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1. INTRODUCTION 

 Mathematical Morphology originally developed in 1967 by 

Georges Matheron[14] and Jean Serra[13] at the Paris School of 

Mines. Mathematical morphology is based on mathematical 

concepts from set theory and uses a number of operators that are 

useful for edge detection, noise removal, image enhancement, 

and image segmentation etc.  

     The two basic operations of mathematical morphology are 

erosion and dilation. These operators use an input image to be 

eroded or dilated and a structuring element. In convex analysis 

and optimization the nonlinear signal operation  is usually 

called supremal  convolution. A dual operation is the so called 

infimal convolution given by 

( )( ) ( ) ( )
dy R

f g x f x y g y . 

   is closely related to the morphological erosion  because 

( )f g f g  where g is the reflection of g given by 

( ) ( )g x g x [8].Therefore  and  are supremal and 

infimal convolution,  respectively, corresponding to  the concept 

of a dilation and erosion operator on a lattice. 

A mapping  which sends a signal f to a transformed signal 

( )f  is called dilation translation invariant(DTI) system if it 

is a dilation, ie,  ( ) ( )i i i if f ,and if it is translation-  

 

invariant, ie. ( ) ( )y yf c f c  for any shift y and any 

real constant c .I t is easy to verify that a system is DTI if it is a 

horizontally shift-invariant and obeys the morphological 

supremum superposition principle 

( ) ( ( ) ,i i i i
i I i I

f x c f x c where{fi}is any 

signal collection and ic R . 

Many important aspects of a DTI system can be determined in 

the time or spatial domain solely from knowledge of its output 

signal due to an elementary input signal, the morphological lower 

impulse q  given by 
0, 0

( ) :
, 0.

x
q x

x
[19] 

The corresponding output of the D T I system when the input 

is the  lower impulse is henceforth defined as its lower impulse 

response : : ( )g q . 

This uniquely characterizes a DTI system in the time 

domain,because any DTI system is equivalent to a supremal 

convolution(also called ‘morphological dilation’) by its lower 

impulse response: ( )f f g                   [19] 

Similarly ,a signal operator : ( )f f  is called an 

erosion translation  invariant (ETI) system if it is horizontally 

shift –invariant and obeys the morphological infimum 

superposition principle    

( ) ( )( )i i i i
i i i I

f x c f x c  where ic R .If 

we define the upper impulse response h of an ETI system   as 

its response         

  : ( )h q   to the upper impulse  .h g  

0, 0
( ) :

, 0.

x
q x

x
 

             then it follows that    

( )f f h .                                               [19] 

When the ETI and DTI systems are related via an adjunction, 

then there is also a close relationship between their impulse 



International Journal of Computer Applications (0975 – 8887)  

Volume 6– No.3, September 2010 

2 

 

responses. Namely ,let be an ETI system, and let   be its 

adjoint dilation. It is easy to show that  is a DTI system[11], 

and therefore   ( )f f g  ,where g is the lower impulse 

response. The above relationship between the two theories 

inspired us for  finding a generalized algebraic structure for 

Mathematical Morphology. Since it is the generalization ,no 

seperate  proof is required for most of the results. However  ,we 

tried to give proof for new propositions. Examples are given for 

some generalizations. We hope that this generalization is helpful 

for developing the theory of Mathematical Morphology. We also 

hope that this paper give the relation between combinatorial 

convexity, mathematical morphology and image processing. 

2. BASIC CONCEPTS 

2.1 Definition: Moore family 

 Moore family is defined by using a partially ordered set L .It 

also satisfies certain properties on L.  

 Let L be a poset. 

i) A subset M of L is a Moore family if every element of 

L has a least upper bound in M. 

[  

ii) A closure operator on L is an increasing, extensive and 

idempotent operator from L L.[15] 

2.11 Proposition 

Let L be a poset. There is a one to one correspondence between 

Moore families in L and closings on L, given as follows. 

i) To a Moore family M, associate the closing defined by 

setting for every x L; (x) is equal to the least 

y M such that y x.    [15] 

ii) To a closing ,one associates the Moore family M which 

is the invariance domain of M = In (i.e. 

M= . 

2.2 Convex Geometry 

Let S be a set  ,consider the family T of subsets of S with the 

following properties: 

 

 
This family defines a closure operator 

[1] 

Every closure operator defines a family T’ with the above 

properties. Elements of T or elements defined by  will be 

called convex. We call the pair  is a Convex geometry if 

verifies the anti-exchange axiom. [1] 

 .                             

In the same way, 

 

2.3 Poset Geometry 

Corresponding to a partially ordered set ,we have a graphical 

representation, known as Hasse Diagrams. So we can infer that 

Poset give some geometrical representation. In view of this we 

can define Poset Geometry.[1] 
Let P be a partially ordered set and X be a subset of P, Define 

, (P,  is a 

convex geometry called Poset geometry which are characterized  

by the following: 

The convex geometry (S, arises from the poset geometry on a 

Poset P if and only if   

. 

2.4 Dilation 

A dilation is defined by an operator  with the 

following 

properties:

 

2.5 Erosion 

 

   An erosion is defined by an operator  

with the following 

properties:

 

2.6 Alexandroff space  

A topological space is an Alexandroff space if the intersection of 

any family of open sets is open(resp.the union of any family of 

closed sets is closed) 

2.7 Binary relation Canonically associated 

with Dilation 

Let  be a dilation on S. For any dilation, define a binary 

relation as follows: 

xRy is equivalent to  , for  or xR‘y is equivalent 

to  .   [1] 

2.71 Result 
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Let  be a dilation on S. R its binary relation canonically 

associated with it. Then  the following are equivalent. 

i. R is reflexive and transitive 

ii. xRy is equivalent to  

iii.  defines a dual Moore family. 

 

Proof: 

 i ⇒ ii .Since R is reflexive and transitive, δ(x)⊆ δ(x) 

and δ(x)⊆ δ(y).Therefore 
. 

 ii ⇒ iii .Since   ,by definition δ 

defines a dual Moore family. 

                 iii ⇒ i. Since 
δ defines a dual Moore family, it is both    

                 reflexive and transitive. 

 

2.72 Proposition 

Let S be a set . Let N: S  P(S) corresponding to  ρ by 

,   

and N(x) =  

Then (i) N separates S in a primary sense 

(ii) (S, N) is a Poset geometry. 

(iii) (S,N) is a To Alexandroff space. 

 

2.73 Proposition 
(S,N) is separated in a primary sense if N verifies the following 

two properties. 

i. For any family (xi), i  I of elements and for any 

element x  verifying N(x) , 

 such that N(x)  N(x j) 

ii. N(x) = N(y) is equivalent to x=y for any x, y S 

2.8 Definition: Morphological Closure  

  is called a morphological closure and 

 

2.9 Result 

Let S be an infinite space and let N be defined by R. Then (S,N) 

is a convex geometry if and only if 

 is a To- Alexandroff space 

where 

 ψ(A) =  

2.10 Proposition 

Let  such that 

 

and δ = δN, N. 

Define (Y)=   and 

(X)= W - N (V-X),∀ X . 

Then  and  are dual by complementation of N and δN. 

Also   is a dilation and   is an erosion. Also    = 

and    =  where ρ-1 is defined as w ρ-1  

and . 

2.11 Proposition 

Let  be a dilation and ℇ an erosion. Let ρ be the relation 

defined as before .Then 

i. ρ is reflexive and transitive. 

ii. is equivalent to δN(x)  δN(y). 

iii. δN defines a Dual Moore family. 

iv. N defines a Moore family. 

We can prove the above  result using the definitions.  

3. GENERALIZED ALGEBRAIC   

      STRUCTURE 

In this section we give general algebraic structure for 

Morphology and some definitions are restated using the 

generalization. 

3.1 Definition:  Morphogenetic field 

Let X  and W )(XP such that i) , X   W , ii) If B 

 W    then its complement    B   W iii)   If Bi W  is a 

sequence of signals defined in X, then    
1n

Bi  W.  

LetA={

)()(&)()(/: iiii AAAAUW }T

hen WU is called   Morphogenetic field where   the family Wu is 

the set of all image signals defined on the continuous or discrete 

image Plane  X and taking values in a set U .The pair ( Wu, A ) is 
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called an operator space where  A is the collection of operators 

defined on X.  

3.2 Definition :  Morphological space 

The triplet (  X, Wu,  A ) consisting of a set X, a morphogenetic 

field  Wu  and an operator  A(or collection of operators) defined 

on X is called a Morphological space. 

     Note: If X = Z2 then it is called Discrete Morphological space. 

3.3 Definition Convex Morphological space 

Let ),,( AWX u be a morphological space and ),( AWU be an 

operator space in ),,( AWX u . 

If X is a class of concave functions then ),,( AWX u is called 

concave morphological space. If X is a class of convex functions 

then ),,( AWX u is called convex morphological space. 

3.31 Proposition 

Every convex morphological space has * property. 

3.32 Definition * property 

Let ),,( AWX u be a morphological space and ),( AWU be an 

operator space in ),,( AWX u .Let Xx )( , then )(x has 

at least one maxima or minima in X. 

3.33 Proposition 

Every convex morphological space is optimizable. 

3.4 Definition: Geometrical Space   

Let ),,( AWX u be a morphological space and ),( AWU be an 

operator space in ),,( AWX u . 

If is an operator in A and in particular if satisfies (or 

defines a rule) in UW then the operator space ),( UW is called 

a geometrical space and defines a morphological geometry 

in UW . 

3.41 Proposition 

Let ),,( AWX u be a morphological space and ),( AWU be an 

operator space in ),,( AWX u .Suppose that 

UWSA, . UU WXXWXX 2121, and 

11 /)( XSWXS U  then  defines a 

morphological geometry ,known as convex geometry if 

)()(,),(, xSyYSxyxSyx   

. ),( UW is called a convex geometrical space. 

Also if XS)( then )(SXz and 

zSzS )()( . 

3.42 Definition: Poset Geometry 

Let ),(P be a poset and X be a subset of P.  

Define ,/)( xyPyXTp
for some Ax . Let 

),,( AWX u be a morphological space and 

pu TAPW , .Then the operator space is ),( PTP defines a 

geometry known as poset geometry and ),( PTP is called a poset 

geometrical space. 

3.43 Proposition  

Let ),,( AWX u
be a morphological space and let ),( UW be a 

poset geometrical space in ),,( AWX u .Then ),( UW is called 

a convex geometrical space iff 

XXXXXXX 212121 ,),()()( . 

3.44 Proposition  

Let ),,( AWX u be a morphological space. Then for 

UWx)(  , ))(,( xX is called an  

anti  matroid if ))(,( xX satisfies the following. 

i) )(),( xx is closed under union. 

ii) For SxSxS ,),( such that )(xxS . 

3.5 Proposition(Adjunction) 

Let ),,( AWX u & ),,( AWY u  be morphological spaces. The 

pair ),( AA is called an adjunction iff 

)()( YAXYXA where A is an inverse operator of 

A. 

3.51   Dilation and Erosion as Adjunctions 

Let ),,( uWX & ),,( uWY  be a morphological spaces with 

operators dilation and erosion on A. Then 

)()( YXYX . 

3.52 Proposition (For lattice) 

Let ),,( AWX u & ),,( AWY u  be a morphological spaces. The 

pair ),( AA  is called an adjunction iff ,, Xvu an 
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adjunction ),( ,, uvvu ml on U such that 

))(())(( , vxmuxA uv
Xv

and 

))(())(( , uylvyA vu
Xu

, UWyxXvu ,,, . 

3.6 Definition: Morphological Closure & 

Morphological Kernel. 

The operator  defines a closure called morphological 

closure and   defines a kernel ,called morphological 

kernel. 

3.61 Lemma 

Let ),,( AWX u  be a morphological 

space. SXWXS U 11 /)( defines a kernel 

operator in A. The pair ))(,( SX is an anti matroid if 

satisfies the axiom: 

For zSzSSzS )()(),(,)(  . 

 

Proof: 

Since UWS)( where UW  is a morphogenetic field in a 

morphological space ),,( AWX u
 )(S is an anti matroid. 

Direct proof. 

Since zSzS )( ,so )( zSz .From 

monotonicity, SzS  )()( SzS .There fore 

)()( SzS  

Conversely, 

zSzS)( )())(( zSzS . 

Therefore 

)())( zSzS )())( zSzS . 

3.62 Theorem 

Let ),,( AWX u  be a morphological space. ),(X defines a 

convex geometry iff ),(X is an antimatroid. 

3.7 Seperation 

Let ),,( AWX u  , ),,( AWX u be  morphological spaces. Let 

),( AA  be adjunctions. ),( AX is separated in a primary sense 

if A verifies the following two properties. 

1) Let Xx , IjxAxA i
Wx Ui

)()( such 

that )()( jxAxA  

2) yxyAxA )()( Xyx, and 

AA  defines a morphological closure. 

3.71 Theorem 

Let ),,( AWX u  be a morphological space and AA  be 

the morphological closure. Then the following statements are 

equivalent. 

1) A separates X in a primary sense. 

2) ),( UW is a morphological geometrical space. 

),( UW is a poset geometrical space. 

3.72 Theorem 

Let ),,( AWX u  be a morphological space and let X be an 

infinite set  and AA  be the morphological closure. Then 

the following statements are equivalent. 

1)   A separates X in a primary sense. 

2)  ),( UW is a morphological geometrical space. 

3)  ),( UW is a poset geometrical space 

3) ),( UW is a T0 Alexandroff space. 

Proof: 

3) )4  

Let ),( UW  be a poset geometrical 

space. YByy ),( ,B being a finite set such that 

)(By . )()( zyyy for some 

z Y.  ),( UW  is an Alexandroff space 

 )(, yyx ,

)(, yYxyx )( xYy , is a T0 

space. 

4) )1  

    Let ),( UW is a T0 Alexandroff space.      

   AA  , 

)()(/)( YAyAXyY .

seperatesAyx , X in a primary sense. 
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    1) )2  

Let A separates X in a primary sense .Since )()( yAxA  

 )()( yAAy  and 

)()(/)( yAYAXyy .

11 /)( YYWYY U

YxyRxXy /  

),( UW is a morphological geometrical space. 

2) )3  

Let ),( UW is a morphological geometrical 

space. )(Y is an ideal of X. )(Y is closed and R is 

an order relation. ),( UW is a poset geometrical space. 

Hence the result. 
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