Some Characterization of Anti Q-L-Fuzzy *l*-Group

K.Sunderrajan Department of Mathematics ,SRMV College of Arts and Science, Periyanaickanpalayam, Coimbatore-641020,Tamilnadu, India.

R.Muthuraj, M.S.Muthuraman, M.Sridharan Department of Mathematics ,PSNA College of Engineering and Technology, Dindigul -624 622,Tamilnadu, India.

ABSTRACT

In this paper we introduce the notion of anti Q-L-fuzzy ℓ -group, anti Q-L-fuzzy ℓ -ideals with values in a complete lattice L which is infinite meet distributive, and investigate some of its properties.

Keywords

Fuzzy set, Q-fuzzy set, anti L-fuzzy sub ℓ -group, anti Q-L-fuzzy sub ℓ -group , anti Q-L-fuzzy ℓ -ideal.

AMS Subject Classification (2000): 06D72, 06F15, 08A72.

1. Introduction

L. A. Zadeh introduced the notion of a fuzzy subset A of a set X as a function from X into I = [0, 1]. Rosenfeld [18] and Kuroki[12] applied this concept in group theory and semi group theory, and developed the theory of fuzzy subgroups and fuzzy subsemigroupoids respectively. In 1982, Liu[13] defined and studied fuzzy subrings as well as fuzzy ideals in rings. Subsequently, Mukherjee and Sen[16], K. L. N. Swamy and U. M. Swamy[19], and Zhang Yue[22] fuzzified certain standard concepts on rings and ideals. Malik and Morderson[14] defined an extension of a fuzzy ideal of a ring and Further more Abou-Zaid [1] characterized prime fuzzy ideals in a near rings, and Jun [8] extended the Prime fuzzy ideals in rings to Γ -rings. J.A. Goguen [7] replaced the valuations set [0, 1], by means of a complete lattice in an attempt to make a generalized study of fuzzy set theory by studying L-fuzzy sets. A.Solairaju and R.Nagarajan[11] introduce and define a new algebraic structure of Q-fuzzy groups. In fact it seems in order to obtain a complete analogy of crisp mathematics in terms of fuzzy mathematics, it is necessary to replace the valuation set by

a system having more rich algebraic structure. These concepts ℓ -groups play a major role in mathematics and fuzzy mathematics. Satya Saibaba [23] introduce the concept of Lfuzzy ℓ -group and L-fuzzy ℓ -ideal of ℓ -group. In this paper, we initiate the study of Q-fuzzy lattice ℓ -groups. We also introduce the notion of an anti Q-L-fuzzy sub ℓ -group, anti Q-L-fuzzy ℓ -ideal and establishes the relation with Q-L-fuzzy sub ℓ -group and Q-L-fuzzy ℓ -ideal of an ℓ -group *G* and discussed some of its properties. The characterisations of an anti Q-L-fuzzy sub ℓ -group and anti Q-L-fuzzy ℓ -ideal under homomorphism and anti homomorphism are discussed.

2. Preliminaries

In this Section, we review some definitions and some results of L-fuzzy subgroups which will be used in the later sections. Throughout this section we mean that (G,*) is a group, e is the identity of G and xy as x*y.

2.1 Definition

A lattice ordered group is a system $G = (G, *, \le)$ where i. (G, *) is a group,

ii. (G, \leq) is a lattice and

iii. the inclusion is invariant under all translations $x \mapsto a * x * b$.

That is, $x \le y \Longrightarrow a * x * b \le a * y * b$ for all $a, b \in G$.

2.2 Definition

If *a* is an element of ℓ -group *G*, then $a \lor (-a)$ is called the absolute value of *a* and is denoted by |a|. Any element *a* of an ℓ -group *G* can be written as

 $a = (a \lor 0) * (a \land 0)$. i.e, $a = a^+ * a^-$, where a^+ is called positive part of a and a^- is called negative part of a.

2.3 Definition

The function $f: G \to G^1$ is said to be a homomorphism if f(xy) = f(x)f(y) for all $x, y \in G$.

2.4 Definition

The function $f: G \to G^1$ (*G* and G^1 are not necessarily commutative) is said to be an anti homomorphism. if f(xy) = f(y)f(x) for all $x, y \in G$.

2.1 Proposition

In any ℓ -group G, for all $a \in G$, We have (i) $|a| \ge 0$, Moreover |a| > 0, unless a = 0(ii) $a^+ \land (-a^+) = 0$.

(iii) $|a| = a^+ - a^-$.

2.2 Proposition

In any ℓ -group G , $a*(a \wedge b)^{-1}*b = a \vee b$ for all $a, b \in G$.

2.5 Definition

A L-Fuzzy subset λ of X is a mapping from X into L, where L is a complete lattice satisfying the infinite meet distributive law. If L is the unit interval [0,1] of real numbers, there are the usual fuzzy subset of X.

A *L*-fuzzy subset $\lambda: X \to L$ is said to be a nonempty, if it is not the constant map which assumes the values 0 of *L*.

2.6 Definition

Let $\lambda: X \to L$ be a L-fuzzy subset of X. Then for $t \in L$, the set $\lambda_t = x \in X/\lambda(x) \le t$ is called a lower t-cut or t-level set of λ .

2.7 Definition

Let $\lambda, \mu: X \to L$ be a *L*-fuzzy sub sets of *X*. If $\lambda(x) \le \mu(x)$ for all $x \in X$, then we say that λ is contained in μ and we write $\lambda \subseteq \mu$.

2.8 Definition

Let $\lambda, \mu: X \to L$ be a *L*-fuzzy subsets of *X*. Define $\lambda \cup \mu$, $\lambda \cap \mu$ are *L*-fuzzy subsets of *X* by all $x \in X$, $(\lambda \cup \mu)(x) = \lambda(x) \lor \mu(x)$ and $(\lambda \cap \mu)(x) = \lambda(x) \land \mu(x)$. Then $\lambda \cup \mu$, $\lambda \cap \mu$ are called

union and intersection of λ and μ respectively.

2.10 Definition

A *L*-fuzzy subset λ of *X* is said to have sup property if, for any subset *A* of *X*, there exists $a_0 \in A$ such that

$$\lambda(a_0) = \bigvee_{a \in A} \lambda(a)$$

2.11 Definition

Let f be any function from a set X to a set Y, and

let
$$\lambda$$
 be any *L*-fuzzy subset of *X*. Then λ is called *f*-

invariant if f(x) = f(y) implies $\lambda(x) = \lambda(y)$, where $x, y \in X$.

2.12 Definition

A L-fuzzy subset λ of *G* is said to be a L-fuzzy subgroup of *G*, if, for all $x, y \in G$,

i.
$$\lambda(xy) \ge \lambda(x) \wedge \lambda(y)$$
,

ii.
$$\lambda(x^{-1}) = \lambda(x)$$
.

2.13 Definition

A L-fuzzy subset λ of *G* is said to be an anti L-fuzzy subgroup of *G*, if, for all $x, y \in G$,

i.
$$\lambda(xy) \le \lambda(x) \lor \lambda(y)$$
,
ii. $\lambda(x^{-1}) = \lambda(x)$.

Remark: $\lambda(e) \leq \lambda(x)$ for all $x, y \in G$.

2.3 Proposition

A L-fuzzy subset λ of a group G is a anti L-fuzzy subgroup of G if and only if λ_t is a subgroup of G for all $\lambda(G) \cup t \in L/\lambda(e) \leq t$.

2.1 Theorem

Let λ be an anti L-fuzzy subgroup of G. Then $G_{\lambda} = x \in G/\lambda(x) = \lambda(e)$ is a subgroup of G. Proof

Let $G_{\lambda} = x \in G/\lambda(x) = \lambda(e)$. Let $a, b \in G_{\lambda}$, then $\lambda(a) = \lambda(b) = \lambda(e)$.

$$\lambda(ab^{-1}) \leq \lambda(a) \lor \lambda(b^{-1})$$

 $\lambda(ab^{-1}) \leq \lambda(a) \lor \lambda(b)$
 $\leq \lambda(e) \lor \lambda(e)$

 $\leq \lambda(e)$

That is, $\lambda(ab^{-1}) \leq \lambda(e)$, and $\lambda(e) \leq \lambda(ab^{-1})$. Hence

 $\lambda(ab^{-1}) = \lambda(e)$. Therefore, $ab^{-1} \in G_{\lambda} \cdot G_{\lambda}$ is a subgroup of G.

2.2 Theorem

 λ is a L-fuzzy subgroup of $_G$, iff λ^c is an anti L-fuzzy subgroup of $_G$.

Proof

Suppose λ is a L-fuzzy subgroup of *G*. Then for all $x, y \in G$,

$$\lambda(xy) \ge \lambda(x) \land \lambda(y)$$

$$\Leftrightarrow \quad 1 - \lambda^{c}(xy) \ge (1 - \lambda^{c}(x)) \land (1 - \lambda^{c}(y))$$

$$\Leftrightarrow \quad \lambda^{c}(xy) \le 1 - (1 - \lambda^{c}(x)) \land (1 - \lambda^{c}(y))$$

$$\Leftrightarrow \quad \lambda^{c}(xy) \le \quad \lambda^{c}(x) \lor \lambda^{c}(y) .$$

We have, $\lambda(x) = \lambda(x^{-1})$ for all $x \in G$,

$$\Leftrightarrow \quad 1 - \lambda^{c}(x) = 1 - \lambda^{c}(x^{-1}) \quad .$$

Therefore, $\lambda^{c}(x) = \lambda^{c}(x^{-1})$. Hence λ^{c} is an anti L-fuzzy subgroup of G.

2.14 Definition

Let Q and X be any two sets and λ be a L-fuzzy subset of X. A Q-L-Fuzzy subset λ of X is a mapping from $X \times Q$ into L, where L is a complete lattice satisfying the infinite meet distributive law. If L is the unit interval [0,1] of real numbers, there are the usual Q-fuzzy subset of X. A Q-L-fuzzy subset $\lambda: X \times Q \rightarrow L$ is said to be a nonempty, if it is not the constant map which assumes the values 0 of L.

2.15 Definition

Let $\lambda, \mu: X \times Q \to L$ be a Q-L-fuzzy subsets of X. If $\lambda(x,q) \leq \mu(x,q)$ for all $x \in X$ and $q \in Q$ then we say that λ is contained in μ and we write $\lambda \subseteq \mu$.

2.16 Definition

Let $\lambda, \mu: X \times Q \to L$ be a Q-L-fuzzy subsets of X. Define $\lambda \cup \mu$, $\lambda \cap \mu$ are Q-L-fuzzy subsets of X by all $x \in X$, $(\lambda \cup \mu)(x,q) = \lambda(x,q) \vee \mu(x,q)$ and $(\lambda \cap \mu)(x,q) = \lambda(x,q) \wedge \mu(x,q)$ for all $x \in X$ and $q \in Q$. Then $\lambda \cup \mu$, $\lambda \cap \mu$ are called union and intersection of λ and μ respectively.

2.17 Definition

Let $G = (G, *, \vee, \wedge)$ is a ℓ -group, e is the identity of

G. Any sub ℓ - group $H \subseteq G$ is said to be an ℓ -ideal of *G* if *H* satisfies the following conditions

i.
$$x, y \in H \Longrightarrow xy \in H$$
 and $yx \in H$,

ii.
$$x, y \in H$$
 and $y \in H \Longrightarrow x \in H$.

2.18 Definition

A non trivial Complete Lattice L is said to have infinite meet distributive law if it satisfies,

$$a \land \bigvee_{x \in H} x = \bigvee_{x \in H} (a \land x)$$
 for any $H \subseteq L$ and $a \in L$

3. Anti Q-L-fuzzy subgroups

In this section, we introduce the notion of anti Q-L-fuzzy subgroup of a group, and discussed some of its properties. Throughout this section, we mean that \mathbf{G} , * is a group, e is the identity of G and xy as x * y.

3.1 Definition

A Q-L-fuzzy subset λ of G is said to be a Q-L-fuzzy subgroup of G, if, for all $x, y \in G$ and $q \in Q$,

i.
$$\lambda(xy,q) \geq \lambda(x,q) \wedge \lambda(y,q)$$
,
ii. $\lambda(x^{-1},q) = \lambda(x,q)$.

3.2 Definition

A Q-L-fuzzy subset λ of G is said to be an anti

Q-L-fuzzy subgroup of G, if, for all $x, y \in G$ and $q \in Q$,

i.
$$\lambda(xy,q) \leq \lambda(x,q) \lor \lambda(y,q)$$

ii. $\lambda(x^{-1},q) = \lambda(x,q)$.

3.1 Proposition

A Q-L-fuzzy subset λ of a group G is an anti Q-Lfuzzy subgroup of G if and only if λ_t is a subgroup of G for all $\lambda(G) \cup t \in L/\lambda(e,q) \le t, q \in Q$.

3.1 Theorem

Let λ be an anti Q-L-fuzzy subgroup of G. Then $G_{\lambda} = x \in G/\lambda(x,q) = \lambda(e,q), q \in Q$ is a subgroup of G.

Proof

Let
$$G_{\lambda} = x \in G/\lambda(x,q) = \lambda(e,q), q \in Q$$
.

Let $a, b \in G_{\lambda}$, then $\lambda(a,q) = \lambda(b,q) = \lambda(e,q)$.

$$egin{aligned} \lambda(ab^{-1},q) &\leq \lambda(a,q) ~ee ~\lambda(b^{-1},q), \ \lambda(ab^{-1},q) &\leq \lambda(a,q) \lor ~\lambda(b,q), \ &\leq \lambda(e,q) \lor ~\lambda(e,q), \ &\leq \lambda(e,q) \end{aligned}$$

That is , $\lambda(ab^{-1},q) \leq \lambda(e,q)$ and

 $\lambda(e,q) \leq \lambda(ab^{-1},q)$. Hence $\lambda(ab^{-1},q) = \lambda(e,q)$.

Therefore, $ab^{-1} \in G_{\lambda}$. Hence G_{λ} is a subgroup of G.

3.2 Theorem

 λ is a Q-L-fuzzy subgroup of $_G$, iff λ^c is an anti Q-L-fuzzy subgroup of $_G$.

Proof

Suppose λ is a Q-L-fuzzy subgroup of G. Then for all $x, y \in G$.

$$\begin{split} \lambda(xy,q) &\geq \lambda(x,q) \wedge \lambda(y,q) \\ \Leftrightarrow \ 1 - \lambda^c(xy,q) &\geq \ (1 - \lambda^c(x,q)) \wedge (1 - \lambda^c(y,q)) \\ \Leftrightarrow \lambda^c(xy,q) &\leq \ 1 - \ (1 - \lambda^c(x,q)) \wedge (1 - \lambda^c(y,q)) \\ \Leftrightarrow \ \lambda^c(xy,q) &\leq \ \lambda^c(x,q) \lor \lambda^c(y,q) . \end{split}$$

We have, $\lambda(x,q) &= \lambda(x^{-1},q)$ for all x in G ,

$$\Leftrightarrow \quad 1 - \lambda^{c}(x,q) = 1 - \lambda^{c}(x^{-1},q) \quad .$$

Therefore, $\lambda^{c}(x,q) = \lambda^{c}(x^{-1},q)$. Hence λ^{c} is an anti Q-L fuzzy subgroup of G.

3.3 Definition

Let f be a mapping from X into Y, and let λ and μ be an anti Q-*L*-fuzzy subgroups of X and Yrespectively. Then $f(\lambda)$ of Y and $f^{-1}(\mu)$ of X are defined by,

$$f(\lambda)(y) = \begin{cases} \wedge \lambda(x) / x \in X, f(x) = y \text{ if } f^{-1}(y) \neq \phi; \\ 1 \text{ ; otherwise} \end{cases}$$

Where $y \in Y$, and $f^{-1}(\mu)(x) = \mu(f(x))$, for all $x \in X$ are called image of λ under f and the pre-image of μ under f respectively.

3.3 Theorem

Let G and G^{1} be any two groups. Let $f: G \to G^{1}$ be a homomorphism and onto. Let $\lambda: G \times Q \to L$ be an anti Q-L-fuzzy subgroup of G. Then $f(\lambda)$ is an anti Q-L-fuzzy subgroup of G^{1} , if λ has sup property and λ is f - invariant.

Proof

Let
$$\lambda$$
 be an anti Q-L-fuzzy subgroup of G .
i. $f(\lambda)(xy,q) =$
 $\wedge \lambda(x_0 y_0,q) / x_0 y_0 \in G, f(x_0 y_0) = xy, q \in Q$
 $= \lambda(x_0 y_0,q)$
 $\leq \lambda(x_0,q) \vee \lambda(y_0,q)$
 $\leq (\wedge \lambda(x_0,q) / x_0 \in G, f(x_0) = x, q \in Q) \vee$
 $(\wedge \lambda(y_0,q) / y_0 \in G, f(y_0) = y, q \in Q)$
 $\leq (f(\lambda)(x,q)) \vee (f(\lambda)(y,q))$
 $f(\lambda)(xy,q) \leq (f(\lambda)(x,q)) \vee (f(\lambda)(y,q)).$
ii. $f(\lambda)(x^{-1},q) = \wedge \lambda(x_0^{-1},q) / x_0^{-1} \in G, f(x_0^{-1}) = x^{-1}, q \in Q$
 $= \lambda(x_0^{-1},q)$

Let λ be an anti Q-L-fuzzy subgroup of G.

$$= \lambda(x_0, q)$$

$$= \wedge \lambda(x_0, q) / x_0 \in G, f(x_0) = x, q \in Q$$

$$= f(\lambda)(x, q)$$

$$f(\lambda)(x^{-1}, q) = f(\lambda)(x, q).$$

Hence $f(\lambda)$ is an anti Q-L- fuzzy subgroup of G^1 .

3.4 Theorem

Let G and G^1 be any two groups. Let $f: G \to G^1$ be a homomorphism and onto . Let $\mu: G^1 \times Q \to L$ be an anti Q-L-fuzzy subgroup of G^1 . Then $f^{-1}(\mu)$ is an anti Q-L-fuzzy subgroup of G.

Proof

Let
$$\mu$$
 be an anti Q-L-fuzzy subgroup of G^1 .
i. $f^{-1}(\mu)(xy,q) = \mu(f(xy),q)$
 $= \mu(f(x)f(y),q)$
 $\leq \mu(f(x),q) \lor \mu(f(y),q)$
 $\leq f^{-1}(\mu)(x,q) \lor f^{-1}(\mu)(y,q)$
 $f^{-1}(\mu)(xy,q) \leq f^{-1}(\mu)(x,q) \lor f^{-1}(\mu)(y,q)$
ii. $f^{-1}(\mu)(x^{-1},q) = \mu(f(x^{-1}),q)$
 $= \mu((f(x))^{-1},q)$
 $= f^{-1}(\mu)(x,q)$
 $f^{-1}(\mu)(x^{-1},q) = f^{-1}(\mu)(x,q)$.

Hence $f^{-1}(\mu)$ is an anti Q-L-fuzzy subgroup of G.

3.5 Theorem

Let G and G^1 be any two groups. Let $f: G \to G^1$ be an anti homomorphism and onto. Let $\lambda: G \times Q \to L$ be an anti Q-L-fuzzy subgroup of G. Then $f(\lambda)$ is an anti Q-L-fuzzy subgroup of G^1 , if λ has sup property and λ is f - invariant.

Proof

i.
$$f(\lambda)(xy,q) = \wedge \lambda(x_0y_0,q)/x_0y_0 \in G, f(x_0y_0) = xy, q \in Q$$

 $= \lambda(x_0y_0,q)$
 $\leq \lambda(x_0,q) \lor \lambda(y_0,q)$
 $\leq (\wedge \lambda(x_0,q)/x_0 \in G, f(x_0) = x, q \in Q) \lor$
 $(\wedge \lambda(y_0,q)/y_0 \in G, f(y_0) = y, q \in Q)$
 $\leq (f(\lambda)(x,q)) \lor (f(\lambda)(y,q))$
 $f(\lambda)(xy,q) \leq (f(\lambda)(x,q)) \lor (f(\lambda)(y,q)).$
ii. $f(\lambda)(x^{-1},q) = \wedge \lambda(x_0^{-1},q)/x_0^{-1} \in G, f(x_0^{-1}) = x^{-1}, q \in Q$
 $= \lambda(x_0^{-1},q)$
 $= \lambda(x_0,q)$
 $= \wedge \lambda(x_0,q)/x_0 \in G, f(x_0) = x, q \in Q$
 $= f(\lambda)(x,q)$

Hence $f(\lambda)$ is an anti Q-L- fuzzy subgroup of G^1 .

3.6 Theorem

Let G and G^1 be any two groups. Let $f: G \to G^1$ be an anti homomorphism and onto . Let $\mu: G^1 \times Q \to L$ be an anti Q-L-fuzzy subgroup of G^1 . Then $f^{-1}(\mu)$ is an anti Q-L-fuzzy subgroup of G.

Proof

Let μ be an anti Q-L-fuzzy subgroup of G^1 .

i.
$$f^{-1}(\mu)(xy,q) = \mu(f(xy),q)$$

 $= \mu(f(y)f(x),q)$
 $\leq \mu(f(y),q) \lor \mu(f(x),q)$
 $\leq f^{-1}(\mu)(y,q) \lor f^{-1}(\mu)(x,q)$
 $f^{-1}(\mu)(xy,q) \leq f^{-1}(\mu)(x,q) \lor f^{-1}(\mu)(y,q)$
ii. $f^{-1}(\mu)(x^{-1},q) = \mu(f(x^{-1}),q)$

$$= \mu((f(x))^{-1}, q)$$

= $\mu((f(x)), q)$
= $f^{-1}(\mu)(x, q)$
 $f^{-1}(\mu)(x^{-1}, q) = f^{-1}(\mu)(x, q)$.

Hence $f^{-1}(\mu)$ is an anti Q-L-fuzzy subgroup of G.

4. Anti Q-L-fuzzy ℓ -groups

In this section, we introduce the notion of anti Q-L-fuzzy sub ℓ -group of a ℓ -group, and discussed some of its properties. Throughout this section, we mean that $G = (G, *, \lor, \land)$ is a ℓ -group, e is the identity of G and xy as x * y.

4.1 Definition

A Q-L-fuzzy subset λ of G is said to be a Q-L-fuzzy sub ℓ -group of G, if, for all $x, y \in G$ and $q \in Q$,

i.
$$\lambda(xy,q) \geq \lambda(x,q) \wedge \lambda(y,q)$$
,
ii. $\lambda(x^{-1},q) = \lambda(x,q)$,
iii. $\lambda(x \lor y,q) \geq \lambda(x,q) \wedge \lambda(y,q)$,
iv. $\lambda(x \land y,q) \geq \lambda(x,q) \wedge \lambda(y,q)$,

4.2 Definition

A Q-L-fuzzy subset λ of G is said to be an anti Q-Lfuzzy sub ℓ -group of G, if, for all $x, y \in G$ and $q \in Q$,

i.
$$\lambda(xy,q) \leq \lambda(x,q) \lor \lambda(y,q)$$
,
ii. $\lambda(x^{-1},q) = \lambda(x,q)$,
iii. $\lambda(x \lor y,q) \leq \lambda(x,q) \lor \lambda(y,q)$,
iv. $\lambda(x \land y,q) \leq \lambda(x,q) \lor \lambda(y,q)$,

4.1 Proposition

A Q-L-fuzzy subset λ of a group G is an anti Q-L-fuzzy sub ℓ -group of G if and only if λ_t is a sub ℓ -group of G for all $\lambda(G) \cup t \in L/\lambda(e,q) \ge t, q \in Q$.

4.1 Theorem

Let λ be an anti Q-L-fuzzy sub ℓ -group of G. then $G_{\lambda} = x \in G/\lambda(x,q) = \lambda(e,q), q \in Q$ is a sub ℓ -group of G. Proof

Let
$$G_{\lambda} = x \in G/\lambda(x,q) = \lambda(e,q), q \in Q$$

Let $a, b \in G_{\lambda}$, then $\lambda(a,q) = \lambda(b,q) = \lambda(e,q)$.

$$egin{aligned} \lambda(ab^{-1},q) &\leq \lambda(a,q) ~ee ~\lambda(b^{-1},q), \ \lambda(ab^{-1},q) &\leq \lambda(a,q) \lor ~\lambda(b,q), \ &\leq \lambda(e,q) \lor ~\lambda(e,q), \end{aligned}$$

 $\leq \lambda(e,q)$

That is, $\lambda(ab^{-1},q) \leq \lambda(e,q)$ and $\lambda(e,q) \leq \lambda(ab^{-1},q)$.

Hence $\lambda(ab^{-1},q) = \lambda(e,q)$. Therefore, $ab^{-1} \in G_{\lambda}$. Hence G_{λ} is a sub ℓ -group of G.

4.2 Theorem

 λ is a Q-L-fuzzy sub ℓ -group of G, iff λ^c is an anti Q-L-fuzzy sub ℓ -group of G.

Proof

Suppose λ is a Q-L-fuzzy sub ℓ -group of G. Then for all x, y \in G,

i.
$$\lambda(xy,q) \ge \lambda(x,q) \land \lambda(y,q)$$

 $\Leftrightarrow 1 - \lambda^{c}(xy,q) \ge (1 - \lambda^{c}(x,q)) \land (1 - \lambda^{c}(y,q))$
 $\Leftrightarrow \lambda^{c}(xy,q) \le 1 - (1 - \lambda^{c}(x,q)) \land (1 - \lambda^{c}(y,q))$
 $\Leftrightarrow \lambda^{c}(xy,q) \le \lambda^{c}(x,q) \lor \lambda^{c}(y,q).$

ii. We have, $\lambda(x,q) = \lambda(x^{-1},q)$ for all x in G ,

$$\Leftrightarrow \quad 1 - \lambda^{c}(x,q) = 1 - \lambda^{c}(x^{-1},q) \,.$$

Therefore, $\lambda^{c}(x,q) = \lambda^{c}(x^{-1},q)$.

$$\begin{array}{ll} \text{iii.} & \lambda(x \lor y,q) \ge \ \lambda(x,q) \land \ \lambda(y,q) \\ \Leftrightarrow 1 - \lambda^c \, (x \lor y,q) \ge \ (1 - \lambda^c \, (x,q)) \land (1 - \lambda^c \, (y,q)) \\ \Leftrightarrow \ \lambda^c \, (x \lor y,q) & \le 1 - \ (1 - \lambda^c \, (x,q)) \land (1 - \lambda^c \, (y,q)) \\ \Leftrightarrow & \le \lambda^c \, (x,q) \lor \lambda^c \, (y,q) \end{array}$$

$$\Rightarrow \quad \lambda^{c} (x \lor y, q) \leq \lambda^{c} (x, q) \lor \lambda^{c} (y, q)$$
iv.
$$\lambda(x \land y, q) \geq \lambda(x, q) \land \lambda(y, q)$$

$$\Rightarrow \quad 1 - \lambda^{c} (x \land y, q) \geq (1 - \lambda^{c} (x, q)) \land (1 - \lambda^{c} (y, q))$$

$$\Rightarrow \quad \lambda^{c} (x \land y, q) \leq 1 - (1 - \lambda^{c} (x, q)) \land (1 - \lambda^{c} (y, q))$$

$$\Rightarrow \quad \leq \lambda^{c} (x, q) \lor \lambda^{c} (y, q)$$

$$\Rightarrow \quad \lambda^{c} (x \land y, q) \leq \lambda^{c} (x, q) \lor \lambda^{c} (y, q) .$$

Hence λ^c is an anti Q-L fuzzy sub ℓ -group of G.

4.3 Theorem

Let G and G^1 be any two ℓ -groups. Let $f: G \to G^1$ be a homomorphism and onto. Let $\lambda: G \times Q \to L$ be an anti Q-L-fuzzy sub ℓ -group of G. Then $f(\lambda)$ is an anti Q-L-fuzzy sub ℓ -group of G^1 , if λ has sup property and λ is finvariant.

Proof

Let λ be an anti Q-L-fuzzy sub ℓ -group of G. i. $f(\lambda)(xy,q) = \wedge \lambda(x_0y_0,q) / x_0y_0 \in G, f(x_0y_0) = xy, q \in Q$ = $\lambda(x_0, y_0, q)$ $\leq \lambda(x_0,q) \vee \lambda(y_0,q)$ $\leq (\wedge \lambda(x_0,q)/x_0 \in G, f(x_0) = x, q \in Q) \lor$ $(\wedge \lambda(y_0,q)/y_0 \in G, f(y_0) = y, q \in Q)$ $\leq (f(\lambda)(x,q) \vee f(\lambda)(y,q))$ $f(\lambda)(xy,q) \leq (f(\lambda)(x,q) \lor f(\lambda)(y,q)).$ ii. $f(\lambda)(x^{-1},q) = \bigwedge \lambda(x_0^{-1},q) / x_0^{-1} \in G, f(x_0^{-1}) = x^{-1}, q \in Q$ $=\lambda(x_0^{-1},q)$ $= \lambda(x_0, q)$ $= \wedge \lambda(x_0,q) / x_0 \in G, f(x_0) = x, q \in Q$ $= f(\lambda)(x,q)$. $f(\lambda)(x^{-1},q) = f(\lambda)(x,q).$ iii. $f(\lambda)(x \lor y,q) =$ $\wedge \lambda(x_0 \vee y_0, q) / x_0 \vee y_0 \in G, f(x_0 \vee y_0) = x \vee y, q \in Q$ = $\lambda(x_0 \vee y_0, q)$

$$\begin{aligned} &\leq \lambda(x_0,q) \lor \lambda(y_0,q) \\ &\leq (\land \lambda(x_0,q)/x_0 \in G, f(x_0) = x, q \in Q) \lor \\ &(\land \lambda(y_0,q)/y_0 \in G, f(y_0) = y, q \in Q) \\ &\leq f(\lambda)(x,q) \lor f(\lambda)(y,q) \\ f(\lambda)(x \lor y,q) &\leq f(\lambda)(x,q) \lor f(\lambda)(y,q). \end{aligned}$$

iv. $f(\lambda)(x \land y,q) = \\ &\land \lambda(x_0 \land y_0,q)/x_0 \land y_0 \in G, f(x_0 \land y_0) = x \land y, q \in Q \\ &= \lambda(x_0 \land y_0,q) \\ &\leq \lambda(x_0,q) \lor \lambda(y_0,q) \\ &\leq (\land \lambda(x_0,q)/x_0 \in G, f(x_0) = x, q \in Q) \lor \\ &(\land \lambda(y_0,q)/y_0 \in G, f(y_0) = y, q \in Q) \\ &\leq f(\lambda)(x,q) \lor f(\lambda)(y,q) \\ \end{aligned}$

Hence
$$f(\lambda)$$
 is an anti Q-L- fuzzy sub ℓ -group of G^1 .

4.4 Theorem

Let G and G^1 be any two ℓ -groups. Let $f: G \to G^1$ be a homomorphism and onto. Let $\mu: G^1 \times Q \to L$ be an anti Q-L-fuzzy sub ℓ -group of G^1 . Then $f^{-1}(\mu)$ is an anti Q-Lfuzzy sub ℓ -group of G.

Proof

Let μ be an anti Q-L-fuzzy sub ℓ -group of G^1 .

i.
$$f^{-1}(\mu)(xy,q) = \mu(f(xy),q)$$

 $= \mu(f(x)f(y),q)$
 $\leq \mu(f(x),q) \lor \mu(f(y),q)$
 $\leq f^{-1}(\mu)(x,q) \lor f^{-1}(\mu)(y,q)$
 $f^{-1}(\mu)(xy,q) \leq f^{-1}(\mu)(x,q) \lor f^{-1}(\mu)(y,q)$
 ii. $f^{-1}(\mu)(x^{-1},q) = \mu(f(x^{-1}),q)$
 $= \mu((f(x))^{-1},q)$
 $= \mu((f(x)),q)$
 $= f^{-1}(\mu)(x,q)$
 $f^{-1}(\mu)(x^{-1},q) = f^{-1}(\mu)(x,q)$.
 iii. $f^{-1}(\mu)(x\lor y,q) = \mu(f(x\lor y),q)$
 $= \mu(f(x)\lor f(y),q)$

$$\leq \mu(f(x),q) \lor \ \mu(f(y),q)$$

$$\leq f^{-1}(\mu)(x,q) \lor \ f^{-1}(\mu)(y,q)$$

$$f^{-1}(\mu)(x \lor y,q) \leq f^{-1}(\mu)(x,q) \lor \ f^{-1}(\mu)(y,q)$$
iv.
$$f^{-1}(\mu)(x \land y,q) = \mu(f(x \land y),q)$$

$$= \mu(f(x) \land f(y),q)$$

$$\leq \mu(f(x),q) \lor \ \mu(f(y),q)$$

$$\leq f^{-1}(\mu)(x,q) \lor \ f^{-1}(\mu)(y,q)$$

$$f^{-1}(\mu)(x \land y,q) \leq f^{-1}(\mu)(x,q) \lor \ f^{-1}(\mu)(y,q)$$

Hence $f^{-1}(\mu)$ is an anti Q-L-fuzzy sub ℓ -group of G. 4.5 Theorem

Let G and G^1 be any two ℓ -groups. Let $f: G \to G^1$ be an anti homomorphism and onto. Let $\lambda: G \times Q \to L$ be an anti Q-L-fuzzy sub ℓ -group of G. Then $f(\lambda)$ is an anti Q-L-fuzzy sub ℓ -group of G^1 , if λ has sup property and λ is f - invariant.

Proof

Let λ be a Q-L-fuzzy sub ℓ -group of G. i. $f(\lambda)(xy,q) = \wedge \lambda(x_0y_0,q)/x_0y_0 \in G, f(x_0y_0) = xy, q \in Q$ $= \lambda(x_0y_0,q)$ $\leq \lambda(x_0,q) \lor \lambda(y_0,q)$ $\leq (\wedge \lambda(x_0,q)/x_0 \in G, f(x_0) = x, q \in Q) \lor$ $(\wedge \lambda(y_0,q)/y_0 \in G, f(y_0) = y, q \in Q)$ $\leq f(\lambda)(x,q) \lor f(\lambda)(y,q)$

ii.
$$f(\lambda)(x^{-1},q) = \wedge \lambda(x^{-1},q) / x \in G, f(x_0) = x^{-1}, q \in Q$$

$$= \lambda(x_0^{-1},q)$$

$$= \lambda(x_0,q)$$

$$= \wedge \lambda(x_0,q) / x_0 \in G, f(x_0) = x, q \in Q$$

$$= f(\lambda)(x,q)$$

$$f(\lambda)(x^{-1},q) = f(\lambda)(x,q)$$
iii. $f(\lambda)(x \lor y,q) =$

$$\begin{split} \wedge \lambda(x_0 \lor y_0, q) / x_0 \lor y_0 &\in G, f(x_0 \lor y_0) = x \lor y, q \in Q \\ &= \lambda(x_0 \lor y_0, q) \\ &\leq \lambda(x_0, q) \lor \lambda(y_0, q) \\ &\leq (\wedge \lambda(x_0, q) / x_0 \in G, f(x_0) = x, q \in Q) \lor \\ &(\wedge \lambda(y_0, q) / y_0 \in G, f(y_0) = y, q \in Q) \\ &\leq f(\lambda)(x, q) \lor f(\lambda)(y, q) \\ f(\lambda)(x \lor y, q) &\leq f(\lambda)(x, q) \lor f(\lambda)(y, q). \\ \text{iv. } f(\lambda)(x \land y, q) = \\ &\wedge \lambda(x_0 \land y_0, q) / x_0 \land y_0 \in G, f(x_0 \land y_0) = x \land y, q \in Q \\ &= \lambda(x_0 \land y_0, q) \\ &\leq \lambda(x_0, q) \lor \lambda(y_0, q) \\ &\leq (\wedge \lambda(x_0, q) / x_0 \in G, f(x_0) = x, q \in Q) \lor \\ &(\wedge \lambda(y_0, q) / y_0 \in G, f(y_0) = y, q \in Q) \\ &\leq f(\lambda)(x, q) \lor f(\lambda)(y, q) \\ f(\lambda)(x \land y, q) &\leq f(\lambda)(x, q) \lor f(\lambda)(y, q) \end{split}$$

Hence $f(\lambda)$ is an anti Q-L- fuzzy sub ℓ -group of G^1 .

4.6 Theorem

Let G and G^1 be any two ℓ -groups. Let $f: G \to G^1$ be an anti homomorphism and onto. Let $\mu: G^1 \times Q \to L$ be an anti Q-L-fuzzy sub ℓ -group of G^1 . Then $f^{-1}(\mu)$ is an anti Q-L-fuzzy sub ℓ -group of G.

Proof

Let μ be an anti Q-L-fuzzy sub ℓ -group of G^1 .

i.
$$f^{-1}(\mu)(xy,q) = \mu(f(xy),q)$$

 $= \mu(f(y)f(x),q)$
 $\leq \mu(f(y),q) \lor \mu(f(x),q)$
 $\leq f^{-1}(\mu)(y,q) \lor f^{-1}(\mu)(x,q)$
 $f^{-1}(\mu)(xy,q) \leq f^{-1}(\mu)(x,q) \lor f^{-1}(\mu)(y,q)$
ii. $f^{-1}(\mu)(x^{-1},q) = \mu(f(x^{-1}),q)$
 $= \mu((f(x))^{-1},q)$
 $= \mu((f(x)),q)$
 $= f^{-1}(\mu)(x,q)$
 $f^{-1}(\mu)(x^{-1},q) = f^{-1}(\mu)(x,q)$.

iii.
$$f^{-1}(\mu)(x \lor y, q) = \mu(f(x \lor y), q)$$

 $= \mu(f(y) \lor f(x), q)$
 $\leq \mu(f(y), q) \lor \mu(f(x), q)$
 $\leq f^{-1}(\mu)(y, q) \lor f^{-1}(\mu)(x, q)$
 $f^{-1}(\mu)(x \lor y, q) \leq f^{-1}(\mu)(x, q) \lor f^{-1}(\mu)(y, q)$
 iv. $f^{-1}(\mu)(x \land y, q) = \mu(f(x \land y), q)$
 $= \mu(f(y) \land f(x), q)$
 $\leq \mu(f(y), q) \lor \mu(f(x), q)$
 $\leq f^{-1}(\mu)(y, q) \lor f^{-1}(\mu)(x, q)$
 $f^{-1}(\mu)(x \land y, q) \leq f^{-1}(\mu)(x, q) \lor f^{-1}(\mu)(y, q)$.

Hence $f^{-1}(\mu)$ is an anti Q-L-fuzzy sub ℓ -group of G.

5. Anti Q-L-fuzzy ℓ -ideal in ℓ -group

In this section, we introduce the concept of anti Q-L-fuzzy ℓ -ideal in ℓ -group and discuss some of its properties. Throughout this section, we mean that $G = (G, *, \lor, \land)$ is a ℓ -group, e is the identity of G and xy as x * y.

5.1 Definition

A Q-L-fuzzy sub ℓ -group λ of a ℓ -group G is said to be a Q-L-fuzzy ℓ - ideal of G if, for all $x, y \in G$, $q \in Q$

i.
$$\lambda(xy,q) = \lambda(yx,q)$$
 and
ii. $x, y \in G, |x| \le |y| \Longrightarrow \lambda(x,q) \ge \lambda(y,q).$

5.2 Definition

A Q-L-fuzzy sub ℓ -group λ of a ℓ -group G is said to be an anti Q-L-fuzzy ℓ - ideal of G if, for all $x, y \in G$, $q \in Q$,

i.
$$\lambda(xy,q) = \lambda(yx,q)$$
 and

ii.
$$x, y \in G, |x| \leq |y| \Longrightarrow \lambda(x, q) \leq \lambda(y, q)$$

5.1 Theorem

A Q-L-fuzzy sub ℓ -group λ of G is an anti Q-L-fuzzy ℓ -ideal if and only if each level sub ℓ -group λ_t , $t \in \lambda(G) \cup t \in L/\lambda(e,q) \le t, q \in Q$ is an ℓ -ideal of G.

Proof

Let
$$\lambda$$
 be an anti Q-L-fuzzy ℓ -ideal of G .
Let $t \in \lambda(G) \cup t \in L/\lambda(e,q) \le t, q \in Q$.

Let
$$x \in \lambda_t$$
 and $y \in G$. Then

 $|y| \leq |x| \Rightarrow \lambda(y,q) \geq \lambda(x,q) \geq t$.

 $x, y \in \lambda_t$ and λ_t is a level sub ℓ -group then $xy \in \lambda_t$ and $yx \in \lambda_t$. Let $xy \in \lambda_t$ and $y \in \lambda_t$ then $y^{-1} \in \lambda_t$, since λ_t is a level sub ℓ -group. Therefore, $(xy)y^{-1} = x \in \lambda_t$. Hence λ_t is an ℓ -ideal of G.

Conversely, let each level sub ℓ -group λ_t ,

$$t \in \lambda(G) \cup t \in L/\lambda(e,q) \ge t, q \in Q \text{ is an } \ell \text{ -ideal of } G. \text{ Let}$$

$$x, y \in G \text{ then } \lambda(xy,q) = \lambda(yx,q) \text{ for all } x, y \in G,$$

$$q \in Q. \text{ Let } x, y \in G \text{ and } |x| \le |y|. \text{ Let } \lambda(y,q) = t \text{ so}$$

$$y \in \lambda_t \text{ and } x \in \lambda_t \text{ ,since } \lambda_t \text{ is an } \ell \text{ -ideal of } G.$$

$$\lambda(x,q) \le t = \lambda(y,q) \Longrightarrow \lambda(x,q) \le \lambda(y,q) \text{ for all } x \in G.$$

Hence λ be an anti Q-L-fuzzy ℓ - ideal of G.

5.2 Theorem

 λ is a Q-L-fuzzy - ℓ -ideal of G iff λ^c is an anti Q-L-fuzzy - ℓ -ideal.

Proof

 λ is a Q-L-fuzzy $-\ell$ -ideal of G. Then for all $x, y \in G$ and $q \in Q$,

i.
$$\lambda(xy,q) = \lambda(yx,q).$$

 $\Leftrightarrow \quad 1 - \lambda(xy,q) = 1 - \lambda(yx,q)$
 $\Leftrightarrow \quad \lambda^c(xy,q) = \lambda^c(yx,q).$

ii. Let $x, y \in G$ such that $|x| \le |y|$. Then,

$$\lambda(x,q) \ge \lambda(y,q)$$

$$\Leftrightarrow \quad 1 - \lambda(x,q) \le 1 - \lambda(y,q) \cdot$$

$$\Leftrightarrow \quad \lambda^{c}(x,q) \le \lambda^{c}(y,q) \cdot$$

Hence λ^c is an anti Q-L- fuzzy - ℓ -ideal of G.

5.3 Theorem

Every anti Q-L-fuzzy ℓ -ideal is an anti Q-L-fuzzy sub ℓ -group of G.

Proof it is clear.

Remark

But the converse of the above theorem is not true.

5.1 Example

Let R be the set of all real numbers and $(R,+,\vee,\wedge)$

be a ℓ -group. Define $\lambda: R \times Q \to L$ by

 $\lambda(x,q) = \begin{cases} 0 & \text{if } x \in Z \\ 1 & \text{if } x \notin Z. \end{cases}$ Where Z is the set of all integers.

Clearly λ is a Q-L-fuzzy sub ℓ -group of R . Level set $\lambda_0 = Z$

is a ℓ -subgroup of R , but not ℓ -ideal of R . Since

$$x = 2 \in \mathbb{Z}$$
, $y = 0.5 \in \mathbb{R}$ and $|0.5| \le |2|$. But

 $\lambda(0.5,q) = 1 > 0 = \lambda(2,q)$. So λ is not a Q-L-fuzzy ℓ -ideal

of ${\it R}$.

5.4 Theorem

If λ and μ are two anti Q-L-fuzzy ℓ -ideals of G,

then $\lambda \cap \mu$ is an anti Q-L-fuzzy ℓ -ideal of G.

Proof

Let λ and μ are two anti Q-L-fuzzy ℓ -ideals of G.

Then

i.
$$(\lambda \cap \mu)(xy,q) = \lambda(xy,q) \lor \mu(xy,q)$$
,
 $= \lambda(yx,q) \lor \mu(yx,q)$,
 $= (\lambda \cap \mu)(yx,q)$,
 $(\lambda \cap \mu)(xy,q) = (\lambda \cap \mu)(yx,q)$.
ii. Let $x, y \in G$ such that $|x| \le |y|$.

$$(\lambda \cap \mu)(x,q) = \lambda(x,q) \lor \mu(x,q) \le \lambda(y,q) \lor \mu(y,q)$$
$$= (\lambda \cap \mu)(y,q)$$

Hence $\lambda \cap \mu$ is an anti Q-L-fuzzy ℓ -ideal of G.

Clearly , the intersection of any family of anti Q-L-fuzzy ℓ -ideals of G is an anti Q-L-fuzzy ℓ -ideal of G.

5.5 Theorem

If H is any ℓ -ideal of G, $H \neq G$, then the Q-L-fuzzy subset λ of G defined by

$$\lambda(x,q) = \begin{cases} s \text{ if } x \in H \\ t \text{ if } x \notin H \end{cases} \text{ where } s,t \in L \text{ and } s < t \text{ and } s < t \text{ and } s < t \text{ of } s \in L \end{cases}$$

 $t \neq 0$ is an anti Q-L-fuzzy ℓ -ideal of G.

Proof

Let $x, y \in G$ and $q \in Q$. Then the following cases arise.

Case i. Let $x \in H$ and $y \in H$ implies $xy \in H$ and

$$yx \in H$$
, That is, $\lambda(xy,q) = \lambda(yx,q) = s$.

ii. Let $x \in H$ and $y \notin H$ implies $xy \notin H$ and

$$yx \notin H$$
. That is, $\lambda(xy,q) = \lambda(yx,q) = t$.

iii. Let $x \notin H$ and $y \in H$ implies $xy \notin H$ and

 $yx \notin H$. That is, $\lambda(xy,q) = \lambda(yx,q) = t$.

iv. Let $x \notin H$ and $y \notin H$ implies $xy \in H$ and

 $yx \in H$ or $xy \notin H$ and $yx \notin H$.

That is, $\lambda(xy,q) = \lambda(yx,q) = s$ or

$$\lambda(xy,q) = \lambda(yx,q) = t \, .$$

Let $x \in G$ and $y \in H$ such that $|x| \le |y|$. Therefore $x \in G$, since H is ℓ -ideal and $\lambda(x,q) = s = \lambda(y,q)$. Hence λ is an anti Q-L-fuzzy ℓ -ideal of G.

5.6 Theorem

A non-empty subset H of G is a ℓ -ideal of G if and only if the function

$$\psi_{H}(x) = \begin{cases} 0 & \text{if } x \in H \\ 1 & \text{if } x \notin H \end{cases}$$
 is an anti Q-L fuzzy ℓ -

ideal of G .

Proof

By **Theorem 5.5**, ψ_H is an anti Q-L fuzzy ℓ -ideal of G. Conversely,Let ψ_H be an anti Q-L fuzzy ℓ -ideal of G. Then $\lambda(xy,q) = \lambda(yx,q)$. Let $x \in G$ and $y \in H$ such that $|x| \leq |y|$. $\psi_H(x) \leq \psi_H(y) = 0$, since ψ_H is an ℓ -ideal. So $\psi_H(x) = 0$. So $x \in H$. Therefore H is ℓ -ideal of G.

5.7 Theorem

Let λ be an anti Q-L fuzzy ℓ -ideal of G. Then $G_{\lambda} = x \in G/\lambda(x,q) = \lambda(e,q), q \in Q$ is a ℓ -ideal of G. **Proof**

Let $x \in G$ and $y \in G_{\lambda}$, Then

$$\lambda(y,q) = \lambda(e,q), q \in Q.$$

 $\lambda(xy,q) \le \lambda(x,q) \lor \lambda(y,q)$

Hence $\lambda(xy,q) = \lambda(e,q)$. Hence $xy \in G_{\lambda}$, Similarly

 $yx \in G_{\lambda}$. Let $x \in G$ and $y \in G_{\lambda}$ such that $|x| \leq |y|$.

$$\begin{split} \lambda(x,q) &\leq \lambda(y,q) = \lambda(e,q) \text{, since } \lambda \text{ is an anti } Q\text{-L-fuzzy} \\ \ell \text{-ideal and } \lambda(e,q) &\leq \lambda(x,q) \text{ . So } \lambda(x,q) = \lambda(e,q) \text{, for} \\ \text{all } x \in G \text{ and } q \in Q \text{ . So } x \in G_{\lambda} \text{ . Therefore } G_{\lambda} \text{ is } \ell \text{ -} \\ \text{ideal of } G \text{.} \end{split}$$

5.8 Theorem

Let G and G^1 be any two ℓ -groups. Let $f: G \to G^1$ be a homomorphism and onto. Let $\lambda: G \times Q \to L$ be an anti Q-Lfuzzy ℓ -ideal of G. Then $f(\lambda)$ is an anti Q-L-fuzzy ℓ -ideal of G^1 , if λ has sup property and λ is f-invariant.

Proof

Let λ be an anti Q-L-fuzzy ℓ -ideal of G .

i. $f(\lambda)(xy,q) = \wedge \lambda(x_0y_0,q)/x_0y_0 \in G, f(x_0y_0) = xy, q \in Q$

 $= \lambda(x_0 y_0, q)$ $= \lambda(y_0 x_0, q)$ $= \wedge \lambda(y_0 x_0, q) / y_0 x_0 \in G, f(y_0 x_0) = yx, q \in Q$ $= f(\lambda)(yx, q).$ Therefore, $f(\lambda)(xy, q) = f(\lambda)(yx, q).$

11. Let
$$f(x), f(a) \in G^{*}$$
 such that $|f(x)| \le |f(a)|$. Then,
 $f(\lambda) \widetilde{f}(x) = \lambda \quad \lambda(t, a) = \lambda(x, a)$ and

$$\mathbf{f}(\lambda) \ \mathbf{f}(a), q) = \bigwedge_{t \in f^{-1}(f(a))} \lambda(t, q) = \lambda(a, q)$$

Now,

$$|f(x)| \le |f(a)| \Longrightarrow f \ \forall x \stackrel{\frown}{=} f \ \forall a \stackrel{\frown}{=} f \ \forall a \stackrel{\frown}{=} f \ \forall x \stackrel{\frown}{=} f \ \forall x | \lor |a| \stackrel{\bullet}{=} f \ \forall x | \vdash |a| \mapsto |a| \mapsto$$

So
$$f |a| = f |x| \lor |a| \Longrightarrow \lambda |a|, q = \lambda |x| \lor |a|, q$$
, since

 λ is f-invariant. Since $|x| \le |x| \lor |a|$, we have $\lambda(x,q) \le \lambda |x| \lor |a|, q = \lambda |a|, q \le \lambda(a,q)$.

Therefore, $\oint (\lambda) (f(x), q) \leq \oint (\lambda) (f(a), q)$. Hence $f(\lambda)$ is an anti Q-L- fuzzy ℓ -ideal of G^1 .

5.9 Theorem

Let G and G^1 be any two ℓ -groups. Let $f: G \to G^1$ be a homomorphism and onto. Let $\mu: G^1 \times Q \to L$ be an anti Q-Lfuzzy ℓ -ideal of G^1 . Then $f^{-1}(\mu)$ is an anti Q-L-fuzzy ℓ ideal of G.

Proof

Let μ be an anti Q-L-fuzzy ℓ -ideal of G^1 .

i.
$$f^{-1}(\mu)(xy,q) = \mu(f(xy),q)$$

 $= \mu(f(x)f(y),q)$
 $= \mu(f(y)f(x),q)$
 $= \mu(f(yx),q)$
 $= f^{-1}(\mu)(yx,q)$
Hence $f^{-1}(\mu)(xy,q) = f^{-1}(\mu)(yx,q)$
ii. Let $x, y \in G$ such that $|x| \le |y|$.

$$f^{-1}(\mu)(x,q) = \mu(f(x),q)$$
 and $f^{-1}(\mu)(y,q) = \mu(f(y),q)$.
Now, $|x| \le |y| \Rightarrow f \P x \stackrel{\sim}{\le} f \P y \stackrel{\sim}{\Rightarrow} |f(x)| \le |f(y)|$.

Since μ be an anti Q-L-fuzzy ℓ -ideal of G^1 then $\mu((f(x)),q) \leq \mu((f(y)),q)$.

That is, $f^{-1}(\mu)(x,q) \leq f^{-1}(\mu)(y,q)$. Hence $f^{-1}(\mu)$ is an anti Q-L-fuzzy ℓ -ideal of G.

5.10 Theorem

Let *G* and *G*¹ be any two ℓ -groups. Let $f: G \to G^1$ be an anti homomorphism and onto. Let $\lambda: G \times Q \to L$ be an anti Q-L-fuzzy ℓ -ideal of G. Then $f(\lambda)$ is an anti Q-L-fuzzy ℓ -ideal of G^1 , if λ has supproperty and λ is f-invariant.

Proof

Let λ be an anti Q-L-fuzzy ℓ -ideal of G.

i.
$$f(\lambda)(xy,q) = \wedge \lambda(x_0y_0,q)/x_0y_0 \in G, f(x_0y_0) = xy, q \in Q$$

 $= \lambda(x_0 y_0, q)$ $= \lambda(y_0 x_0, q)$ $= \wedge \lambda(y_0 x_0, q) / y_0 x_0 \in G, f(y_0 x_0) = xy, q \in Q$ $= f(\lambda)(yx,q).$

Therefore, $f(\lambda)(xy,q) = f(\lambda)(yx,q)$.

ii. Let
$$f(x), f(a) \in G^1$$
 such that $|f(x)| \le |f(a)|$. Then
 $f(\lambda) \underbrace{\widetilde{f}(x), q}_{t \in f^{-1}(f(x))} \lambda(t, q) = \lambda(x, q)$ and
 $f(\lambda) \underbrace{\widetilde{f}(a), q}_{t \in f^{-1}(f(a))} \lambda(t, q) = \lambda(a, q)$

Now,

$$\begin{split} |f(x)| &\leq |f(a)| \Rightarrow f ||x| \leq f ||a| \Rightarrow f ||a| = f ||x| \vee f ||a| = f ||x| \vee ||a| \\ \text{So } f ||a| = f ||x| \vee ||a| \Rightarrow \lambda ||a|, q = \lambda ||x| \vee ||a|, q], \text{ since} \\ \lambda \text{ is f-invariant.. Since } ||x| \leq ||x| \vee ||a| , \text{ we have} \\ \lambda(x,q) &\leq \lambda ||x| \vee ||a|, q = \lambda ||a|, q \leq \lambda(a,q). \\ \text{Therefore, } \P(\lambda) (f(x),q) \leq \P(\lambda) (f(a),q). \text{ Hence } f(\lambda) \end{split}$$

is an anti Q-L- fuzzy ℓ -ideal of G^1 .

5.11 Theorem

Let G and G¹ be any two ℓ -groups. Let $f: G \to G^1$ be an anti homomorphism and onto. Let $\mu: G^1 \times Q \to L$ be an anti Q-L-fuzzy ℓ -ideal of G^1 . Then $f^{-1}(\mu)$ is an anti Q-Lfuzzy ℓ -ideal of G.

Proof

Let μ be an anti Q-L-fuzzy ℓ -ideal of G^1 .

i.
$$f^{-1}(\mu)(xy,q) = \mu(f(xy),q)$$

= $\mu(f(y)f(x),q)$

$$= \mu(f(x)f(y),q)$$

$$= \mu(f(yx),q)$$

$$= f^{-1}(\mu)(yx,q)$$
Hence $f^{-1}(\mu)(xy,q) = f^{-1}(\mu)(yx,q)$
ii . Let $x, y \in G$ such that $|x| \le |y|$.
 $f^{-1}(\mu)(x,q) = \mu(f(x),q)$ and $f^{-1}(\mu)(y,q) = \mu(f(y),q)$.
Now, $|x| \le |y| \Rightarrow f \P x | \le f \P y | \Longrightarrow |f(x)| \le |f(y)|$.

f

Since μ be an anti Q-L-fuzzy ℓ -ideal of G^1 then $\mu((f(x)),q) \le \mu((f(y)),q).$

That is, $f^{-1}(\mu)(x,q) \le f^{-1}(\mu)(y,q)$. Hence $f^{-1}(\mu)$ is an anti Q-L-fuzzy ℓ -ideal of G.

References

[1] S. Abou-zaid, On fuzzy subnear rings and ideals, fuzzy sets and systems, 44,139-148 (1991).

[2] Haci Aktas, On fuzzy relation and fuzzy quotient groups, International Journal of computational cognition, Vol.2, No2, 71-79, (2004).

[3] Bhakat .S.K, and Das. P, Fuzzy subalgebras of a universal algebra, Bull. Cal.Math. Soc, 85, 79-92 (1993).

[4] Garrett Birkhof, Lattice Theory, American Mathematical Society Colloquium publications, Volume XXV.

[5] Laszlo Filep, Study of fuzzy algebras and relations from a general view point, Acta Mathematica academiae Paedagogocae Nyiregyhaziensis Tamus 14, 49-55.

[6] L. Fuchs , Partially Ordered Algebraic Systems, Pergamon Press, 1963.

[7] J.A. Goguen , L-fuzzy sets, J.Math.Anal.Appl. 18, 145-174 (1967).

[8] Y.B. Jun, On fuzzy prime ideals of Γ-rings, Soochow J.Math. 21, 41-48 (1995).

[9] A.K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl.58, 135-146 (1977).

[10] Ath. Kehagias , The lattice of fuzzy intervals and sufcient conditions for its dis-tributivity, June 11, 2005.

[11] A.Solairaju and R.Nagarajan , A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy mathematics, Volume 4 , Number 1 (2009) pp.23-29.

[12] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy sets and systems, 5, 203-215 (1981).

[13] Wang-Jin Liu , Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and systems, 8, 133-139 (1982).

[14] D.S. Malik and J.N. Mordeson, Extensions of fuzzy subrings and fuzzy ideals, Fuzzy sets and systems, 45, 245-251 (1992).

[15] John N Mordeson and D.S. Malik , Fuzzy Commutative Algebra, World Scientific publishing. Co.pvt . Ltd.

[16] T.K. Mukherjee and M.K. sen, On fuzzy ideals of a ring1, Fuzzy sets and systems, 21, 99-104 (1987).

[17] V. Murali , Lattice of fuzzy algebras and closure systems in I^X , Fuzzy sets and systems 41, 101-111 (1991).

[18] A. Rosenfeld , Fuzzy groups, J.Math.Anal.Appl. 35, 512517 (1971).

[19] K.L.N. Swamy and U.M. Swamy : Fuzzy Prime ideals of rings, J. Math.Anal.Appl, 134, 94-103 (1988).

[20] U.M. Swamy and D. Viswanadha Raju, Algebraic fuzzy systems, Fuzzy sets and systems 41, 187-194 (1991).

[21] L.A. Zadeh , Fuzzy sets, Inform and control, 8, 338-353 (1965).

[22] Zhang Yue, Prime L-fuzzy ideals and Primary L-fuzzy ideals, Fuzzy sets and systems, 27, 345-350 (1988).

[23] G.S.V.Satya Saibaba , Fuzzy Lattice Ordered Groups, Southeast Asian Bulletin of Mathematics, 32, 749-766 (2008).