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ABSTRACT 
In software development life cycle, software testing is one of the 
most important tasks; and in the testing, software reliably is very 
important aspect for any category of software systems. A number 
of testing-effort functions for software reliability growth model 
based on non-homogeneous Poisson process (NHPP) have been 
proposed in the past. Although these models are quite helpful for 
software developers and have been widely accepted and applied in 

the industries and research centers, we still need to put more 
testing-effort functions into software reliability growth model for 
accuracy on estimate of the parameters. In this paper, we will 
consider the case where the time dependent behaviors of testing-
effort expenditures are described by New Modified Weibull 
Distribution (NMWD). Software Reliability Growth Models 
(SRGM) based on the NHPP are developed which incorporates 
the (NMWD) testing-effort expenditure during the software- 

testing phase. It is assumed that the error detection rate to the 
amount of testing-effort spent during the testing phase is 
proportional to the current error content. Model parameters are 
estimated by Least Square and Maximum Likelihood estimation 
techniques, and software measures are investigated through 
numerical experiments on real data from various software 
projects. The evaluation results are analyzed and compared with 
other existing models to show that the proposed SRGM with 
(NMWD) testing-effort has a fairly better faults prediction 

capability and it depicts the real-life situation more faithfully. This 
model can be applied to a wide range of software system. In 
addition, the optimal release policy for this model, based on 
reliability criterion is discussed. 

 

Keywords:  Software reliability growth model, optimal 

software release policy, estimation method, testing-effort function, 
mean value function, non-homogeneous Poisson process. 

 

1. INTRODUCTION 
Software Reliability Growth Model (SRGM) is a mathematical 
model of how the software reliability improves as faults are 
detected and repaired. SRGM can be used to predict when a 
particular level of reliability is likely to be attained. Thus, SRGM 
is used to determine when to stop testing to attain a given 
reliability level. Software reliability is the probability that the 

given software functions correctly under a given environment 
during the specified period of time [19], [18], [17], [14]. 
Therefore, modeling of software reliability accurately and 
predicting its possible trends are essential for determining overall 
reliability of the software. Various SRGM have been developed 
during the last three decades and they can provide very useful 
information about how to improve reliability [19], [28], [17], [22]. 
One can be easily determined some important metrics like time 

period, number of remaining faults, mean time between failures 
(MTBF), and mean time to failure (MTTF) through SRGM. 

 
Several SRGM based on Non-homogeneous Poisson process 
(NHPP) have been proposed by many authors  [36], [35], [29], 

[32], [33], [11], [12], [13], [9], [7], [8], [16], [5], [4], [2], [24]  
which incorporates the testing-efforts. The testing-effort can be 
represented as the number of CPU hours; the number of executed 
test cases; etc. [31], [36], [33]. Most of these works on SRGM 
based on NHPP assuming that the time-dependent behavior of 
test-effort expenditure is either exponential, Weibull, logistic or 
generalized logistic curve. However, in many software testing 
situations, it is sometimes difficult to describe the testing-effort 

expenditure only by these curves, since actual software data show 
various expenditure patterns. 
 
The proposed framework is a generalization over the previous 
works on SRGM with testing-effort such as [36], [35], [29], [32], 
[33], [11], [12], [13], [23], [25], [24]. In this paper, we consider 
software reliability growth modeling for the case where the time-
dependent behavior of testing-effort expenditures is described by 

the New Modified Weibull (NMW) failure model [26]. Its curve 
is flexible with a wide variety of possible expenditure patterns. 
Hence, these curves are called NMW testing-effort, which 
includes the exponential, Rayleigh, Weibull and log-gamma 
curves.  
 
SRGM parameters are estimated by Least Square Estimation 
(LSE) and Maximum Likelihood Estimation (MLE) methods. 
Experiments have been carried out based on actual software data 

from various projects and the results show that the proposed 
SRGM with NMW testing-effort function is wider and effective 
model for software testing phase and is more realistic. 
Comparative predictive capabilities between various models are 
presented.  The results reveal that the SRGM with NMW testing-
effort function can estimate the number of initial faults better than 
that of other models. In addition, the optimal release policy of this 
model based on cost-reliability criterion is also discussed. 

 

2. NMW TESTING EFFORT FUNCTION 
 Much testing-effort is consumed during software testing phase 
itself. The consumed testing-effort indicates how the errors are 
detected effectively in the software and can be modified by 

different distributions [23], [19], [18], [36], [29], [33], [14]. Many 
authors reported that Yamada Weibull-Type testing-effort curves 
may have an apparent peak phenomenon during the software 
development process when shape parameter m  = 3, 4, or 5 [9], 

[8], [5]. Basically, the software reliability is highly related to the 

amount of testing-effort expenditures spent on detecting and 
correcting software errors. Therefore, we propose the NMW curve 
as a more flexible testing-effort function. The cumulative testing-

effort expenditure consumed in time (0, ]t  [30], [36], [33], [5], 

[1] is   
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And the current testing-effort consumed at testing time t  is 
tm ettm eettmtw 1)()(           (2) 

Where , , m ,  are constant parameters,  is the total amount 

of testing-effort expenditures;  and   are the scale parameters, 

and m  is shape parameter. 

 

3. SOFTWARE RELIABILITY GROWTH 

MODEL 
For Software reliability growth modeling we have the following 
assumptions [30], [36], [33], [14], [16], [5], [6]:  

1. The software system is subject to failures at random times 
caused by errors remaining in the system. 

2. Each time failure occurs, the error that caused it is immediately 
removed and no new errors are introduced. 

3. Testing-effort expenditures are described by the NMW curve. 
4. The mean number of errors detected in the time interval 

( , )t t t  to the current testing-effort expenditures is 

proportional to the mean number of remaining errors in the 
system. 

5. The error detection phenomenon in software testing is modeled 

by an NHPP. 
6. The proportionality is a constant over time. 
 
For stochastic modeling of software error detection phenomenon, 
we define a counting process ( ), 0N t t , where ( )N t  represents 

the cumulative number of software errors detected by testing time 
t with mean value function ( )m t . We can then formulate a SRGM 

based on NHPP under the assumption of [3] as 
( )[ ( )]

Pr{ ( ) } , 0,1,2, ...
!

n m tm t e
N t n n

n
    (3) 

In general, an implemented software system is tested to detect and 

correct software errors in the software development process. 
During the testing phase software errors remaining in the system 
cause software failure and the errors are detected and corrected by 
test personnel. Based on the above assumptions, we obtain the 
following different equation [30], [36], [33], [29], [16], [6], [2]: 

( )
/ ( ) [ ( )], 0, 0 1

dm t
w t r a m t a r

dt
       (4) 

Where ( )m t represent the expected mean number of errors 

detected in time (0, ]t  which is assumed to be a bounded non-

decreasing function of t with (0) 0, ( )m w t is the current testing-

effort expenditure at time t, a is expected number of initial error in 

the system, and r is the error detection rate per unit testing-effort 
at time t . Solving the above differential equation, we get 

)1.()( )(tWreatm .                      (5) 

Substituting )(tW from (1), we get 

(1 )( ) (1 ).
m tt er em t a e                                     (6) 

This is an NHPP model with mean value function incorporating 
the NMW testing-effort expenditure.  

In addition, the failure intensity at testing time t of the NHPP is 
given by 

( )( )
( ) ( ) r W tdm t
t a r w t e

dt
        (7) 

The expected number of errors to be detected eventually is 

( ) (1 )r am a e                                 (8) 

This implies that even if a software system is tested during an 
infinitely long duration, all errors remaining in the system cannot 
be detected [36], [33] Thus, the mean number of undetected errors 
if a test is applied for an infinite amount of time is 

( ) (1 )r aa m a a e   = r aa e . 

That is, not all the original errors in a software system can be fully 
tested with a finite testing effort since the effort expenditure is 
limited to . 

 

4.  SOFTWARE RELIABILITY 

MEASURES 

Based on the NHPP model with ( )m t , we can derive the 

following quantitative measures for reliability assessments [3], 

[33]. If ( )N t  represent the number of errors remaining in the 

system at testing time t , then the mean of ( )N t  and its variance 

are given by 

( ) ( )

( ) [ ( )] [ ( )] ( )] ( ) ( )

( ) [ ( )]r W t r W

r t E N t E N N t m m t

a e e Var N t

         (9) 

The software reliability represents the probability that no failure 
occurs in the time interval ( , )t t t  given that the last failure 

occurred at time t  is given by 
( ) ( )[ ( ) ( )] [ ]( | )

r W t r W t tm t t m t a e eR R t t e e

      (10) 
The instantaneous mean time between failures (MTBF) at 
arbitrary testing can be defined as a reciprocal of error detection 
rate in (7). Then, the instantaneous MTBF is given by 

(1 )

1
( )

( )

m tt e

m t

r e

m t t e

e
MTBF t

a r m t t e e

  (11) 

 

5. ESTIMATION OF PARAMETERS 
MLE and LSE techniques are used to estimate the model 
parameters [19], [18], [17]. Sometimes, however, the likelihood 
equations may be complicated and difficult to solve explicitly. In 

that case one may have to solve with some numerical methods to 
obtain the estimates. On the other hand, LSE, like MLE, is fairly 
general technique which can be applied in most practical 
situations for small or medium sample sizes and may provide 
better estimates [19], [9], [5]. 
 

5.1 Least Square Method 
The parameters , , ,andm  in the NMW current testing-effort 

function (2) can be estimated by the method of LSE. These 
parameters are determined for n observed data pairs in the 

form ( , ) ( 1,2,..., ;k kt W k n   1 20 ... )nt t t , where 

ˆˆ, ,  ˆˆ , andm can be obtained by minimizing: 
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n
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        (12) 

Differentiating S  partially with respect to , , 

m and respectively. The least square 

estimators ˆ ˆˆ ˆ, , andm , setting the partial derivatives to zero, 

we obtain the set of nonlinear equations, respectively. 

 
[ln ln ln ln( )

1
( 1) ln ] 0k

k k

tm
k k k

S
w m t

m t t t e

       (13) 
Solving the above equation, we can get 

ˆ exp[ {[ln ln ln( )

( 1) ln }/ ]ktm
k k k

w m tk k

m t t t e n

 

When we differentiate S  with respect to , we can get 

[ln ln ln ln( ) ( 1) ln ]

[ 1] 0

k

k

tm
k k k k k

tm
k

S
w m t m t t t e

X t e

      

(14) 

When we differentiate S  with respect to , we can get  

[ln ln ln ln( ) ( 1) ln ]

[ ] 0

k

k

tm
k k k k k

tm k
k k k

k

S
w m t m t t t e

t
t e t t

m t

      

(15) 
and finally, after differentiating S with respect to m we can get  

 

1

[ln ln ln ln( ) ( 1) ln ]

1
[ ( ln ) ] 0

k

k

tm
k k k k k

tm
k k

k

S
w m t m t t t e

m

m t e t
m t

      

(16) 

One can get the estimates of ,  and m after solving equations 

(14), (15) and (16) respectively using any suitable technique of 
numerical method. 

 

5.2 Maximum Likelihood Method 
Suppose that the estimated testing-effort 

parameters ˆ ˆˆ ˆ, , andm in the NMW current testing-effort 

function have been obtained by the method of least squares 
discussed earlier. The estimators for a  and r  are determined for 

n  observed data pairs in the form 

1 2( , ) ( 1,2,..., ;0 ... ),k k nt y k n t t t  where ky  is the 

cumulative number of software errors detected up to time kt  

or (0, )kt . Then the likelihood function for the unknown 

parameters a  and r  in the NHPP model with ( )m t  in (6), is 

given [14], [19] by 

1
1

( )
[ ( ) ( )]1

1 1

[ ( ) [ ( )]
( , ) ,

( )!

k k
k k

y yn m t m tk k

k k k

m t m t
L a r e

y y
 

Where 
0 0t  and

0 0y .  Taking logarithm both the sides, we 

get 

1 1 1
1 1

1
1

( ) ln[ ( ) ( )] [ ( ) ( )]

ln[( )!]

n n

k k k k k
k k

n

k k
k

L y y m t m t m t m t

y y

   

      (17) 

From (5) we know that   

1( ) ( )
1( ) ( ) [ ]k krW t rW t

k km t m t a e e  and then we have         

( )
1

1
[ ( ) ( )] ( ) [1 ]n

n r W t
k k n

k
m t m t m t a e . 

Thus, 

1 1
1 1
( ) ln ( )

n n

k k k k
k k

L y y a y y

1( ) ( )
ln[ ]k krW t rW t

e e  n

k
kk

trW
yyea n

1
1

)(
)ln(]1[  

      (18) 

The maximum-likelihood estimates (MLE) of reliability growth 
model’s parameters a  and r  can be obtained by solving the 

following equations, that is 

 
1

( )1
( )

1 0,n

n

k k
rW tk

y y
L

e
a a

 

1

1

( )1
1( ) ( )

1

( ) ( )

( )
( . ( )

. ( )) ( ) 0

k

k k

k n

n rW tk k
krW t rW t

k

rW t rW t
k n

y yL
e W t

r e e

e W t aW t e

 

After some algebraic simplification, we get 

( )
ˆ ,

11 n

n n
rW t

n

y y
a

e

    

 (19) 1 1 1

1 1

( )[ ( ) ( )
( )

n
k k k n n k

n n
k k k

y y W t W t
a W t  

Where ( )
, 1,2,...krW t

k e k n
   (20)

 

By solving (19) and (20) using appropriate technique of numerical 

method, one can get the â  and r̂ . If the sample size n of 

( , )k kt y  is sufficiently large, then the maximum-likelihood 

estimates â  and r̂  asymptotically follow bivariate s-normal 

(BVN) distribution [83], [90]. 

ˆ ˆ
,

ˆ ˆ

a a
BVN

r r
  as .n                   (21) 

The variance-covariance matrix  in the asymptotic properties of 

(21) is useful in qualifying the variability of the estimated 

parameters â  and r̂ , and is the inverse of the Fisher information 

matrix F , i.e., 1F , given by the expectation of the negative 

of second partial derivative of L as 
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Where ( )
( ) krW t

kg W t e and 

( )
1 krW t

kf e for 1,2, ...,K n . 

After substituting the values of the estimates of a    and r  in 

(22) one can estimate
1F . The estimated asymptotic variance-

covariance matrix is 
 

      1 ˆ ˆ ˆ( ) ( , )ˆ
ˆ ˆ ˆ( , ) ( )

Var a Cov a r
F

Cov r a Var r
   (23) 

 

6.   PERFORMANCE ANALYSIS 
In order to validate the proposed model and to compare its 
performances with other existing models, experiments on actual 
software failure data have been performed. 

 

6.1  Criteria for Model Comparison 
To evaluate the performance of our software reliability growth 
model and to make a fair comparison with the other existing 
SRGM, we describe the following comparison criteria. 

1. The Accuracy of Estimate (AE) is defined [19], [30], 

[5], [16] as AE =
a

a

M

aM , Where 
aM  is the actual cumulative 

number of detected errors after the test, and a  is the estimated 

number of initial errors. For practical purposes, aM  is obtained 

from software error tracking after software testing 

2. The mean of Squared Errors (Long-term predictions) is 
defined [17], [5], [16]  as 

MSE = 
k

i

i mtm
k

1

2
1 ,])([

1 where ( )im t  is the expected is the 

expected number of errors at time it  estimated by a model, and 

( )im t  is the observed number of errors at time
it . MSE gives the 

qualitative comparison for long-term predictions. A smaller MSE 

indicates a minimum fitting error and better performance [9], [12], 
[14]. 

3. The Coefficient of Multiple Determination is defined 
[19], [18] as 

  2

ˆ ˆ ˆˆ ˆ ˆ,0,1,1 , , ,

ˆ̂ ,0,1,1

S S m
R

S

, 

Where ˆ̂  is the LSE of   for the model with only a constant 

term, that is, 0 , 1m  and 1  in (12). It is given by ln 

ˆ̂  =

1

1
ln

n

k
k

W
n

. Therefore, 
2R measures the percentage of total 

variation about the mean accounted for by the fitted model and 
tells us well a curve fits the data. It is frequently employed to 
compare models and assess which model provides the best fit to 

the data. The best model is the one which provides the higher
2R , 

that is, closer to 1 [15]. To investigate whether a significant trend 
exists in the estimated testing-effort, one could test the 

hypothesizes H0: 0, 1m  and 1 , against  
1 : 0H  

or at least m or 0  using F-test by merely forming the ratio  

ˆ ˆ ˆ ˆˆ ˆ ˆ,0,1,1 , , , / 3

ˆ̂ ,0,1,1 /( 4)

S S m
F

S n

 

If the value of F  is greater that (3, 4)F n , which is the  

percentile of the F  distribution with degrees of freedom 3 and n-

4, we can be (1 )100 ) percent confident that 
0H  should be 

rejected, that is, there is a significant trend in the testing-effort 
curve. 

4. The Predictive Validity is defined [19], [18] as the 
capability of the model to predict future behavior from present 
and past failure behavior. Assume that we have observed q 

failures by the end of test time qt . We use the failure data up to 

time 
0( )qt t  to determine the parameter of ( )m t . Substituting 

the estimates of these parameters in the mean value function 

yields the estimate of the number of failures ˆ ( )qm t  by qt . The 

estimate is compared with the actually observed number q. This 

procedure is represented for various values of et .The ratio    

ˆ ( )qm t q

q
 is called the relative error. Values close to zero for 

relative error indicate more accurate prediction and hence a better 
model. We can virtually check the predictive validity by plotting 

the relative error for normalized test time /e qt t . 

6.2 Application Examples 

DS 1: The first set of actual data is from the study by Ohba [20]. 
The system is PL/1 data base application software, consisting of 
approximately 1,317, 000 lines of code. During the nineteen 
weeks experiments, 47.65 CPU hours were consumed and about 
328 software errors were removed. The study reports that the total 
cumulative number of detected faults after a long period of testing 

is 358. In order to estimate the parameters ˆ ˆˆ ˆ, , andm  of the 

NMW current testing-effort function; we fit the actual testing 
effort data into (2) and solve it by using the method of least 
squares. That is, we minimize the sum of squares given in (12) 
and the estimated parameters are obtained as:  

ˆ =64.4667, ˆ = 0.0341, m̂ = 0.8851, ˆ = 0.0561                 (24) 

Figure 1 graphically illustrates the comparisons between the 
observed failure data and the estimated NMW testing-effort data. 
Here, the fitted curve is shown as a doted line and the solid line 

represents actual software data.  
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Figure 1: Observed/estimated current test-effort vs time 

 

Using the estimated parameters ˆ ˆˆ ˆ, , andm  the other 

parameters ,a r  in (6) can be solved numerically by the MLE 

method. These estimated parameters are â = 566.6613,    r̂ = 

0.0195961 

 

Table 1: Summary of estimates of NHPP model parameters 

 
Table 1 summarizes the estimated values of parameters with their 
standard errors and 95% confidence limits for the proposed 
model. 
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Figure 2: Observed/estimated cumulative number of failures 

 

Table 2: Comparative results of different SRGM  

Model a  r  AE (%) MSE 

Proposed Model (Eqn. (6) ) 566.66 0.0196 58.28 103.1 

Yamada exponential model 
(Eqn. (5) with exponential 
curve) 

828.25 0.0118 131.4 140.7 

Yamada Rayleigh model 
(Eqn. (5) with Weibull 
curve) 

565.35 0.0197 57.91 122.1 

Huang Logistic model 394.08 0.0427 10.06 118.6 

Ohba exponential mode 455.37 0.0267 27.09 206.9 

Inflection S-shaped model 389.1 0.0935 8.69 133.3 

Delayed S-shaped model 374.05 0.1977 4.48 168.7 

G-O model 760.0 0.0323 112.3 139.8 

Dlayed S-shaped model with 
Rayleigh 

333.14 0.1004 6.93 798.5 

 
A fitted curve of the estimated mean value function with the 

actual software data is plotted in Figure 3. The 2R  value for 

proposed NMW testing-effort is 0.9901. It can therefore be 

observed that the NMW testing-effort function is suitable for 
modeling the software reliability of this data set. We also 
observed that the fitted testing-effort curve is significant since the 
calculated value F (=7.92) is greater than F0.05(3,15) and 
F0.01(3,15). Secondly, the selected models are compared with each 

other based on objective criteria. 
 
Table 2 lists the performance of various SRGM investigated. 
Kolmogorov Smirnov goodness-of-fit test shows that our 
proposed SRGM fits pretty well at the 5% level of significance. 
Following the work in [19], we compute the relative error in 
prediction for this data set and the results are plotted in Figure 3. 

We observed that relative error approaches zero as 
et  approaches 

qt and the error curve is usually within 5  percent.  Altogether, 

from Figures 1-3 and Tables 1-2, we can see that the proposed 
model has better performance and predicts the future behavior 
well. 
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Figure 3: Relative error curve. 
 

DS 2: The second set of actual data is the pattern of discovery of 
errors [27]. The debugging time and the number of detected faults 

per day are reported. The cumulative number of discovered faults 
up to twenty two days is 86 and the total consumed debugging 
times is 93 CPU hours. All debugging data are used in this 
experiment. The testing effort data are applied to estimate the 

parameters ˆ ˆˆ ˆ, , andm  of the NMW current testing-effort 

function described in (2) by using the method of least squares. 

The estimated values of parameters are 

ˆ  =97.1342, ˆ = 0.0128, m̂ = 1.1297, ˆ = 0.8769           (25) 

 

Figure 4 show the fitting of the estimated testing-effort by using 
above estimates. The fitted curve and the actual software data are 
shown by dotted and solid lines, respectively.  
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Figure 4: Observed/estimated current test-effort vs time 

 
The other parameters ,a r  in (6) can be solved numerically using 

MLE method for these failure data. The estimators are 

   â =94.88667,    r̂ =0.02524413. 

Parameter Estimate Standard Error 95% Confidence 
Interval 

Lower Upper 
a    566.6614 61.75 433.29 700.02 

r   0.019596 0.0030 0.0130 0.026 
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Table 3: Summary of estimates of NHPP model parameters 

Parameter Estimate Standard Error 95% Confidence 
Interval 

Lower Upper 
a  94.8867 2.561 69.45 100.314 

r  0.02524 0.0015 0.0219 0.0285 

 

Table 3 shows the estimated values of parameters with their 
standard errors and 95% confidence limits for the proposed 
model.  
 
The fitted curve of the estimated mean value function with the 
actual software data has been plotted in Figure 5.  
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 Figure 5: Observed/estimated cumulative number of failures 

Vs time  

The 
2R  Value for proposed NMW testing-effort is 0.9931. 

Therefore, we can say that the proposed curve is suitable for 

modeling the software reliability. Also, the calculated value F 
(=8.94) is greater than F0.05 (3, 18) and F0.01 (3, 18), which 
concludes that the fitted testing-effort curve is highly significant 
for this data set. 
  

Table 4: Comparative results of different SRGM 

Model a  r   MSE 

Proposed Model (Eqn. (6) ) 94.887 0.0252 5.55 

Generalized exponential model 
(Eqn. (5) with Generalized 
exponential curve) 

94.88 0.025 7.557 

Yamada Rayleigh model (Eqn. 
(5) with Rayleigh curve) 

87.032 0.0345 7.772 

Delayed S-shaped model 88.653 0.2282 6.313 

Huang Logistic model 88.893 0.0391 25.23 

G-O model 137.07 0.0515 25.33 

HGDM 88.30 -- 33.68 

 
Table 4 lists the comparisons of proposed model with different 
SRGM which reveal that the proposed model has better 
performance. Kolmogorov Smirnov goodness-of-fit test shows 
that the proposed SRGM fits pretty well at the 5 % level of 
significance. Finally, we compute the relative error in prediction 
of proposed model for this data set. Figure 6 shows the relative 

error plotted against the percentage of data used (that is /e qt t ). 

We observed that relative error approaches zero as et  approaches 

qt and the error curve is usually within 5  percent. Therefore, 

from the Figures4-6 and Tables 4 discussed, it can be concluded 

that the proposed model gets reasonable prediction in estimating 
the number of software errors and fits the observed data better 
than the others. 
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 Figure 6: Relative error curve  

 
DS 3: The third set of actual data in this paper is the System T1 
data of the Rome Air Development Center (RADC) projects and 

cited from [19], [18]. The number of object instructions for the 
system T1 which is used for a real-time command and control 
application. The size of the software is approximately 21,700 
object instructions and developed by Bell Laboratories. The 
software was tested for twenty one weeks with 9 programmers. 
During the testing phase, about 25.3 CPU hours were consumed 
and 136 software errors were removed. The number of errors 
removed after 3.5 years of test was reported to be 188 [6]. 

Similarly, parameters ˆ ˆˆ ˆ, , andm  of the NMW current 

testing-effort function for this data set can be obtained by using 
the method of LSE. The estimated values are 

ˆ =25.5879, ˆ =0.000098, m̂ =1.1401, ˆ  = 0.3389  (26) 

 

Time (weeks)

21191715131197531

Te
st

-e
ffo

rt 
(C

PU
 h

ou
rs

)

4

3

2

1

0

Actual

Fitted

 
Figure 7: Observed/estimated current test-effort Vs time  
 

Figure 7 shows the fitting of the estimated testing-effort by using 
these estimates. The fitted curve is shown as a dotted line and the 
solid line is for actual software data in the graphs. Using the 

estimated parameters ˆ ˆˆ ˆ, , andm , the other parameters ,a r  in 

(6) can be solved numerically by MLE method. The estimates are 

â = 134.61,   r̂ =0.151572. 

 

Table 5: Summary of estimate of NHPP model parameters 

Paramete
r 

Estimate Standard  
Error 

95% Confidence Interval 

Lower Upper 
a  134.609 5.121 69 145.5 

r  0.15157 0.01685 0.456 0.187 

 
Table 5 summarizes the experimental results of estimated 
parameters with their standard errors and 95% confidence limits 
of parameters for the proposed model.  
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Figure 8: Observed/estimated cumulative number of failures 

Vs time 
 

A fitted curve of the estimated mean value function with the 
actual software data is plotted in figure 8.  
 
Also, Table 6 compares the performance of various SRGM for 
this data set. The Kolmogorov Smirnov goodness-of-fit test shows 

that the proposed SRGM fits pretty well at the 5% level of 
significance. Similarly, we compute the relative error in prediction 
for proposed model for this data set. Figure 9 depicts the relative 

error plotted against the percentage of data used (that is, /e qt t ).  

Finally, Figures 1-9 and Tables 1-6 reveal that the proposed 
model has better performance than the other models. This model 
fits the observed data better, and predicts the future behavior well. 
 

Table 6: Comparative results of different SRGM 

Model a  r  AE (%) MSE 

Proposed Model (Eqn. (6)) 134.61 0.1516 28.4 27.15 

Yamada Rayleigh model 
(Eqn. (5) with Rayleigh 
curve) 

866.94 0.0096 25.1 89.24 

Delayed S-shaped model 237.20 0.0963 26.16 245.25 

Huang Logistic model 138.03 0.1451 26.58 62.41 

G-O model 142.32 0.1246 24.29 2438.3 

Inflection S-shaped model 159.11 0.0765 15.36 118.3 

Ohba exponential model 137.20 0.156 27.12 3019.6 
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Figure 9: Relative error curve  
 
The R2 value for proposed NMW testing-effort curve is 0.9823 
and calculated F value is 8.84, which is greater than F0.05 (3,117) 
and F0.01 (3, 17). It can therefore be observed that the proposed 
model is suitable for modeling the software reliability and the 
fitted testing-effort curve is highly significant for this data set. 
Also, Table 6 compares the performance of various SRGM for 
this data set. The Kolmogorov-Smirnov goodness-of-fit test shows 

that the proposed SRGM fits pretty well at the 5% level of 
significance. Similarly, we compute the relative error in prediction 
for proposed model for this data set. Figure 9 depicts the relative 

error plotted against the percentage of data used (that is, /e qt t ). It 

is noted that the relative error of the proposed model approaches 

zero as 
et  approaches

qt . Finally, Figure7-9 and Tables 5-6 reveal 

that the proposed model has better performance than the other 
models. This model fits the observed data better, and predicts the 
future behavior well. 

 

7. OPTIMAL SOFTWARE RELEASE 

POLICIES 
Recently, it is becoming increasingly difficult for the developer to 

produce highly reliable software systems efficiently. If the length 
of software testing is long, it can remove many software errors in 
e system and its reliability increases. However, it leads to increase 
the testing cost and to delay software delivery. In contrast, if the 
length of software testing is short, a software system with low 
reliability is delivered and it includes many software errors which 
have not been removed in the testing phase. So, it is important that 
we have to find the solution for the optimal length of the software 

testing that is called optimal release time and the decision process 
is called an optimal software release problem [28], [30], [21], 
[14], [11]. 
 

7.1 S/w Release- Time Based on Reliability 

Criterion 
Generally, the software-release time problem is associated with 
the reliability of a software system. First, we discuss the release 
policy based on the reliability criterion. If we know that the 
software reliability of this computer system has reached an 

acceptable reliability level, then we can determine the right time 
to release the software [93]. The conditional reliability function is 

given in (10). Differentiate (10) with respect to t , we observe 

that 0
R

t
. Hence ( | )R t t is a monotonic increasing function 

of t . Taking the logarithm on both sides of (10), we obtain 

ln [ ( ) ( )]R m t t m t      (27) 

We can easily determine the testing time needed to reach a desired 

R by solving (27) and (6). It is noted that ( )R t is increasing in t . 

 

7.2  Reliability Analysis For Real Data Set 

DS 1: In first data set, it is known that ˆ  =64.466695, ˆ = 

0.034101264, m̂ = 0.885114496, ˆ = 0.0561145, â = 566.6613, 

and   r̂ = 0.0195961. Suppose the software system desires that the 
testing would be continued till the operational reliability is equal 

to 0.80 (at t = 0.1), from (27) and (6), we get t = 28.57 weeks. If 

the desired reliability is 0.85, then t = 29.90 weeks. If the desired 

reliability is 0.95, then t = 33.74 weeks and if the desired 

reliability is 0.99, then t = 37.65 weeks.  

 

DS 2: In second data set, from (24) and (6), for ˆ  =97.13424, 

ˆ = 0.0128194, m̂ =1.1296671, ˆ =0.087694, â = 94.88667, and 

r̂ = 0.02524413, we get testing time t = 20.66 days, if we assume 

that the testing of the software system is desired to be continued 

till the operational reliability is equal to 0.95 (at t  = 0.1). If the 

desired reliability is 0.99, then t = 21.80 days. 
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DS 3: From the previous estimated parameters: ˆ  =25.5878, ˆ = 

0.000099, m̂ = 1.14012, ˆ =0.3389, â = 134.61, and r̂ = 0.1516, 

suppose the software system desires that the testing would be 
continued till the operational reliability is equal to 0.8 (at t  = 

0.1), from (27) and (6), we get testing time = 19.10 weeks. 
Similarly, the desired reliability is 0.99, then t = 21.80 weeks. 

 

7.3  Software Release- Time Based on Cost-

Reliability criteria 
In this section, we discuss the cost model and release policy based 
on the cost-reliability criteria. Using the total software cost 

evaluated by cost criterion, the cost of testing-effort expenditures 
during software testing and development phase, and the cost of 
correcting errors before and after release are given by [34], [33], 
[31], [21], [14], [10], [11], [5], [9], [7]. 

1 2 3
0

( ) ( ) [ ( ) ( )] ( ) .
T

lcC T C m T C m T m T C w x dx
  (28)  

Where 
1C  is the cost of correcting an error during testing, 

2C is 

the cost of correction an error during operation,
2 1C C , 

3C  is 

the cost of testing per unit testing-effort expenditures and 
lcT  is 

the software life-cycle length. 
 
From reliability criteria, we can obtain the required testing time 

needed to reach the reliability objective
0R . Our aim is to 

determine the optimal software release time that minimizes the 
total software cost to achieve the desired software reliability. 
Therefore, the optimal software release policy for the proposed 
software reliability can be formulated as follows:  

0

2 1 3

0

( )

( | )

0, 0

0,0 1.

Minimize C T

Subject to R t t t R

for C C C

t R

        (29) 

The procedures to derive the optimal release policy for this 
problem are evolved step by step and are shown hereafter. By 

differentiating (28) with respect to T  and equating to zero, yields 

1 2 3

( ) ( ) ( )
( ) 0

dC T dm T dm T
C C C w T

dT dT dT
 

( )3

2 1

( )
( ( ))

( )

r W TC T
a r e r a m T

C C w T
 (30) 

When 0T  then (0) 0m  and ( )

( )

T
ar

w T
. WhenT , then 

( ) (1 )rm a e  and rera
Tw

T
..

)(

)( . Therefore, 
)(

)(

Tw

T  is 

monotonically decreasing inT . To analyze for the minimum 

value of ( )C T , (30) is used to explore two cases of ( )

( )

T

w T
 

at 0T . 

Case 1: If 3

2 1

(0)

(0)

C
a r

w C C
, then. 

3

2 1

( )
 for 0

( )
lc

C
T T

w T C C
 

It can be obtained that ( )
0

dC T

dT
 for 0 lcT T  and the 

minimum of ( )C T  an be found at 0T . 

Case 2:  If, there can be found a finite T  such that 

3

2 1

( )
( ( ))

( )

CT
r a m T

w T C C
 

= ( )r W Ta r e  = (1 )T Tr a e ea r e  

Solving this, we can get 

2 1

3

( )1 1
ln[1 ln{ }]m t a r c c

T e
c

   (31) 

The equation (31) is solved using numerical technique and get the 

value of 
0T  satisfying (33), ( )

0
dC T

dT
 for 

00 T T  and 

( )
0

dC T

dT
 for

0 lcT T T . It also can be shown that 

2

2

( )
0

d C T

dT

and hence ( )C T c is a convex function. Thus, 

minimum of ( )C T  is at
0T T . 

 
 Furthermore, to commit the provisions of the optimal software 

release policy for the proposed software reliability as depicted 

above, a finite and unique real number 
1T  is determined such 

that
0( | )R t t t R where

00 1R . Therefore, summarizing 

the above analysis and combining cost and reliability 
requirements, we have the following theorem. 
 
Theorem 1: We assume 

that
1 0C ,

2 0C ,
3 0C ,

2 1C C , 0x ,
00 1R , then 

1. 3

2 1

(0)

(0)

C
If and

w C C
 

3

2 1

( )
0

( )

r
lc

CT
r e for T T

w T C C
 

then *
0 1max[ , ]T T T  for 

0( | 0) 1R x R  or 

      *
0 00 ( | 0)T T for R R x t . 

2. 3

2 1

(0)

(0)

C
If

w C C
then, 

*
1 0( | 0) 1T T for R x R  or 

*
00 0 ( | 0)T for R R x  

3. *3
1

2 1

(0)

(0)

C
If then T T

w C C
  

for 
0( | 0) 1R x R  or *

00 0 ( | 0)T for R R x ). 

 

7.4 Application Examples 
DS 1: In fist data set, it is known that ˆ  =64.466695, ˆ = 

0.034101264, m̂ = 0.885114496, ˆ = 0.0561145, â = 

566.6613, and   r̂ = 0.0195961. To determine the optimal 
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software release time, we assume the values 

of
1 21, 50C C , 3 100,C 100,LCT  

0 0.90R and 0.1t  for the analysis. Then we get the optimal 

release time 
0T  estimated as 2.96 based on minimizing ( )C T  of 

(31), and  
1T  is estimated as 29.90 based on satisfying the 

reliability criterion of
0( | )R t t t R . These values sustain the 

relationships of 3

2 1

(0)

(0)

C

w C C

and 3

2 1

( )
. ..

( )

r CT
r e

w T C C

 

and 
0( | 0)R t R  with which one could imply 1 in Theorem 1 to 

obtain the optimal software release time 
*T  as max (29.90, 2.96) 

= 29.90 weeks and the corresponding software cost *( )C T  is 

6852.14 

DS 2: In second data set, it is known that ˆ  =97.13424, ˆ = 

0.0128194, m̂ =1.1296671, ˆ =0.087694, â = 94.88667, and 

r̂ = 0.02524413. To determine the optimal software release time, 
we assume the values of 

50,1 21 CC
3 0100, 100, 0.90LCC T R and 0.1t  

for the analysis. Then we get the optimal release time 
0T  

estimated as 2.56 based on minimizing ( )C T  of (31), and  
1T  is 

estimated as 17.78 based on satisfying the reliability criterion 

of
0( | )R t t t R . These values sustain the relationships of 

3

2 1

(0)

(0)

C

w C C

 and 

12

3...
)(

)(

CC

C
er

Tw

T r  and 
0)0|( RtR  

with which one could imply 1 in Theorem 1 to obtain the optimal 

software release time 
*T  as max (17.78, 2.56) = 17.78 days and 

the corresponding software cost )( *TC  is 7792.85 

DS 3: In third data set, it is known that ˆ  =25.5879, ˆ = 

0.0000984, m̂ =1.140123, ˆ = 0.3389, â = 134.61, and r̂ = 

0.15157. To determine the optimal software release time, we 
assume the values of 

1 21, 50C C 3 0100, 100, 0.90LCC T R and 0.1t  

for the analysis. Then we get the optimal release time 0T  

estimated as 13.73 based on minimizing ( )C T  of (31), and  
1T  is 

estimated as 19.49 based on satisfying the reliability criterion 

of
0( | )R t t t R . These values sustain the relationships of 

3 3

2 1 2 1

(0) ( )
and . ..

(0) ( )

rC CT
r e

w C C w T C C
 and 

0( | 0)R t R  

with which one could imply 1 in Theorem 1 to obtain the optimal 

software release time *T  as max (19.49, 13.73) = 19.49 weeks 

and the corresponding software cost )( *TC  is 2393.34 
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