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ABSTRACT 

In this paper the implementation of arithmetic operations in ECC 

is described.Elliptic curve cryptography is very useful in the field 

of the network security because of its small key size and its high 

strength of security.In this paper briefly describing general 

arithmetic operations we focus on scalar multiplication . We 

present two techniques: (i)reducing Hamming weight of scalars in 

binary representation and (ii) using sliding window , for 

obtatining scalar multiplication in a faster manner. Use of both 

the techniques is explained by suitable examples. 
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1. INTRODUCTION  
Wireless sensor networks consist of small nodes that sense their 

environment, process data and communicate through wireless 

links. They are expected to support a wide variety of applications, 

many of which have at least some requirement for security. In 

wired data networks node rely on pre deployed trusted server help 

to establish trust relationship but in WSN,their trusted authorities 

do not exist because sensor nodes have limited memory , CPU 

power , and energy , hence cryptographic algorithms must be 

selected carefully. A survey of security issues in ad hoc and sensor 

networks can be found in [1].Elliptic curve cryptography (ECC) 

offers a popular solution to the problem of implementing public 

key cryptography on mobile computing device. The security of 

RSA, the most popular algorithm in other domains such as e-

commerce is based on the hardness of integer factorization; ECC 

is based on the Elliptic Curve Discrete Logarithm Problem 

(ECDLP). ECC keys are shorter than their RSA analogues, while 

achieveing the same security level: A 160-bit ECC key is roughly 

equivqlent to a 1024-bit RSA key.Thus an ECC based system is 

typically more efficient and utilizes less resources than one based 

on RSA[2] and hence ECC has emerged as a promising alternative 

to traditional public key methods on WSNs [3],because of its 

lower processing and storage requirements. These features 

motivate the search for increasingly efficient algorithms and 

implementation of ECC for such devices. 

         In this paper we propose optimization for implementing 

ECC over binary fields, improving its performance and viability. 

The main operations in any  

ECC based primates such as key exchange or encryption is the 

scalar multiplication which can be viewed as the top level 

operation. The point Scalar multiplication is achieved by repeated 

point addition and doubling. All algorithms for modular 

exponential can also be applied for point multiplication. In this 

paper we propose an algorithm for scalar multiplication which 

remarkably improves the computational efficiency of scalar 

multiplication. 

         The remaining of this paper is organized as follows. Related 

work is presented in Section.2 and  

Elementary elliptic curve concepts are introduced in Section.3. 

Optimization in ECC implementation is considered in Section.4. 

Including optimization for scalar point multiplication using sliding 

window. Concluding remarks is included in section.5.  

2. RELATED WORK 

Since the introduction of elliptic curves to cryptography by Victor 

Miller [4] and Neal Koblitz [5] independently in 1985 a vast 

amount of research has been done. While implementing ECC in 

binary fields, elliptic curve point representation and point 

operation algorithms are of special significance. A comprehensive 

survey of binary fields and elliptic curve arithmetic for the NIST 

recommended elliptic curves was done in [5]. A specialized 

implementation for the field GF (2
155

) was done in [6] Lopez and 

Dahab presented a Montgomery field multiplication for binary 

fields in [7]. They also did research on binary fields multiplication 

[8] and ECC over binary fields [9]. More point multiplication 

algorithms can be found in [10] and [11]. Solinas developed 

efficient algorithms for Koblitz curves over binary fields using 

complex   multiplication [12]. Shantz [13] presented an efficient 

technique to calculate modular division, which is an important 

arithmetic operation in ECC and other cryptographic system . 

Cohen et al [14] analysed the impact of coordinate system in ECC 

implementation. They measured the performance of point addition 

(PADD) and Point  Doubling(PDBL) of different coordinate 

system,which achieves the fastest doubling operations for binary 
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curves. Malan et.al[15] implemented an ECC system using 

polynomial basis over binary field GF(
m2 ). 

3. ELLIPIC CURVE CRYPTOGRAPHY 

3.1. Basic Concepts. 

In this section, we briefly give a background about ECC and 

corresponding elliptic curve Diffie-Hellman Algorithm. In this 

section , we briefly give a background about ECC and 

corresponding elliptic curve Diffie-Hellman.In recent years, ECC 

has attracted much  attention as security solutions for wireless 

networks due to small key size and low computational overhead. 

An elliptic curve over a finite field GF(Galois field) is composed 

of a finite group of points (x i ,y i )  where integer coordinates  

x i ,y i  satisfy the long Weierstrass 

Equation.
3y + a xy1 + a y3 = 64

2

2

3 axaxax   

And the coefficients a
64321 ,,,, aaaa  are elements of GF 

and are the parameters of the curve. The curve discriminent is 

∆≠0 and there is also a point at infinity denoted by Ѳ . If GF is a 

field of characteristics 2, then the curve is called a binary elliptic 

curve.Since the field is GF (q), q is prime, is generally used is 

cryptographic applications, the equation of elliptic curve is 

simplified to 

           baxxy 232
    ,   

               
23 274 ba ≠ 0  

 where   ba,  GF(q) 

  The elliptic curve group operation is closed so that the addition 

of any two elements (points) is again an element (point0 of EC. 

The point at infinity O, is the identity element of the group.               

Given two points P and Q, with coordinates ( ,1x 1y ) and    

( ,2x 2y  ) respectively, their addition results in a point R on the 

curve with coordinates  ( ,3x 3y  ) where   3x  and  3y  satisfy   

( ,1x 1y ) + ( ,2x 2y  ) =  ( ,3x 3y  )  

  Such that                    

             axxx 21

2

3         

            13313 )( yxxxy  

 

 

 

 

 

 

  

Fig.1. 

      where              

21

21

xx

yy
 

If P=Q, then R=P+P=2P and in this case the coordinates 

of  ( ,3x 3y  )  of R are given as  

                    ax 2

3     

                    3

2

13 )1( xxy        

where    

1

11

x

yx
               

As stated earlier O, is the identity element of group and  

stratifies  

                 P+O=O+P=P 

For P( ), yx  we define –P=(- ), yx  as the unique  

inverse of P in the group satisfying.    

                 P+ (-P) = (-P) +P=O 

 A multiplication  

                          

  
Nktimesk

PkPPQ
;

..........         

  of a point P with an integer k can be seen as the  

multiplication addition of one and the same point k-times.  

The resulting product Q is again another point on the  

curve. Given an elliptic curve C over finite field PF
2

, a  

point P  and a product Q the problem is to find a k N   

that holds Q=k.P. This problem is known as Elliptic  

Curve Discrete Logarithmic Problem(ECDLP)and hard to  

solve[ ]. For example with a finite fields with  

PF
2

P2 elements you need about O(2 2
P

)operations to  

find k.Thus the ECC relies on the difficulty of the  

ECDLP, that is given points P and Q in the group , to find 

 the number k such that        Q=k.P. 

3.2 ECDH and ECDSA 

A typical Elliptic Curve Diffie-Hellman (ECDH) scheme is 

illustrated in Fig.1. Initially A and B agree a system base point P 

and generate their own public keys AQ and  BQ . Then to share 

a secret A and B exchange their public keys and then use their 

own private key to multiply the others public key . The result 

point R will be a secret . An eavesdropper E , may learn the public 

keys from A and B.  
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However ,      

    A               

PkQ AA
      B   

(Private Key Ak  )                          (Private Key Bk )  

  

(Compute secret) 
PkQ BB

  (Compute secret) 

 BA QkR                                      AB QkR  

  

     With the knowledge of P , AQ  and  BQ   it is 

computationally intractable for E to get A’s and B’s private keys 

and as such E cannot Figure out R. ECC can also be used for 

Digital Signature Algorithms (EDSA), similarly. Suppose A wants 

to send a signed message to B and agree on a system base point  P 

and let order of P  in finite field F(p) be q . While A  sending a 

message to B  attaches a Digital Signature ( ),sr generated by 

following algorithm. Let us assume that A has private key  x  

and a public key xPQA . 

 

1.Select a random key k in [ ]1,1 q   

2. Let kP be point ),( 11 yx  on EC. Let 1xr .If 

0)(modqr  then select another k. 

3. Computec )(mod1 qk  

4.Compute ))((1 xrmHashks ,where  Hash is one way 

hash function  SHA-I. If ∆=0 then select another k. 

5. ),( sr  is the digital singnature 

 

 To verify the message and the  signature , B has to 

compute the following 

  1.Compute )(mod1 qsw  and )(mH . 

  2. Compute qwmHu mod)(1  and  qrwu mod2  

  3. Compute QuPu 21 , which results in point ( ), 22 yx . 

  4. The signature is verified if rx2 . 

4.OPTIMIZATIONINECC  

IMPLEMENTATION 

                                In ECC implementation we perform large integer arithmetic 

operations including additions , subtraction, shift , multiplication, 

division and modular reduction. The efficiency of large integer 

multiplication dominates the overall  performance of ECC 

operation. Gura et al.[ ] show that as much as 85% of execution 

time is spent on multiplication for a typical point multiplication in 

ECC. Thus  the optimization on multiplication is critical for 

overall performance  

                                of ECC implementation. We now present optimization for ECC 

operations . Starting with PADD and PDBL in ECC we consider 

different optimization techniques for point multiplication. 

 

4.1. ECC Addition and Doubling 

Since point multiplication can be decomposed to a series of  

addition and doubling operations , therefore PADD and PDBL are 

the fundamental  ECC operations .Performing PADD and PDBL 

in affinie coordinates needs integer inversion ,which is considered  

much slower then integer multiplication. Cohen et al [ 15] 

considered these operations in Projective coordinates  and 

Jacobian coordinates and ascertained that their use yields better 

performance . Further  they came out with a mixed coordinates ,a 

combination of  Affine coordinate and Modified Jacobian 

coordinates , which led to best performance [ ]. Cconsider a point 

P in ECC in Modified Jacobian coordinate 

),,,( 4

1111 aZZYXP  and a point Q in Affine coordinates 

),( 22 yxQ , then their addition is a point R with       

),,,( 4

3333 aZZYXR  in Modified Jacobian coordinates , where  

   
22

1

3

3 2 YWXWX  

     )( 3

2

1

3

13 XWXVWYY  

    
4

33 aZZ  

where 
1

2

12 XZxW  and  YZyV 3

12 .The result of 

PDBL for 13 2PP  is given by the following formula  

                TX 3                     

                  

)(2

2

)(

4

13

113

aZUaZ

ZYZ

VTSMY

 

As an estimation of computational complexity PADD require 9 

large integer and 5 squaring where as PDBL requires . 

      In order to reduce computational complexity of scalar 

multiplication we employ two new techniques: i) Reducing the 

Hamming Weight of scalars  and (ii) using sliding window. We 

discuss both the methods in next two subsections. 

4.2. Reducing Hamming Weight of Scalars 

 The Hamming weight of a string is the number of symbols that 

are different from the zero-symbol of the alphabet used. Hamming 

weight is the number of "1" bits in the binary sequence.  Looking 

to computational complexity, we observe that PADD is more 

expensive than   PDBL. Since point multiplication can be 

decomposed to series of PADD and PDBL, it is obvious to use 

more PDBL than PADD to compute the point multiplication. 
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NAFs is an effective way to achieve the least Hamming weight for 

scalar k in point multiplication kP, Morain et al [ ], which 

accounts for the least number of point additions to calculate kP.As 

an example consider k= 511= (111111111) 2 . Now for any point 

P, 511P requires 8 point additions. However, if we 

write 1)100000000()111111111( 22   

Then PPPPP 2)100000000(512511 ,   

requires only one addition. Note that point subtraction can be 

replaced by PADD because the inverse of an affine  

point ),( yxP is ).,( yxP  Thus we can implement it 

in point multiplication to achieve faster results.In another 

approach we consider recoding of scalar k as compliment of 1 in 

binary arithmetic. Let N be a number in binary form ,b be number 

of bits in the binary form of N. Then compliment of N in 1 is 

given by following rule  

NC b )12(  or equivalently 

CN b 12  where C is 1’s  

complement of the binary number . 

 As an example consider the number 2148 

2)01111001110(1948N  , then  

 C=1’s complement of the number N is 

equal to (00001100011) 2 . 

It can easily be verified that  

      1948 = 1)10000110001(2 2

12
               

                  = 1)123264(2048                                           

                 = 1992048  

                 = 1948  

     The Hamming weight of 1948 has reduced rom 7 to 4 which 

will save 3 EC additions.Since one addition operation requires 2 

squaring, 2 multiplication and 1 inverse operation , a total of 2 

squaring , 6 multiplication and 3 inverse operations will be saved. 

          

4.3 Sliding Window 

Sliding windows, a technique also known as windowing, is used 

by the Internet's Transmission Control Protocol (TCP) as a method 

of controlling the flow of packets between two computers or 

network hosts. Here we consider sliding window for scalar 

multiplication in ECC. 

With the help of  Sliding Window Algorithm we can compute 

kP  for any Zk (set of positive integers). Let P  be a point 

on EC and let k=3277 then 3277P is equivalent to   

(110011001101) 2 P. We consider window size from 2 to 12, 

however it can be of any size. For a window of size w, there are 

12 1w
 pre computations . For example for w=3 there are, 

( 3)12 13
precomputations, namely 3P, 5P and 7P.  One 

can observe that as the window size increases the number of pre 

computation increases but on the other hand  it has been observed 

that number of additions and doubling operations decreases.  

The number of PADD and PDBL for 3277P for different window 

size are given below and the same is summarized in Table-1. 

1.Window size=2 

 k=3277 

The intermediate values for calculating 3277P are 

P,2P,4P,5P,10P,11P,12P,24P,48P,51P,102P,204P,408P,816P,819

P,1638P3276P,3277P. 

2. Window Size=3 

The intermediate values for calculating 3277P are 

5P,10P,20P,40P,45P,50P,100P,200P,400P,407P,814P,817P,1634

P,3268P,3275P,3276P, 3277P. 

3. Window Size=4 

The intermediate values for calculating 3277P  are 

9P,18P,36P,72P,87P,100P,200P,400P,800P,815P,1630P,3260P,3

273P,3274P,3277P 

4. Window Size=5 

The intermediate values for calculating 3277P   are 

 5P,50P,100P,200P,400P,800P,819P,1638P,3276P,3277P. 

5.Window Size=6 

The intermediate values for calculating 3277P  are 

 51P,100P,200P,400P,800P, 819P,1638P,3276P,3277P 

6.Window Size=7 

The intermediate values for calculating 3277P  are 

 101P,202P,404P,808P,815P,1630P,3260P, 3277P. 

7. Window Size=8 

The intermediate values for calculating 3277P  are 

 203P, 406P, 812P, 1624P, 3248P, 3277P. 

8. Window Size=9 

The intermediate values for calculating 3277P are 

 409P, 818P, 1636P, 3272P, 3277P. 

9. Window Size=10 

The intermediate values for calculating 3277P are 

 819P, 1638P, 3276P, 3277P. 

10. Window Size=11 

The intermediate values for calculating 3277P are 

 1637P, 3274P,  3277P. 

11. Window Size=12 

The intermediate values for calculating 3277P  are 

 3277P.          

      Window Size Vs No. of Computational costs.                         
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Table .1. 

Window 

Size 

No. of 

Doublings 

No. of 

Additions 

No. of Pre 

computation 

2 11 6 1 

3 9 7 3 

4 8 6 7 

5 7 2 15 

6 5 3 31 

7 5 2 63 

8 4 1 127 

9 3 1 255 

10 2 1 511 

11 1 1 1023 

12 0 0 2047 

 

The above data is represented more elegantly in the following 

Fig.2. 

 

                 Fig.2. 

It is obvious from the above results, that one  has to  select a 

suitable window  size for optimal implementation of scalar 

multiplication, which varies with k- also. In our example the 

calculate the computational cost , the cost of precomputations is  

to be included also and in this example a window size w =5 

provides optimum results. 

        5. CONCLUSION 

In implementing arithmetic operations in ECC, the most important 

one is Scalar Multiplication. In this paper we have suggested two 

methods (i)  reducing the Hamming weight of scalars of binary 

representation  (ii) using Sliding window. The implementation of 

both of these methods reduces number of PADD’s in scalar 

multiplication.  
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