
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.6, September 2010

28

Dependency based Process Model for Impact Analysis: A

Requirement Engineering Perspective
Chetna Gupta

Jaypee Institute of Information
Technology

A-10 Sector – 62
Noida, India

Yogesh Singh
University School of Information

Technology
Guru Gobind Singh Indraprastha

University, Kashmere Gate
Delhi, India

Durg Singh Chauhan
Uttarakhand Technical University

Dehradun, India

ABSTRACT

Changing requirements of customer needs establishes the need to

analyze impact of requirement changes. For success of any

software requirement analysis is very essential. In this paper, we

propose a four stage method engineering process which aims at

estimating impact of change. The process model described is a

linear layered model. Impact sets are computed by analyzing

dependency tractability relations with other connected method

components. The results produced provide two type of

information (a) added, deleted, modified methods (b) depth

(extent) of impact on the system.

General Terms

Change impact analysis, software maintenance, software testing.

Keywords

Change impact analysis, method, method engineering,

requirements traceability, situational method engineering,

software testing.

1. INTRODUCTION
Software evolution is an ongoing process carried out in order to

meet changing requirements of stakeholders such as beneficiaries

or users. For the success of any software, requirements analysis

is critical. In real-world projects requirements change throughout

the project due to changing user requirements and application

goals.

Requirement engineering (RE) according to [12] is "a sub

discipline of systems engineering and software engineering that

is concerned with determining the goals, functions, and

constraints of hardware and software systems." Any change in

requirement will accordingly affect design, coding and

implementation. To cope up with the situation test cases are to

be adapted in order to test implementation against revised

requirements. Thus there is a need to analyze impact of

requirement changes on other requirements leading to design,

coding and implementation in order to understand likely impact

of requirement changes on product quality and need for re-

testing.

We propose a four stage method engineering process. The

requirement engineering phase consists of representation of

design phase as structural base and construction phase as

dependency base which consists of organization (detail of co-

relation among methods) of method structure and dependencies

between them. In order to analyze impact of change we use

concept of Situational Method Engineering (SME) [5] which

assumes existence of a method repository from where method (s)

of interest are retrieved, modified or assembled into a new

method that is subsequently stored in repository.

The proposed approach computes impact set by analyzing change

in requirements. Dependency relations are used as trace links to

determine depth of impact on the system. The paper is structured

as follows. Section 2 gives details of related work of our work.

Section 3 presents the proposed framework and process model. In

Section 4, we illustrate the whole process with the help of an

example. In Section 5, we provide result analysis to illustrate

change impact analysis. Section 6 presents the result analysis of

experimental setup conducted on a set of programs to validate

the presented approach. Section 7 concludes the paper.

2. RELATED WORK
The main component of our approach is estimation of impact of

change in the requirement phase of software development. Many

researchers have addressed the issue of change impact analysis in

the context of requirements modeling. [6, 17] use UML profiling

mechanism for goal-oriented requirements engineering approach

whereas KAOS model of [19] can be represented in UML by

using the approach given in [6]. [17] use UML profiling

mechanism to provide an integrated modeling language for

functional and non-functional requirements that are mostly

specified by using different notations. [20] describes a tool

support for graphical requirement models and automatic

generation of Software Requirements Specifications (SRS) for

checking constraint violations for requirements models. However

they do not support change impact analysis upon requirements

and their relations. [15] proposes a model for requirement

traceability which captures relations between different software

artifacts and requirements instead of relations between

requirements. [16] presents an approach to capture more precise

traces by defining operational semantics - with a triplet (event,

condition, actions) for traceability in UML. [21] proposes a

generic solution for both specification and appliance of

traceability. [18] illustrate the need for developer tolerance of

inconsistencies for managing inconsistencies between different

model artifacts but it does not provide any techniques to

determine the impacts within a model. [2] presents a tracing

mechanism based on SysML UML 2.0 profile to define

requirements according to a proposed requirements

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.6, September 2010

29

classification. [10] uses an XML based approach of traceability

graph to detect the dependency between model elements. [9] uses

graphs and sets to represent changes. [1] defines elements and

relations between elements to be traced with intra-level and

inter-level dependencies. [7] uses transitive closures of call

graphs to estimate impact analysis. [8] discusses an impact

analysis based on traceability data of an object-oriented system

by tracing across phases with intra-level and inter-level

dependencies. Whereas change impact analysis for software

architectures is discusses in [22], although their analysis is

restricted to architectural level only.

3. PROPOSED APPROACH
We propose a two layered framework to break situational method

engineering task into stages. This is organized in a hierarchy of

abstractions shown in Figure 1 below.

Figure 1. Two-layered framework

As stated in [3] a change introduced can be in one of two phases

“A proposed change implies that impact analysis should be

performed to determine how change would impact the existing

system, whereas an implemented change implies that all

impacted artifacts and their related links should be updated to

reflect the change”. In our approach we aim at estimating the

impact of change (and its depth) about the possible impacts of a

proposed requirements change on the overall system by analyzing

methods components and their dependency relations.

3.1 Structural Base
This level provides the elaborative design of the process for

which changes are to be made. In other words it reveals

relationship between method components. It determine how the

method is constructed, what features it provides, what constraints

are applicable etc. This level provides components of selected

method and hence component of new method can be identified by

looking at structure (architecture) of selected method. If structure

matches with components of desired new method then next level

of abstraction is reached. If in case it fails to match, desired new

method can be constructed by using either of two approaches (a)

method engineer can add any of missing component and

corresponding dependencies can be worked out (b) method

engineer can delete any of unwanted component from selected

architecture and accordingly can work out for dependencies

between remaining components. To construct structural base for

a given method we use the concept of [11] and change in two

structures are identified using design given in Figure 2. It takes

detailed design of method components and their relationship as

input for both the processes (programs for which these method

components are constructed). These are processed in input-output

processing model which compares two method components to

produce changed set. This changed set compromises of those

methods which are deleted, added or modified. Software

maintainer has to analyze this changed set to estimate impact of

change. To study this impact further the next level of abstraction

is approached which is a meta-models. Here dependencies

between method components are worked out for analyzing

relationship contained in each complex method block of

structural base. The details are given in following section.

Figure 2. Detailed view of Structural Base

3.2 Dependency Base
Dependency base is the second level of abstraction. It is a broad

structure of the method and relies on a model of a method. This

may be a meta-model, for example the fragment [5], contextual

[4], or decisional meta-model [13], or alternatively it can be

based on a generic model [14]. To define dependency between

method primitives of structural base we use generic model of

methods approach given in [14].

3.3 Process Model

Figure 3. Process Model

We organize whole process in four stages as shown in Figure 3.

The process starts with structural matching stage. It is assumed

that components of old and new methods and their relationships

have been worked out before processing for structural match. The

matching takes place as follows: The two programs are taken as

input and are compared with the aim of producing dissimilar

components. The second stage considers set of methods selected

(dissimilar methods) in first stage. Third stage aims to determine

dependencies among methods between (a) selected methods of

changed set at second stage, (b) any missing ones determined,

Structural Base

Dependency Base

Input– Output

Processing

Module

Input

Program 1

Input

Program 2

Changed set

Structural Match

Changed Set

Dependency Analysis

Depth of Impact estimation

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.6, September 2010

30

Receive

Application

Conduct

Exam
Collect Fee Register Student DM DC IM

Process Application

Admit Student

<Question paper, send >

<Exam, conduct> <Test, Evaluate>

<Rank, generate>

<Student, call>

IM

DM

IC

DM

IC

<Student, disqualify>

and (c) any new ones added. The last stage uses information of

third stage to calculate depth of impact. Dependency based traces

are used to gather this information.

4. ILLUSTRATION OF PROCESS
To illustrate our process, let us assume the process of admitting a

student to a university. As shown in Figure 4 above, Admit

Student is a complex method built from three methods, Process

Applicant, Collect Fee and Register Student respectively. The

structure shows that Process Applicant method is complex and

built over Receive Application and Conduct Exam. These two

components are in Deferred-Must (DM) dependency. That is

after the application has been received, Conduct Exam can be

enacted any time later but it must be enacted. The method,

Collect Fee, is dependent on enactment of Process Applicant.

Once it is enacted, Collect Fee is enacted in a Deferred-Can

(DC) mode. This is because Admit Student assumes that some

students may not pay fee, possibly because they have got

admission elsewhere (necessity is Can) and also that there can be

a time gap between student selection and fee payment (Urgency

is Deferred). Lastly, Register Student must be done immediately

after Collect Fee. So, it is in an Immediate-Must (IM)

dependency with Collect Fee.

Figure 5. Detailed view of Conduct Exam method

Conduct Exam method in Figure 5 starts off by sending question

papers, <question paper, send> method primitive. The

conduction of exam must be immediately done after arrival of

question paper. This is captured by node <Exam, conduct> and

IM dependency. The evaluation of test can be done anytime after

conduction of test. This is captured by node, <Test, Evaluate>

and DM dependency. The rank can be generated anytime after

evaluation of answer sheets is done, this is captured by node

<Rank, Generate> and DM dependency. Now, based on rank of

candidate, student can either be called for counseling or he can

be disqualified. This is captured by node <Student, call> and

<Student, Disqualify> respectively with (Immediate Can) IC

dependency in both the cases. Dependency relationship among

method primitives is shown in Table 1 below.

Table 1. Dependency relationship among method primitives

S

No.

Method

Primitive I

Method

Primitive II

Type of

dependenc

y

1 <question paper,

send>

<Exam,

conduct>

IM

2 <Exam, conduct> <Test, Evaluate> DM

3 <Test, Evaluate> <Rank,

Generate>

DM

4 <Rank,

Generate>

<Student, call> IC

5 <Rank,

Generate>

<Student,

Disqualify>

IC

Now consider that there is a requirement of changing process of

conducting an exam. The stakeholder wants to add one more

component of conducting an exam by online process to existing

process. According to specified requirement a student can now

appear for exam online and it will receive result immediately.

This will be helpful for him/her to estimate whether he or she

will be admitted to course or not. On the other hand a student

who opts for offline exam has to wait for some period of time for

their results. On looking to requirements software developers

proposed a modified view of conduct exam similar to Figure 6

shown below. As a part of impact analysis it will be beneficial to

estimate impact of change on overall system at this stage only so

that after effects of making changes do not affect design, coding

and implementation of the system.

Figure 6 shows modified model of method components and their

dependencies. Here Conduct Exam method starts off by sending

question papers, <question paper, send> method primitive for

both online and offline exam conduction. In both the cases

conduction of exam must be immediately done after arrival of

question paper. This is captured by nodes <Offline Exam,

conduct> and <Online Exam, conduct> with IM dependency. The

evaluation of test can be done anytime after conduction of test in

Figure 4. Components description and their relationship for Admit Student process

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.6, September 2010

31

case of offline exam whereas it has to be done immediately in

case of online exam. These two events are captured by node,

<Test, Evaluate> and DM dependency for former approach and

with IM dependency for latter. The rank can be generated

anytime after evaluation of test is done in case of offline exam

and this is captured by node <Rank, Generate> and DM

dependency whereas it has to be done immediately in case of

online exam and is captured by IM dependency. Now, based on

the rank of candidate, student can either be called for counseling

or he can be

disqualified. This is captured by node <Student, call> and

<Student, Disqualify> respectively with IC dependency in both

the cases for online exam and with IM dependency for both the

cases of online exam. Dependency relationship among method

primitives of modified process are shown in Table 2 below.

Table 2. Dependency relationship among method primitives

of modified process

S

No.

Method

Primitive I

Method

Primitive II

Type of

dependenc

y

1 <question paper,

send>

<Offline Exam,

conduct>

IM

2 <question paper,

send>

<online Exam,

conduct>

IM

3 <Offline Exam,

conduct>

<Test, Evaluate> DM

4 <online Exam,

conduct>

<Test, Evaluate> IM

5 <Test,

Evaluate>

<Rank,

Generate>

DM/IM

6 <Rank,

Generate>

<Student, call> IC/IM

7 <Rank,

Generate>

<Student,

Disqualify>

ICIM

5. RESULT ANALYSIS
To estimate impact of change software maintainer’s analyses

dependencies worked out between method primitives of base

process and modified process shown in Table 1 and Table 2

respectively. The results of comparison are shown in Table 3.

Impact set is generated on basis of change in dependency in

existing method primitives and added method primitives. Table 4

represents impact set for added method primitives and changed

dependency method primitives based on dependency traceability.

The results of Table 4 indicate suspicious method primitives that

need to be tested. The results also help in classifying information

in (a) methods affected by added dependency and (b) methods

affected by changed dependency. This will be helpful in

analyzing the change of impact at early stage only.

5.1 Depth of Impact
It can be calculated from dependency base by analyzing number

of methods affected (addition, deletion or change in dependency

between methods). The level of depth will be last node where

change has propagated. As shown in Figure 6 the extent of the

impact is till end. Hence it can be concluded that depth of impact

is till the last level.

6. CONCLUSION
In this paper, we proposed a change impact analysis technique

based on dependency traceability of requirements relations. To

achieve our aim we propose a framework for process model for

comparing two program requirements. Our assumption is that if

there is to be a rejection in making desired changes by

stakeholders, then it is less expensive to do this early in

engineering process rather than later. The impact sets are

calculated by tracing dependency relation among method

components.

The engineering process described here is a stage-wise linear

model. Once structural matching is done, change method

components for changed set are highlighted. To analyze the

method components more deeply the dependency relations are

analyzed in dependency base. This will help in gathering impact

sets based on dependency traceability relations among methods.

Based on this data the depth (extent) of impact on the system can

be calculated.

<Question paper, send >

<Offline Exam, conduct> <Test, Evaluate>

<Rank, generate>

<Student, call>

IM
DM\IM

IC\IM

DM

IC\IM

<Student, disqualify>

IM

IM

<Online Exam, conduct>

Figure 6. Modified view of Conduct Exam method

Figure 4. Components description and their relationship

for Admit Student process

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.6, September 2010

32

Method

Primitive I of

Process 1

Method Primitive

II of Process 1

Type of

dependency

Method

Primitive I of

Process 2

Method

Primitive II of

process 2

Type

of

dependency

Change

in dependency

<question paper,

send>
<Exam, conduct> IM

<question paper,

send>

<Offline Exam,

conduct>
IM No

- - -- --
<question paper,

send>

<online Exam,

conduct>
IM Added

<Exam,

conduct>
<Test, Evaluate> DM

<Offline Exam,

conduct>
<Test, Evaluate> DM No

-- -- --
<online Exam,

conduct>
<Test, Evaluate> IM Added

<Test,

Evaluate>
<Rank, Generate> DM <Test, Evaluate>

<Rank,

Generate>
DM/IM Yes

<Rank,

Generate>
<Student, call> IC

<Rank,

Generate>
<Student, call> IC/IM Yes

<Rank,

Generate>

<Student,

Disqualify>
IC

<Rank,

Generate>

<Student,

Disqualify>
ICIM Yes

Method

Primitive I of

Process 1

Method

Primitive II of

Process 1

Type of

dependency

Method Primitive I

of Process 2

Method Primitive

II of process 2

Type of

dependency

Change in

dependency

- - -- --
<question paper,

send>

<online Exam,

conduct>
IM Added

-- -- --
<online Exam,

conduct>
<Test, Evaluate> IM Added

<Test, Evaluate>
<Rank,

Generate>
DM <Test, Evaluate> <Rank, Generate> DM/IM Yes

<Rank,

Generate>
<Student, call> IC <Rank, Generate> <Student, call> IC/IM Yes

<Rank,

Generate>

<Student,

Disqualify>
IC <Rank, Generate>

<Student,

Disqualify>
ICIM Yes

Table 3. Comparison of Results

Table 4. Suspicious method primitives

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.6, September 2010

33

7. REFERENCES
[1] Ajila, S., 1995. Software maintenance: An approach to

impact analysis of object change. Software - Practice and

Experience.

[2] Albinet, A., Boulanger, J.L., Dubois, H., Peraldi-Frati,

M.A., Sorel, Y., Van, Q.D., 2007. Model-Based

Methodology for Requirements Traceability in Embedded

Systems. ECMDA TW 2007 Proceedings, Haifa.

[3] Cleland-Huang, J., Chang C.K., Christensen M., 2003.

Event-Based Traceability for Managing Evolutionary

Change. IEEE Transactions on Software Engineering.

[4] G. Grosz, C. Rolland, S. Schwer, C. Souveyet, V. Plihon, S.

Si-Said, C. Ben Achour and C. Gnaho, 1997. Modelling and

Engineering the Requirements Engineering Process: An

Overview of the NATURE Approach, Requirement

engineering Journal.

[5] Harmsen F., Brinkkemper S., Han J.L.O., 1994. Situational

Method Engineering for Information System Project

Approaches,. Proceedings of the IFIP WG8.1 Working

Conference on Methods and Associated Tools for the

Information Systems Life Cycle. Elsevier Science Inc.

[6] Heaven, W., Finkelstein, A., 2004. UML Profile to Support

Requirements Engineering with KAOS. IEE Proceedings –

Software.

[7] Law, J., Rothermel, G., 2003. Whole program path-based

dynamic impact analysis. International Conference on

Software Engineering (ICSE`03).

[8] Lindvall, M., Sandahl, K., 1998. Traceability aspects of

impact analysis in object-oriented systems. Software

Maintenance: Research and Practice.

[9] Luqi: A, 1990. Graph Model for Software Evolution. IEEE

Transactions on Software Engineering.

[10] Maletec, J.I., Collard, M.L., Simoes, B., 2005. An XML

based Approach to Support the Evolution of Model-to-

Model Traceability Links. Proceedings of the 3rd

International Workshop on Traceability in Emerging Forms

of Software Engineering.

[11] Naveen Prakash, Maneeesha Srivastav, Chetna Gupta,

Vipin Arora, 2007. An intention driven method engineering

approach", First International Conference on Research

Challenges in Information Science (RCIS).

[12] Phillip A. Laplante, 2007. What Every Engineer Should

Know about Software Engineering.

[13] Prakash N., 1999. Towards a Formal Definition of Methods,

Requirements Engineering Journal, Springer.

[14] Prakash Naveen, 2006. On Generic Method Models,

Requirements Engineering Journal.

[15] Ramesh, B., Jarke, M., 2007. Toward Reference Models for

Requirements Traceability. IEEE Transactions on Software

Engineering.

[16] Reshef, N. A., Paige, R. F., Rubin J., Shaham-Gafni Y.,

Kolovos D.S., 2005. Operational Semantics for Traceability.

ECMDA TW 2005 Proceedings.

[17] Supakkul, S., Chung, L., 2005. A UML Profile for Goal-

Oriented and Use Case-Driven Representation of NFRs and

FRs. SERA'05.

[18] Van Gorph, P., Altheide, F., Janssens, D., 2006.

Traceability and Fine-Grained Constraints in Interactive

Inconsistency Management. ECMDA TW 2006 Proceedings,

Bilbao.

[19] Van Lamswerdee, A., 2001. Goal-Oriented Requirements

Engineering: A Roundtrip from Research to Practice. Invited

Minitutorial, Proceedings RE'01 - 5th International

Symposium Requirements Engineering.

[20] Vicente-Chicote, C., Moros, B., Toval, A., 2007. REMM-

Studio: an Integrated Model-Driven Environment for

Requirements Specification, Validation and Formatting. In

Journal of Object Technology, Special Issue TOOLS

Europe.

[21] Walderhaug, S., Johansen, U., Stav, E., 2006. Towards a

Generic Solution for Traceability in MDD. ECMDA TW

2006 Proceedings, Bilbao.

[22] Zhao, J., Yang, H., Xiang, L., Xu, B., 2002. Change impact

analysis to support architectural evolution. Journal of

Software Maintenance and Evolution: Research and

Practice.

