Rayleigh, Weibull and log-gamma
curves.

SRGM parameters are estimated by Least Square Estimation
(LSE) and Maximum Likelihood Estimation (MLE) methods.
Experiments have been carried out based on actual software data

from various projects and the results show that the proposed
SRGM with NMW testing-effort function is wider and effective
model for software testing phase and is more realistic.
Comparative predictive capabilities between various models are
presented. The results reveal that the SRGM with NMW testing-
effort function can estimate the number of initial faults better than
that of other models. In addition, the optimal release policy of this
model based on cost-reliability criterion is also discussed.

2. NMW TESTING EFFORT FUNCTION
 Much testing-effort is consumed during software testing phase
itself. The consumed testing-effort indicates how the errors are
detected effectively in the software and can be modified by

different distributions [23], [19], [18], [36], [29], [33], [14]. Many
authors reported that Yamada Weibull-Type testing-effort curves
may have an apparent peak phenomenon during the software
development process when shape parameter m = 3, 4, or 5 [9],

[8], [5]. Basically, the software reliability is highly related to the

amount of testing-effort expenditures spent on detecting and
correcting software errors. Therefore, we propose the NMW curve
as a more flexible testing-effort function. The cumulative testing-

effort expenditure consumed in time (0,]t [30], [36], [33], [5],

[1] is

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

2

.0,0,0,0),1()(. metW
tm et

 (1)

And the current testing-effort consumed at testing time t is
tm ettm eettmtw 1)()((2)

Where , , m , are constant parameters, is the total amount

of testing-effort expenditures; and are the scale parameters,

and m is shape parameter.

3. SOFTWARE RELIABILITY GROWTH

MODEL
For Software reliability growth modeling we have the following
assumptions [30], [36], [33], [14], [16], [5], [6]:

1. The software system is subject to failures at random times
caused by errors remaining in the system.

2. Each time failure occurs, the error that caused it is immediately
removed and no new errors are introduced.

3. Testing-effort expenditures are described by the NMW curve.
4. The mean number of errors detected in the time interval

(,)t t t to the current testing-effort expenditures is

proportional to the mean number of remaining errors in the
system.

5. The error detection phenomenon in software testing is modeled

by an NHPP.
6. The proportionality is a constant over time.

For stochastic modeling of software error detection phenomenon,
we define a counting process (), 0N t t , where ()N t represents

the cumulative number of software errors detected by testing time
t with mean value function ()m t . We can then formulate a SRGM

based on NHPP under the assumption of [3] as
()[()]

Pr{ () } , 0,1,2, ...
!

n m tm t e
N t n n

n
 (3)

In general, an implemented software system is tested to detect and

correct software errors in the software development process.
During the testing phase software errors remaining in the system
cause software failure and the errors are detected and corrected by
test personnel. Based on the above assumptions, we obtain the
following different equation [30], [36], [33], [29], [16], [6], [2]:

()
/ () [()], 0, 0 1

dm t
w t r a m t a r

dt
 (4)

Where ()m t represent the expected mean number of errors

detected in time (0,]t which is assumed to be a bounded non-

decreasing function of t with (0) 0, ()m w t is the current testing-

effort expenditure at time t, a is expected number of initial error in

the system, and r is the error detection rate per unit testing-effort
at time t . Solving the above differential equation, we get

)1.()()(tWreatm . (5)

Substituting)(tW from (1), we get

(1)() (1).
m tt er em t a e (6)

This is an NHPP model with mean value function incorporating
the NMW testing-effort expenditure.

In addition, the failure intensity at testing time t of the NHPP is
given by

()()
() () r W tdm t
t a r w t e

dt
 (7)

The expected number of errors to be detected eventually is

() (1)r am a e (8)

This implies that even if a software system is tested during an
infinitely long duration, all errors remaining in the system cannot
be detected [36], [33] Thus, the mean number of undetected errors
if a test is applied for an infinite amount of time is

() (1)r aa m a a e = r aa e .

That is, not all the original errors in a software system can be fully
tested with a finite testing effort since the effort expenditure is
limited to .

4. SOFTWARE RELIABILITY

MEASURES

Based on the NHPP model with ()m t , we can derive the

following quantitative measures for reliability assessments [3],

[33]. If ()N t represent the number of errors remaining in the

system at testing time t , then the mean of ()N t and its variance

are given by

() ()

() [()] [()] ()] () ()

() [()]r W t r W

r t E N t E N N t m m t

a e e Var N t

 (9)

The software reliability represents the probability that no failure
occurs in the time interval (,)t t t given that the last failure

occurred at time t is given by
() ()[() ()] [](|)

r W t r W t tm t t m t a e eR R t t e e

 (10)
The instantaneous mean time between failures (MTBF) at
arbitrary testing can be defined as a reciprocal of error detection
rate in (7). Then, the instantaneous MTBF is given by

(1)

1
()

()

m tt e

m t

r e

m t t e

e
MTBF t

a r m t t e e

 (11)

5. ESTIMATION OF PARAMETERS
MLE and LSE techniques are used to estimate the model
parameters [19], [18], [17]. Sometimes, however, the likelihood
equations may be complicated and difficult to solve explicitly. In

that case one may have to solve with some numerical methods to
obtain the estimates. On the other hand, LSE, like MLE, is fairly
general technique which can be applied in most practical
situations for small or medium sample sizes and may provide
better estimates [19], [9], [5].

5.1 Least Square Method
The parameters , , ,andm in the NMW current testing-effort

function (2) can be estimated by the method of LSE. These
parameters are determined for n observed data pairs in the

form (,) (1,2,..., ;k kt W k n 1 20 ...)nt t t , where

ˆˆ , , ˆˆ , andm can be obtained by minimizing:

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

3

1

2

(, , ,) [ln ln ln ln()

(1) ln)]k

n

k k
k

tm
k k k

S m w m t

m t t t e

 (12)

Differentiating S partially with respect to , ,

m and respectively. The least square

estimators ˆ ˆˆ ˆ, , andm , setting the partial derivatives to zero,

we obtain the set of nonlinear equations, respectively.

[ln ln ln ln()

1
(1) ln] 0k

k k

tm
k k k

S
w m t

m t t t e

 (13)
Solving the above equation, we can get

ˆ exp[{[ln ln ln()

(1) ln }/]ktm
k k k

w m tk k

m t t t e n

When we differentiate S with respect to , we can get

[ln ln ln ln() (1) ln]

[1] 0

k

k

tm
k k k k k

tm
k

S
w m t m t t t e

X t e

(14)

When we differentiate S with respect to , we can get

[ln ln ln ln() (1) ln]

[] 0

k

k

tm
k k k k k

tm k
k k k

k

S
w m t m t t t e

t
t e t t

m t

(15)
and finally, after differentiating S with respect to m we can get

1

[ln ln ln ln() (1) ln]

1
[(ln)] 0

k

k

tm
k k k k k

tm
k k

k

S
w m t m t t t e

m

m t e t
m t

(16)

One can get the estimates of , and m after solving equations

(14), (15) and (16) respectively using any suitable technique of
numerical method.

5.2 Maximum Likelihood Method
Suppose that the estimated testing-effort

parameters ˆ ˆˆ ˆ, , andm in the NMW current testing-effort

function have been obtained by the method of least squares
discussed earlier. The estimators for a and r are determined for

n observed data pairs in the form

1 2(,) (1,2,..., ;0 ...),k k nt y k n t t t where ky is the

cumulative number of software errors detected up to time kt

or (0,)kt . Then the likelihood function for the unknown

parameters a and r in the NHPP model with ()m t in (6), is

given [14], [19] by

1
1

()
[() ()]1

1 1

[() [()]
(,) ,

()!

k k
k k

y yn m t m tk k

k k k

m t m t
L a r e

y y

Where
0 0t and

0 0y . Taking logarithm both the sides, we

get

1 1 1
1 1

1
1

() ln[() ()] [() ()]

ln[()!]

n n

k k k k k
k k

n

k k
k

L y y m t m t m t m t

y y

 (17)

From (5) we know that

1() ()
1() () []k krW t rW t

k km t m t a e e and then we have

()
1

1
[() ()] () [1]n

n r W t
k k n

k
m t m t m t a e .

Thus,

1 1
1 1
() ln ()

n n

k k k k
k k

L y y a y y

1() ()
ln[]k krW t rW t

e e n

k
kk

trW
yyea n

1
1

)(
)ln(]1[

 (18)

The maximum-likelihood estimates (MLE) of reliability growth
model’s parameters a and r can be obtained by solving the

following equations, that is

1

()1
()

1 0,n

n

k k
rW tk

y y
L

e
a a

1

1

()1
1() ()

1

() ()

()
(. ()

. ()) () 0

k

k k

k n

n rW tk k
krW t rW t

k

rW t rW t
k n

y yL
e W t

r e e

e W t aW t e

After some algebraic simplification, we get

()
ˆ ,

11 n

n n
rW t

n

y y
a

e

 (19) 1 1 1

1 1

()[() ()
()

n
k k k n n k

n n
k k k

y y W t W t
a W t

Where ()
, 1,2,...krW t

k e k n
 (20)

By solving (19) and (20) using appropriate technique of numerical

method, one can get the â and r̂ . If the sample size n of

(,)k kt y is sufficiently large, then the maximum-likelihood

estimates â and r̂ asymptotically follow bivariate s-normal

(BVN) distribution [83], [90].

ˆ ˆ
,

ˆ ˆ

a a
BVN

r r
 as .n (21)

The variance-covariance matrix in the asymptotic properties of

(21) is useful in qualifying the variability of the estimated

parameters â and r̂ , and is the inverse of the Fisher information

matrix F , i.e., 1F , given by the expectation of the negative

of second partial derivative of L as

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

4

2 2

2

2 2

2

() ()

() ()

L L
E E

a ra
F

L L
E E

r a r

=

2
1

1

1

()

()

n
n

n

k k
k

n
k k

f
g

a

a g g

g
f f

 (22)

Where ()
() krW t

kg W t e and

()
1 krW t

kf e for 1,2, ...,K n .

After substituting the values of the estimates of a and r in

(22) one can estimate
1F . The estimated asymptotic variance-

covariance matrix is

 1 ˆ ˆ ˆ() (,)ˆ
ˆ ˆ ˆ(,) ()

Var a Cov a r
F

Cov r a Var r
 (23)

6. PERFORMANCE ANALYSIS
In order to validate the proposed model and to compare its
performances with other existing models, experiments on actual
software failure data have been performed.

6.1 Criteria for Model Comparison
To evaluate the performance of our software reliability growth
model and to make a fair comparison with the other existing
SRGM, we describe the following comparison criteria.

1. The Accuracy of Estimate (AE) is defined [19], [30],

[5], [16] as AE =
a

a

M

aM , Where
aM is the actual cumulative

number of detected errors after the test, and a is the estimated

number of initial errors. For practical purposes, aM is obtained

from software error tracking after software testing

2. The mean of Squared Errors (Long-term predictions) is
defined [17], [5], [16] as

MSE =
k

i

i mtm
k

1

2
1 ,])([

1 where ()im t is the expected is the

expected number of errors at time it estimated by a model, and

()im t is the observed number of errors at time
it . MSE gives the

qualitative comparison for long-term predictions. A smaller MSE

indicates a minimum fitting error and better performance [9], [12],
[14].

3. The Coefficient of Multiple Determination is defined
[19], [18] as

 2

ˆ ˆ ˆˆ ˆ ˆ,0,1,1 , , ,

ˆ̂ ,0,1,1

S S m
R

S

,

Where ˆ̂ is the LSE of for the model with only a constant

term, that is, 0 , 1m and 1 in (12). It is given by ln

ˆ̂ =

1

1
ln

n

k
k

W
n

. Therefore,
2R measures the percentage of total

variation about the mean accounted for by the fitted model and
tells us well a curve fits the data. It is frequently employed to
compare models and assess which model provides the best fit to

the data. The best model is the one which provides the higher
2R ,

that is, closer to 1 [15]. To investigate whether a significant trend
exists in the estimated testing-effort, one could test the

hypothesizes H0: 0, 1m and 1 , against
1 : 0H

or at least m or 0 using F-test by merely forming the ratio

ˆ ˆ ˆ ˆˆ ˆ ˆ,0,1,1 , , , / 3

ˆ̂ ,0,1,1 /(4)

S S m
F

S n

If the value of F is greater that (3, 4)F n , which is the

percentile of the F distribution with degrees of freedom 3 and n-

4, we can be (1)100) percent confident that
0H should be

rejected, that is, there is a significant trend in the testing-effort
curve.

4. The Predictive Validity is defined [19], [18] as the
capability of the model to predict future behavior from present
and past failure behavior. Assume that we have observed q

failures by the end of test time qt . We use the failure data up to

time
0()qt t to determine the parameter of ()m t . Substituting

the estimates of these parameters in the mean value function

yields the estimate of the number of failures ˆ ()qm t by qt . The

estimate is compared with the actually observed number q. This

procedure is represented for various values of et .The ratio

ˆ ()qm t q

q
 is called the relative error. Values close to zero for

relative error indicate more accurate prediction and hence a better
model. We can virtually check the predictive validity by plotting

the relative error for normalized test time /e qt t .

6.2 Application Examples

DS 1: The first set of actual data is from the study by Ohba [20].
The system is PL/1 data base application software, consisting of
approximately 1,317, 000 lines of code. During the nineteen
weeks experiments, 47.65 CPU hours were consumed and about
328 software errors were removed. The study reports that the total
cumulative number of detected faults after a long period of testing

is 358. In order to estimate the parameters ˆ ˆˆ ˆ, , andm of the

NMW current testing-effort function; we fit the actual testing
effort data into (2) and solve it by using the method of least
squares. That is, we minimize the sum of squares given in (12)
and the estimated parameters are obtained as:

ˆ =64.4667, ˆ = 0.0341, m̂ = 0.8851, ˆ = 0.0561 (24)

Figure 1 graphically illustrates the comparisons between the
observed failure data and the estimated NMW testing-effort data.
Here, the fitted curve is shown as a doted line and the solid line

represents actual software data.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

5

Time (weeks)

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Te
st

-e
ffo

rt(
CP

U
 h

ou
rs

)

5

4

3

2

1

0

Actual

Fitted

Figure 1: Observed/estimated current test-effort vs time

Using the estimated parameters ˆ ˆˆ ˆ, , andm the other

parameters ,a r in (6) can be solved numerically by the MLE

method. These estimated parameters are â = 566.6613, r̂ =

0.0195961

Table 1: Summary of estimates of NHPP model parameters

Table 1 summarizes the estimated values of parameters with their
standard errors and 95% confidence limits for the proposed
model.

Time(weeks)

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Co
m

ul
at

io
ve

 n
um

be
r o

f f
ai

lu
re

s

400

300

200

100

0

Actual

Fitted

Figure 2: Observed/estimated cumulative number of failures

Table 2: Comparative results of different SRGM

Model a r AE (%) MSE

Proposed Model (Eqn. (6)) 566.66 0.0196 58.28 103.1

Yamada exponential model
(Eqn. (5) with exponential
curve)

828.25 0.0118 131.4 140.7

Yamada Rayleigh model
(Eqn. (5) with Weibull
curve)

565.35 0.0197 57.91 122.1

Huang Logistic model 394.08 0.0427 10.06 118.6

Ohba exponential mode 455.37 0.0267 27.09 206.9

Inflection S-shaped model 389.1 0.0935 8.69 133.3

Delayed S-shaped model 374.05 0.1977 4.48 168.7

G-O model 760.0 0.0323 112.3 139.8

Dlayed S-shaped model with
Rayleigh

333.14 0.1004 6.93 798.5

A fitted curve of the estimated mean value function with the

actual software data is plotted in Figure 3. The 2R value for

proposed NMW testing-effort is 0.9901. It can therefore be

observed that the NMW testing-effort function is suitable for
modeling the software reliability of this data set. We also
observed that the fitted testing-effort curve is significant since the
calculated value F (=7.92) is greater than F0.05(3,15) and
F0.01(3,15). Secondly, the selected models are compared with each

other based on objective criteria.

Table 2 lists the performance of various SRGM investigated.
Kolmogorov Smirnov goodness-of-fit test shows that our
proposed SRGM fits pretty well at the 5% level of significance.
Following the work in [19], we compute the relative error in
prediction for this data set and the results are plotted in Figure 3.

We observed that relative error approaches zero as
et approaches

qt and the error curve is usually within 5 percent. Altogether,

from Figures 1-3 and Tables 1-2, we can see that the proposed
model has better performance and predicts the future behavior
well.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

31.6 36.8 42.1 47.4 52.6 57.9 63.2 68.4 73.7 78.9 84.2 89.5 94.7 100

Percentage of data used

R
e
la

ti
v
e
 E

rr
o

r

Figure 3: Relative error curve.

DS 2: The second set of actual data is the pattern of discovery of
errors [27]. The debugging time and the number of detected faults

per day are reported. The cumulative number of discovered faults
up to twenty two days is 86 and the total consumed debugging
times is 93 CPU hours. All debugging data are used in this
experiment. The testing effort data are applied to estimate the

parameters ˆ ˆˆ ˆ, , andm of the NMW current testing-effort

function described in (2) by using the method of least squares.

The estimated values of parameters are

ˆ =97.1342, ˆ = 0.0128, m̂ = 1.1297, ˆ = 0.8769 (25)

Figure 4 show the fitting of the estimated testing-effort by using
above estimates. The fitted curve and the actual software data are
shown by dotted and solid lines, respectively.

Time(Days)

21191715131197531

Te
st

-e
ffo

rt
(C

PU
 h

ou
rs

)

20

10

0

Actual

Fitted

Figure 4: Observed/estimated current test-effort vs time

The other parameters ,a r in (6) can be solved numerically using

MLE method for these failure data. The estimators are

 â =94.88667, r̂ =0.02524413.

Parameter Estimate Standard Error 95% Confidence
Interval

Lower Upper
a 566.6614 61.75 433.29 700.02

r 0.019596 0.0030 0.0130 0.026

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

6

Table 3: Summary of estimates of NHPP model parameters

Parameter Estimate Standard Error 95% Confidence
Interval

Lower Upper
a 94.8867 2.561 69.45 100.314

r 0.02524 0.0015 0.0219 0.0285

Table 3 shows the estimated values of parameters with their
standard errors and 95% confidence limits for the proposed
model.

The fitted curve of the estimated mean value function with the
actual software data has been plotted in Figure 5.

Time (Day s)

21191715131197531

Cu
mu

lat
ive

 n
um

be
r o

f f
ail

ur
es

100

80

60

40

20

0

Actual

Fitted

 Figure 5: Observed/estimated cumulative number of failures

Vs time

The
2R Value for proposed NMW testing-effort is 0.9931.

Therefore, we can say that the proposed curve is suitable for

modeling the software reliability. Also, the calculated value F
(=8.94) is greater than F0.05 (3, 18) and F0.01 (3, 18), which
concludes that the fitted testing-effort curve is highly significant
for this data set.

Table 4: Comparative results of different SRGM

Model a r MSE

Proposed Model (Eqn. (6)) 94.887 0.0252 5.55

Generalized exponential model
(Eqn. (5) with Generalized
exponential curve)

94.88 0.025 7.557

Yamada Rayleigh model (Eqn.
(5) with Rayleigh curve)

87.032 0.0345 7.772

Delayed S-shaped model 88.653 0.2282 6.313

Huang Logistic model 88.893 0.0391 25.23

G-O model 137.07 0.0515 25.33

HGDM 88.30 -- 33.68

Table 4 lists the comparisons of proposed model with different
SRGM which reveal that the proposed model has better
performance. Kolmogorov Smirnov goodness-of-fit test shows
that the proposed SRGM fits pretty well at the 5 % level of
significance. Finally, we compute the relative error in prediction
of proposed model for this data set. Figure 6 shows the relative

error plotted against the percentage of data used (that is /e qt t).

We observed that relative error approaches zero as et approaches

qt and the error curve is usually within 5 percent. Therefore,

from the Figures4-6 and Tables 4 discussed, it can be concluded

that the proposed model gets reasonable prediction in estimating
the number of software errors and fits the observed data better
than the others.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

24 29 33 38 43 48 52 57 62 67 71 76 81 86 90 95 100

Percentage of data used

R
el

at
iv

e
E

rr
o

r

 Figure 6: Relative error curve

DS 3: The third set of actual data in this paper is the System T1
data of the Rome Air Development Center (RADC) projects and

cited from [19], [18]. The number of object instructions for the
system T1 which is used for a real-time command and control
application. The size of the software is approximately 21,700
object instructions and developed by Bell Laboratories. The
software was tested for twenty one weeks with 9 programmers.
During the testing phase, about 25.3 CPU hours were consumed
and 136 software errors were removed. The number of errors
removed after 3.5 years of test was reported to be 188 [6].

Similarly, parameters ˆ ˆˆ ˆ, , andm of the NMW current

testing-effort function for this data set can be obtained by using
the method of LSE. The estimated values are

ˆ =25.5879, ˆ =0.000098, m̂ =1.1401, ˆ = 0.3389 (26)

Time (weeks)

21191715131197531

Te
st

-e
ffo

rt
(C

PU
 h

ou
rs

)

4

3

2

1

0

Actual

Fitted

Figure 7: Observed/estimated current test-effort Vs time

Figure 7 shows the fitting of the estimated testing-effort by using
these estimates. The fitted curve is shown as a dotted line and the
solid line is for actual software data in the graphs. Using the

estimated parameters ˆ ˆˆ ˆ, , andm , the other parameters ,a r in

(6) can be solved numerically by MLE method. The estimates are

â = 134.61, r̂ =0.151572.

Table 5: Summary of estimate of NHPP model parameters

Paramete
r

Estimate Standard
Error

95% Confidence Interval

Lower Upper
a 134.609 5.121 69 145.5

r 0.15157 0.01685 0.456 0.187

Table 5 summarizes the experimental results of estimated
parameters with their standard errors and 95% confidence limits
of parameters for the proposed model.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

7

Time (weeks)

21191715131197531

cu
mu

lat
ive

 nu
mb

er
of

fai
lur

es

160

140

120

100

80

60

40

20

0

Actual

Fitted

Figure 8: Observed/estimated cumulative number of failures

Vs time

A fitted curve of the estimated mean value function with the
actual software data is plotted in figure 8.

Also, Table 6 compares the performance of various SRGM for
this data set. The Kolmogorov Smirnov goodness-of-fit test shows

that the proposed SRGM fits pretty well at the 5% level of
significance. Similarly, we compute the relative error in prediction
for proposed model for this data set. Figure 9 depicts the relative

error plotted against the percentage of data used (that is, /e qt t).

Finally, Figures 1-9 and Tables 1-6 reveal that the proposed
model has better performance than the other models. This model
fits the observed data better, and predicts the future behavior well.

Table 6: Comparative results of different SRGM

Model a r AE (%) MSE

Proposed Model (Eqn. (6)) 134.61 0.1516 28.4 27.15

Yamada Rayleigh model
(Eqn. (5) with Rayleigh
curve)

866.94 0.0096 25.1 89.24

Delayed S-shaped model 237.20 0.0963 26.16 245.25

Huang Logistic model 138.03 0.1451 26.58 62.41

G-O model 142.32 0.1246 24.29 2438.3

Inflection S-shaped model 159.11 0.0765 15.36 118.3

Ohba exponential model 137.20 0.156 27.12 3019.6

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

24 29 33 38 43 48 52 57 62 67 71 76 81 86 90 95 100

Percentage of data used

R
e
la

ti
v
e
 E

rr
o

r

Figure 9: Relative error curve

The R2 value for proposed NMW testing-effort curve is 0.9823
and calculated F value is 8.84, which is greater than F0.05 (3,117)
and F0.01 (3, 17). It can therefore be observed that the proposed
model is suitable for modeling the software reliability and the
fitted testing-effort curve is highly significant for this data set.
Also, Table 6 compares the performance of various SRGM for
this data set. The Kolmogorov-Smirnov goodness-of-fit test shows

that the proposed SRGM fits pretty well at the 5% level of
significance. Similarly, we compute the relative error in prediction
for proposed model for this data set. Figure 9 depicts the relative

error plotted against the percentage of data used (that is, /e qt t). It

is noted that the relative error of the proposed model approaches

zero as
et approaches

qt . Finally, Figure7-9 and Tables 5-6 reveal

that the proposed model has better performance than the other
models. This model fits the observed data better, and predicts the
future behavior well.

7. OPTIMAL SOFTWARE RELEASE

POLICIES
Recently, it is becoming increasingly difficult for the developer to

produce highly reliable software systems efficiently. If the length
of software testing is long, it can remove many software errors in
e system and its reliability increases. However, it leads to increase
the testing cost and to delay software delivery. In contrast, if the
length of software testing is short, a software system with low
reliability is delivered and it includes many software errors which
have not been removed in the testing phase. So, it is important that
we have to find the solution for the optimal length of the software

testing that is called optimal release time and the decision process
is called an optimal software release problem [28], [30], [21],
[14], [11].

7.1 S/w Release- Time Based on Reliability

Criterion
Generally, the software-release time problem is associated with
the reliability of a software system. First, we discuss the release
policy based on the reliability criterion. If we know that the
software reliability of this computer system has reached an

acceptable reliability level, then we can determine the right time
to release the software [93]. The conditional reliability function is

given in (10). Differentiate (10) with respect to t , we observe

that 0
R

t
. Hence (|)R t t is a monotonic increasing function

of t . Taking the logarithm on both sides of (10), we obtain

ln [() ()]R m t t m t (27)

We can easily determine the testing time needed to reach a desired

R by solving (27) and (6). It is noted that ()R t is increasing in t .

7.2 Reliability Analysis For Real Data Set

DS 1: In first data set, it is known that ˆ =64.466695, ˆ =

0.034101264, m̂ = 0.885114496, ˆ = 0.0561145, â = 566.6613,

and r̂ = 0.0195961. Suppose the software system desires that the
testing would be continued till the operational reliability is equal

to 0.80 (at t = 0.1), from (27) and (6), we get t = 28.57 weeks. If

the desired reliability is 0.85, then t = 29.90 weeks. If the desired

reliability is 0.95, then t = 33.74 weeks and if the desired

reliability is 0.99, then t = 37.65 weeks.

DS 2: In second data set, from (24) and (6), for ˆ =97.13424,

ˆ = 0.0128194, m̂ =1.1296671, ˆ =0.087694, â = 94.88667, and

r̂ = 0.02524413, we get testing time t = 20.66 days, if we assume

that the testing of the software system is desired to be continued

till the operational reliability is equal to 0.95 (at t = 0.1). If the

desired reliability is 0.99, then t = 21.80 days.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

8

DS 3: From the previous estimated parameters: ˆ =25.5878, ˆ =

0.000099, m̂ = 1.14012, ˆ =0.3389, â = 134.61, and r̂ = 0.1516,

suppose the software system desires that the testing would be
continued till the operational reliability is equal to 0.8 (at t =

0.1), from (27) and (6), we get testing time = 19.10 weeks.
Similarly, the desired reliability is 0.99, then t = 21.80 weeks.

7.3 Software Release- Time Based on Cost-

Reliability criteria
In this section, we discuss the cost model and release policy based
on the cost-reliability criteria. Using the total software cost

evaluated by cost criterion, the cost of testing-effort expenditures
during software testing and development phase, and the cost of
correcting errors before and after release are given by [34], [33],
[31], [21], [14], [10], [11], [5], [9], [7].

1 2 3
0

() () [() ()] () .
T

lcC T C m T C m T m T C w x dx
 (28)

Where
1C is the cost of correcting an error during testing,

2C is

the cost of correction an error during operation,
2 1C C ,

3C is

the cost of testing per unit testing-effort expenditures and
lcT is

the software life-cycle length.

From reliability criteria, we can obtain the required testing time

needed to reach the reliability objective
0R . Our aim is to

determine the optimal software release time that minimizes the
total software cost to achieve the desired software reliability.
Therefore, the optimal software release policy for the proposed
software reliability can be formulated as follows:

0

2 1 3

0

()

(|)

0, 0

0,0 1.

Minimize C T

Subject to R t t t R

for C C C

t R

 (29)

The procedures to derive the optimal release policy for this
problem are evolved step by step and are shown hereafter. By

differentiating (28) with respect to T and equating to zero, yields

1 2 3

() () ()
() 0

dC T dm T dm T
C C C w T

dT dT dT

()3

2 1

()
(())

()

r W TC T
a r e r a m T

C C w T
 (30)

When 0T then (0) 0m and ()

()

T
ar

w T
. WhenT , then

() (1)rm a e and rera
Tw

T
..

)(

)(. Therefore,
)(

)(

Tw

T is

monotonically decreasing inT . To analyze for the minimum

value of ()C T , (30) is used to explore two cases of ()

()

T

w T

at 0T .

Case 1: If 3

2 1

(0)

(0)

C
a r

w C C
, then.

3

2 1

()
 for 0

()
lc

C
T T

w T C C

It can be obtained that ()
0

dC T

dT
 for 0 lcT T and the

minimum of ()C T an be found at 0T .

Case 2: If, there can be found a finite T such that

3

2 1

()
(())

()

CT
r a m T

w T C C

= ()r W Ta r e = (1)T Tr a e ea r e

Solving this, we can get

2 1

3

()1 1
ln[1 ln{ }]m t a r c c

T e
c

 (31)

The equation (31) is solved using numerical technique and get the

value of
0T satisfying (33), ()

0
dC T

dT
 for

00 T T and

()
0

dC T

dT
 for

0 lcT T T . It also can be shown that

2

2

()
0

d C T

dT

and hence ()C T c is a convex function. Thus,

minimum of ()C T is at
0T T .

 Furthermore, to commit the provisions of the optimal software

release policy for the proposed software reliability as depicted

above, a finite and unique real number
1T is determined such

that
0(|)R t t t R where

00 1R . Therefore, summarizing

the above analysis and combining cost and reliability
requirements, we have the following theorem.

Theorem 1: We assume

that
1 0C ,

2 0C ,
3 0C ,

2 1C C , 0x ,
00 1R , then

1. 3

2 1

(0)

(0)

C
If and

w C C

3

2 1

()
0

()

r
lc

CT
r e for T T

w T C C

then *
0 1max[,]T T T for

0(| 0) 1R x R or

 *
0 00 (| 0)T T for R R x t .

2. 3

2 1

(0)

(0)

C
If

w C C
then,

*
1 0(| 0) 1T T for R x R or

*
00 0 (| 0)T for R R x

3. *3
1

2 1

(0)

(0)

C
If then T T

w C C

for
0(| 0) 1R x R or *

00 0 (| 0)T for R R x).

7.4 Application Examples
DS 1: In fist data set, it is known that ˆ =64.466695, ˆ =

0.034101264, m̂ = 0.885114496, ˆ = 0.0561145, â =

566.6613, and r̂ = 0.0195961. To determine the optimal

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

9

software release time, we assume the values

of
1 21, 50C C , 3 100,C 100,LCT

0 0.90R and 0.1t for the analysis. Then we get the optimal

release time
0T estimated as 2.96 based on minimizing ()C T of

(31), and
1T is estimated as 29.90 based on satisfying the

reliability criterion of
0(|)R t t t R . These values sustain the

relationships of 3

2 1

(0)

(0)

C

w C C

and 3

2 1

()
. ..

()

r CT
r e

w T C C

and
0(| 0)R t R with which one could imply 1 in Theorem 1 to

obtain the optimal software release time
*T as max (29.90, 2.96)

= 29.90 weeks and the corresponding software cost *()C T is

6852.14

DS 2: In second data set, it is known that ˆ =97.13424, ˆ =

0.0128194, m̂ =1.1296671, ˆ =0.087694, â = 94.88667, and

r̂ = 0.02524413. To determine the optimal software release time,
we assume the values of

50,1 21 CC
3 0100, 100, 0.90LCC T R and 0.1t

for the analysis. Then we get the optimal release time
0T

estimated as 2.56 based on minimizing ()C T of (31), and
1T is

estimated as 17.78 based on satisfying the reliability criterion

of
0(|)R t t t R . These values sustain the relationships of

3

2 1

(0)

(0)

C

w C C

 and

12

3...
)(

)(

CC

C
er

Tw

T r and
0)0|(RtR

with which one could imply 1 in Theorem 1 to obtain the optimal

software release time
*T as max (17.78, 2.56) = 17.78 days and

the corresponding software cost)(*TC is 7792.85

DS 3: In third data set, it is known that ˆ =25.5879, ˆ =

0.0000984, m̂ =1.140123, ˆ = 0.3389, â = 134.61, and r̂ =

0.15157. To determine the optimal software release time, we
assume the values of

1 21, 50C C 3 0100, 100, 0.90LCC T R and 0.1t

for the analysis. Then we get the optimal release time 0T

estimated as 13.73 based on minimizing ()C T of (31), and
1T is

estimated as 19.49 based on satisfying the reliability criterion

of
0(|)R t t t R . These values sustain the relationships of

3 3

2 1 2 1

(0) ()
and . ..

(0) ()

rC CT
r e

w C C w T C C
 and

0(| 0)R t R

with which one could imply 1 in Theorem 1 to obtain the optimal

software release time *T as max (19.49, 13.73) = 19.49 weeks

and the corresponding software cost)(*TC is 2393.34

8. REFERENCES

[1] Ahmad, N., Khan, M. G. M., Quadri, S. M. K. and Kumar,
M., “Modeling and Analysis of Software Reliability with
Burr Type X Testing-Effort and Release-Time
Determination”, Journal of Modeling in Management, Vol. 4
(1), 28 – 54, 2009.

[2] Ahmad, N., Bokhari, M. U., Quadri, S. M. K. and Khan, M.
G. M. (2008), “The Exponetiated Weibull Software

Reliability Growth Model with various testing-efforts and
optimal release policy: a performance analysis”, International
Journal of Quality and Reliability Management, Vol. 25 (2),
pp. 211-235.

[3] Goel, A.L. and Okumoto, K., “Time dependent error-
detection rate model for software reliability and other
performance measures“, IEEE Transactions on Reliability,
Vol. R- 28, No. 3, pp. 206-211, 1979.

[4] Huang, C. Y. “Cost-reliability-optimal-release policy for
software reliability models incorporating improvements in

testing efficiency“, Journal of Systems and Software 77(2),
pp. 139-155, 2005b.

[5] Huang, C.Y. and Kuo, S. Y. ”, Analysis of incorporating

logistic testing-effort function into software reliability
modeling“, IEEE Transactions on Reliability, Vol. 51, no. 3,
pp. 261-270, 2002.

[6] Huang, C. Y. “Performance analysis of software reliability
growth models with testing-effort and change-point“, Journal
of Systems and Software, Vol. 76, pp. 181-194, 2005.

[7] Huang, C. Y., Kuo, S.Y. and Lyu, M. R. , “Optimal software
release policy based on cost, reliability and testing
efficiency“, Proceedings of the 23rd IEEE Annual
International Computer Software and Applications
Conference (COMPSAC’99), Phoenix, Arizona, pp. 468-
473, 1999.

[8] Huang, C. Y., Kuo, S.Y. and Lyu, M. R. , “Effort-index
based software reliability growth models and performance
assessment“, Proceedings of the 24th IEEE Annual
International Computer Software and Applications
Conference (COMPSAC’2000), pp. 454-459, 2000.

[9] Huang, C.Y., Kuo, S.Y. and Chen, I.Y., “Analysis of
software reliability growth model with logistic testing-effort

function“, Proceeding of 8th International Symposium on
Software Reliability Engineering (ISSRE’1997),
Albuquerque, New Maxico, pp. 378-388, 1997.

[10] Kapur, P. K. and Bhalla, V. K., “Optimal Release Policy for
Flexible Software Reliability Growth Model”, Engineering
and System Safety, Vol. 35, pp. 49-54, 1992.

[11] Kapur, P.K. and Garg, R.B., “Cost reliability optimum
release policies for a software system with testing effort“,
Operations Research, Vol. 27, no. 2, pp. 109-116, 1990.

[12] Kapur, P.K. and Garg, R.B. “Modeling an imperfect
debugging phenomenon in software reliability“,
Microelectronics and Reliability, Vol. 36, pp. 645-650, 1996.

[13] Kapur, P.K. and Younes, S., “Modeling an imperfect
debugging phenomenon with testing effort“, Proceedings of
5th International Symposium on Software Reliability
Engineering (ISSRE’1994), pp. 178-183, 1994.

[14] Kapur, P.K., Garg, R.B. and Kumar, S., Contributions to
Hardware and Software Reliability, World Scientific,
Singapore, 1999.

[15] Kumar, M., Ahmad, N. and Quadri, S.M.K., “Software
reliability growth models and data analysis with a Pareto
test-effort“, RAU Journal of Research, Vol., 15 (1-2), pp.
124-128, 2005.

[16] Kuo, S.Y., Hung, C.Y. and Lyu, M.R., “Framework for
modeling software reliability, using various testing-efforts

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

10

and fault detection rates“, IEEE Transactions on Reliability,
Vol. 50, no.3, pp 310-320, 2001.

[17] Lyu, M.R., Handbook of Software Reliability Engineering,
McGraw- Hill, 1996.

[18] Musa J. D, Software Reliability Engineering: More Reliable
Software, Faster Development and Testing, McGraw-Hill,
1999.

[19] Musa, J.D., Iannino, A. and Okumoto, K., Software
Reliability: Measurement, Prediction and Application,
McGraw-Hill, 1987.

[20] Ohba, M., “Software reliability analysis model” IBM
Journal. Research Development, Vol. 28, no. 4, pp. 428-443,
1984.

[21] Okumoto, K. and Goel, A. L., “Optimum release time for
software system based on reliability and cost criteria”,
Journal of Systems and Software, Vol.1, pp. 315-318, 1980.

[22] Pham, H. (2000), Software Reliability, Springer-Verlag, New
York, 2000.

[23] Putnam, L., “A general empirical solution to the macro
software sizing and estimating problem“, IEEE Transactions
on Software Engineering, Vol. Se-4, pp. 343-361, 1978.

[24] Quadri, S. M. K., Ahmad, N., Peer, M.A. and Kumar, M.,
“Non homogeneous Poisson process Software Reliability
Growth Model with generalized exponential testing effort
function, “RAU Journal of Research, Vol., 16 (1-2), pp. 159-
163, 2006.

[25] Tang, Y. et. al. “Statistical Analysis of a Weibull Extension
Model”, Communications in Statistics, Theory and Analysis,
pp. 911-916, 2003.

[26] Tian, J., Lu, P., and Palma, J., “Test-Execution-Based
Reliability Measurement and Modeling for Large
Commercial Software”, IEEE Transaction Software
Engineering, Vol. 21, No. 5, pp. 405-414, 1995.

[27] Tohma, Y., Jacoby, R., Murata, Y. and Yamamoto, M.,
“Hyper-geometric distribution model to estimate the number

of residual software fault“, Proceeding of COMPSAC-89,
Orlando, pp. 610-617, 1989.

[28] Xie, M., “On the determination of optimum software release
time”. In Proceeding 2nd International Symposium on
software reliability engineering, pp. 218-224, 1991a.

[29] Yamada, S. and Ohtera, H., “Software reliability growth
models for testing effort control“, European Journal of
Operational Research, Vol. 46, no. 3, pp. 343-349. 1990.

[30] Yamada, S. and Osaki, S., “Cost-reliability optimal release
policies for software systems“, IEEE Transaction on
Reliability, Vol. R-34, no. 5, pp. 422-424, 1985b.

[31] Yamada, S., and Osaki, S., “Software reliability growth
modeling: models and applications“, IEEE Transaction on
Software Engineering, Vol. SE-11, no. 12, pp. 1431-1437,
1985a.

[32] Yamada, S., Hishitani J. and Osaki, S., “Test-effort
dependent software reliability measurement, “ International
Journal of Systems Science, Vol. 22, no. 1, pp. 73-83, 1991.

[33] Yamada, S., Hishitani J. and Osaki, S., “Software reliability
growth model with Weibull testing-effort: a model and

application“, IEEE Transactions on Reliability, Vol. R-42,
pp. 100-105, 1993.

[34] Yamada, S., Narihisa, H. and Osaki, S., “Optimum release

policies for a software system with a scheduled software
delivery time“, International Journal of System Science,
Vol.15, pp. 905-914, 1984.

[35] Yamada, S., Ohtera, H. and Narihisa, H., “A testing-effort
dependent software reliability model and its application“,
Microelectronics and Reliability, Vol. 27, no. 3, pp. 507-522,
1987.

[36] Yamada, S., Ohtera, H. and Norihisa, H. , “Software
reliability growth model with testing-effort“, IEEE
Transactions on Reliability, Vol. R-35, no. 1, pp.19-23, 1986.

