
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

25

String Based New Operations –Find and Replace by New

Operational Transformation Algorithms for Wide-Area

Collaborative Applications
Santosh Kumawat
M.Tech Scholar

Poornima College of Engg.
Jaipur, Rajasthan, India

Ajay Khunteta

Asst Prof. Dept. of CS

Poornima College of Engg.
Jaipur, Rajasthan, India

ABSTRACT

Operational transformation (OT) is an established optimistic

consistency control method in collaborative applications. This

approach requires correct transformation functions. In general

all OT algorithms only consider two character-based primitive

operations and hardly two or three of them support string based

two primitive operations, insert and delete. In this paper we

propose new algorithms that consider first time in history more

new string operations that are Find and replace in addition to

primitive operations like insert and delete. In history we are

having first time algorithms for composite string operation -

Find and replace. These algorithms for new Find and replace

string operations also support earlier algorithms for primitive

string operations-insert and delete. It also handles overlapping

and splitting of operations when concurrent operations are

transformed. These algorithms can be applied in a wide range

of practical collaborative applications.

General Terms

Operational transformation (OT), optimistic consistency control

method, Find-replace string operations.

Keywords
Operational transformation, transformation functions, string

operations, Find and replace string operations, real-time

cooperative editing systems.

1. INTRODUCTION
Operational Transformation (OT) [1] is an established optimistic

consistency control method in collaborative applications network.

Consistency control in this environment must not only guarantee

convergence of replicated data, but also attempt to preserve

intentions of operations. Fast local response and timely group

awareness are accepted performance metrics in group editors. In

general optimistic consistency control on linear data structures is

done. In this context a family of optimistic concurrency control

algorithms called OT has been well established. OT allows

building real time groupware tools by correct transformation

functions.

 The objective of a collaborative environment [10] is to

facilitate team working and, in particular, to enable a group of

persons to manipulate shared objects, and modify them in a

coherent manner. There are many collaborative activities,

examples being simultaneous writing of a document by different

authors, or cooperative design. In general, an object involved in a

collaborative activity is submitted to concurrent accesses and

real-time constraints. The real-time aspect necessitates every

user seeing the effects of his own acts on the object immediately,

and the effects of the acts of other users almost immediately.

Consequently, the problem is to conciliate both real-time and

consistency constraints, as the object may be modified

concurrently by many users. To satisfy these requirements, it is

necessary [16] [17] that concurrency control does not use a

blocking protocol which could defer user actions.

 Cooperative editing systems [12] are very useful groupware

tools in the rapidly expanding areas of CSCW. They can be used

to allow physically dispersed people to edit a shared textual

document, to draw a shared graph structure, to record ideas

during a brainstorming meeting, or to hold a design meeting. The

goal of our research is to investigate, design, and implement

cooperative editing systems with the following characteristics:

(1) real-time: the response to local user actions is quick (ideally

as quick as a single-user editor), and the latency for reflecting

remote user actions is low (determined by external

communication latency only); (2) distributed: cooperating users

may reside on different machines connected by different

communication networks with nondeterministic latency; (3)

unconstrained: multiple users are allowed to concurrently and

freely edit any part of the document at any time, in order to

facilitate free and natural information flow among multiple users.

 A plethora of OT algorithms have been proposed over the

past two decades. Most of OT algorithms are developed under

the framework of Sun et al [5], which includes an informal

condition called "intention preservation". As a consequence, in

general their correctness cannot be formally proved. In general

all OT algorithms only consider two character-based primitive

operations and hardly two or three of them support string based

two primitive operations, insert and delete. In real collaborative

applications in which string based operations are common. The

handling of string operations is very intricate, as confirmed in

[5]. So there is an open challenge to handle more string

operations.

To address the above challenges, this paper proposes a group

of OT algorithm. It is based on the ABT framework [15, 17]

which formalizes two correctness condition, causality and

admissibility preservation. Causality preservation needed

whenever an operation o is executed at a site, all operations

that happen before o must have been executed at that site.

Conceptually, admissibility requires that the execution of every

operation not violate the relative position of effects produced

by operations that have been executed so far. In general the

ABT framework algorithms can be formally proved. The new

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

26

proposed algorithms as per our knowledge first time in history

are handling string operations like Find and replace in addition

to primitive operations insert and delete and handles

overlapping and splitting of operations when concurrent

operations are transformed. These algorithms can be applied in

a wide range of practical collaborative applications that require

atomic string operations.

1.1 OT Functions- Inclusion and Exclusion

Transformation
OT functions used in different OT systems may be named

differently, but they can be classified into two categories.

One is Inclusion Transformation (or Forward Transformation):

IT(Oa, Ob) or T(op1, op2), which transforms operation Oa against

another operation Ob in such a way that the impact of Ob is

effectively included and the other is Exclusion Transformation

(or Backward Transformation) : ET (Oa, Ob) or T-1(op1, op2),

which transforms operation Oa against another operation Ob in

such a way that the impact of Ob is effectively excluded.

2. Background and Related Work
To explain string operations and the basic ideas of OT, consider

a scenario in which two users, A and B, collaboratively edit a

shared document which includes a list of students of a class. The

document is replicated at the two sites when the users discuss

about it online. Suppose that the list is initially "Ram" and the

first position of a string is zero. User A extends the list to

"Shyam,Ram" by operation OA = insert(0, "Shyam,"). At the

same time, user B extends the list to "Ram,Raman" by operation

OB = insert(3,",Raman"). The two sites diverge before their

results are merged. When A receives OB, if the operation were

executed as-is, the wrong result "Shy,Ramanam,Ram" would

yield in the list of A. The intuition of OT [18] is to transform

remote operations to incorporate the effects of concurrent local

operations that have been executed earlier. In this scenario, for

example, A transforms OB into a form O'B such that O'B can be

correctly executed in current state "Shyam,Ram" of site A.

Considering the fact that A has inserted a string of six characters

on the left side of the intended position of OB, we must shift the

position of OB by six to the right, yielding O'B = insert(9,

"Raman"). Execution of O'B in state "Shyam,Ram" results in the

right list of "Shyam,Ram,Raman". On the other hand, when user

B receives OA, the operation can be executed as-is in current

state of B because the target position of OA is not affected by the

execution of OB. This results in list "Shyam,Ram,Raman". Now

the two sites converge.

 The philosophy of OT is to avoid operation overwriting so

as not to lose user interaction results.

 System Model and Notations
A number of collaborating sites are there in a system. The shared

data is replicated at all sites when a session starts. Local

operations are executed immediately and for local

responsiveness, each site submits operations only to its local

replica. In the background, local operations are propagated to

remote sites. The shared data is like a linear string of atomic

characters. Objects are referred to by their positions in the string,

starting from zero. It consider two only primitive operations,

namely, insert(p, s) and delete(p, s), which insert and delete a

string s at position p in the shared data, respectively. Any

operation o has attributes like o.id is the unique id of the site that

originally submits o; o.type is the operation type which is either

insert or delete; o.pos is the position in the shared data at which

o is applied; o.str is the target string which the operation inserts

or deletes. For a operation o, o.pos is always defined relative to

some specific state of the shared data.

In the following table1[1] general notations of operation are

summarized.

To support string wise transformation, we need to introduce a

few more notations. Given any string s, notation |s| is the number

of characters in s. If 0 <= i<j <= |s|, notation s[i:j] returns a

substring of s starting from position i to position j -1. If j is not

specified, s [i:] returns a substring from i to the end. For

example, let s="abc", then |s|=3 and s[0:2]="ab" and s[1:]="bc".

2.2 Literature Survey
Research on real-time group editors in the past decade has

invented an innovative technique for consistency maintenance,

called operational transformation In it presents an integrative

review of the evolution of operational transformation techniques,

with the goals of identifying the major issues, algorithms,

achievements, and remaining challenges. First, it use a linear

time interval based logical clock[6] for the same purpose of

causality preservation as the more complex vector clock approach

in existing operational transformation algorithms. This increases

system scalability in terms of accommodating late comers in a

dynamic collaboration environment. Second, it solve the dOPT

puzzle with a one-dimensional history buffer (as compared to the

N-dimensional storage in adOPTed [6]) and the time complexity

the TIBOT control algorithm is O(n) (as compared to O(n2) in

GOTO [4][5]). Third, it solve the TP2 puzzle in a fully replicated

architecture and without using ET (as compared to GOT [4]) or

extra mechanisms (as compared to notification server in [7] and

sequencer in [3]). The assumptions it made in it that lead to

these results are reasonable in the target application domain of

distributed interactive groupware systems.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

27

 The notification mechanism for a group editor consists of

two algorithms AnyONE and AnyINE, and a propagation

protocol SCOP.

 In addition, it contribute a new operational transformation

control algorithm SLOT for concurrency control, which is

significantly simpler and more efficient than existing algorithms.

Furthermore, it is free of state vectors, free of ET transformation

functions, and free of the TP2 transformation condition.

 It have contributed the theory of operation context and the

COT (Context-based OT) algorithm. The theory of operation

context is capable of capturing essential relationships and

conditions for all types of operation in an OT system; it provides

a new foundation for better understanding and resolving OT

problems.

 To ensure the convergence of the copies while respecting

the user intention, it have proposed two new algorithms, called

SOCT3 and SOCT4.

 A novel state difference based transformation (SDT)

approach which ensures convergence in the presence of arbitrary

transformation paths.

 It proposes an alternative framework, called admissibility-

based transformation (ABT), that is theoretically based on

formalized, provable correctness criteria and practically no

longer requires transformation functions to work under all

conditions. Compared to previous approaches, ABT simplifies

the design and proofs of OT algorithms.

 Next it is having ABTS for string handling. First, it is

based on a recent theoretical framework with formal conditions

such that its correctness can be proved. Secondly, it supports two

string-based primitive operations and handles overlapping and

splitting of operations. As a result, this algorithm can be applied

in a wide range of practical collaborative applications.

3. Algorithms
In this section we are discussing our new proposed

algorithms for replace-Find operations of strings.

 Syntax for function replace is

replace(st1,st2,start,end,occr), where st1 is existing string in

document and st2 is new string by what replacement is to be

done, start is starting position from where function start and

end is the ending position where function stops. Also occr is

the number that is equal to the number of occurances of st1

for what replacement will be done by function replace. Note

st1 and st2 can be of different length. And

Find(st1,start,end), it return the position of first occurance of

string st1 from start. Here also start is equal to starting

position of function and end is ending position of function

and st1 is string what get find out by function in given

document text . Note start always be equal to or less than

end. If start not specified then by default it is starting of text

and if end not specified then by default it is end of given

text.

 Example
To make clear basic idea of OT, consider a scenario in which

two users, A and B, collaboratively edit a shared document

which includes the text about facts in world. The document is

replicated at the two sites when the user discuss about it

online. Suppose the document is initially

“SrashtiNirmataRam-Hae”, and the first position of string is

zero. At site-1 User A modify the document by command

replace(“Nirmata”, “Rachiyata”, 0, ,1) , the resulting

document is “SrashtiRachiyataRam-Hae”. At the same time

user B at site-2 extend the document to “SrashtiNirmataRam-

HanumanHae” by insert(18,”Hanuman”). The two sites

diverse before their results are merged.

 When A receives OB if the operation are executed as-is,

the wrong result SrashtiRachiyataRaHanumanm- Hae” would

yield in the list of A. The intutions of OT[20] is to transform

remote operations to incorporate the effects of concurrent

local operations that have been executed earlier. In this

scenario, for example, A transforms OB into a form O'B such

that O'B can be correctly executed in current state

“SrashtiRachiyataRam-Hae” of site A. Considering the fact

that A has replaced a string of 7 characters by a string of 9

characters on the left side of the intended position of OB, we

must shift the position of OB by 2 to the right, yielding O'B =

insert(20,”Hanuman”). Execution of O'B in state

“SrashtiRachiyataRam-Hae” results in the right list -

“SrashtiRachiyataRam-HanumanHae”. On the other hand,

when user B receives OA, the operation can be executed as-is

in current state of B because the target position of OA is not

affected by the execution of OB. This results in list

“SrashtiRachiyataRam-HanumanHae”. Now the two sites

converge.

 The philosophy of O'I' is to avoid operation overwriting

so as not to lose user interaction results.

 Basic IT Functions
In the most basic form, function IT(o1,o2) transforms a

primitive operation o1 with another primitive operation o2 and

outputs result o1'. The output result can be a composite

operation or atomic operation. According to [20], the

precondition of IT(o1, o2) is o1 U o2 and the postcondition is

o2  o1'.

 Now we are discussing basic IT functions ITIR, ITRI,

ITDR, ITRD for our replacement operation

replace(st1,st2,start,end,occr). Here |st2|-|st1|=pc. Also

Find(st1,start,end) returns position of first occurance of st1

from start, let it be „p‟. In ITIR we are passing these pc as

parameter . If operation o is replace then o.pos is equal to

start parameter of replace function. If IT function return o'

then o' is new start parameter for replace and Find functions

where operation o is replace.

Algorithm 1:

ITIR(o1, o2, pc, start, end, st1): o1'

1: o1' o1

2: for (i=0; i<occr and start<=end ; i++)

3: pFind(st1,start,end)

4: if(p!= null) then

5: if pc>0 then

6: if p< o1.pos then

7: o1'.pos o1'.pos + | pc|

8: else if p=o1.pos and o2.id<o1.id then

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

28

9: o1'.pos o1'.pos + | pc|

10: endif

11: else if pc=0 then

12: o1' o1'
13: else if pc<0 then

14: if p< o1.pos then

15: if o1.pos >= p + |pc| then

16: o1'.pos o1'.pos - | pc|

17: else

18: o1'.pos p

19: endif

20: endif

21: endif

22: endif

23: start = p

24: endfor

25: return o1'

 Algorithm 1 transforms operation insertion o1 with

another operation that is replacement o2 to incorporate the

effects of o2 in o1. Let s be their common definition state. In it

o2 replace a substring st1 that is already in s with other new

substring st2 and o1 is to do insertion on s. In it both

insertion and replacement are getting operated on same string

s.

 Here all IT algorithms takes as its parameter o1, o2, pc,

start, end, st1. In it o1, o2 are two operations. Also pc is

difference in |st1| and |st2|, that is (|st2|-|st1|) , where st1 is

string existing in present document and st2 is new string by

what we need to replace st1. Again start is starting position

of function and end is ending position of function.

Algorithm 2:

ITRI(o1, o2, pc, start, end, st1): o1'

1: o1' o1

2: pFind(st1,start,end)

3: if o2.pos <p then

4: p'  p+| o2.str |

5: else if p=o2.pos and o2.id<o1.id then

6: p'  p+| o2.str |

7: endif

8: return p'

 Algorithm 2 transforms operation insertion o2 with

another operation that is replacement o1 to incorporate the

effects of o2 in o1. Let s be their common definition state. In it

o1 replace a substring st1 that is already in s with other new

substring st2 and o2 is to do insertion on s. In it both insertion

and replacement are getting operated on same string s.

 Here p' what is getting returned by function ITRI is

equal to new start position of replace and Find functions.

Algorithm 3:

ITDR(o1, o2, pc, start, end, st1): o1'

1: o1' o1

2: for (i=0;i<occr and start<=end ;i++)

3: pFind(st1,start,end)

4: if(p!= null) then

5: if pc>0 then

6: if p<= o1.pos then

7: o1'.pos o1'.pos + | pc|

8: else if o1.pos<p<o1.pos+ |o1.str| then

9: oLoR o1

10: oL.str  o1.str[0: p- o1.pos]

11: oR.pos p+ | pc|

12: oR.str  o1.str[p- o1.pos:]

13: o1'.sol[oL, oR]

14: endif

15: else if pc<0 then

16: o2.posp and |o2.str||pc|

17: o1'MSITDD(o1, o2)

18: elseif pc=0 then

19: o1' o1'

20: endif

21: endif

22: start = p

23: endfor

24: return o1'

 Algorithm 3 transforms operation deletion o1 with

another operation that is replacement o2 to incorporate the

effects of o2 in o1. Let s be their common definition state. In

it o2 replace a substring st1 that is already in s with other new

substring st2 and o1 is to do deletion on s. In it both deletion

and replacement are getting operated on same string s.

 In Algorithm 3 and Algorithm 4 MSITDD is from our

paper[21].

Algorithm 4:

ITRD (o1, o2, pc, start, end, st1): o1'

1: o1' o1

2: pFind(st1,start,end)

3: if (pc>=0)

4: if o2.pos <p then

5: if p >= o2.pos+| o2.str | then

6: p' p'- | o2.str |

7: else

8: p' o2.pos

9: endif

10: endif

11: else if (pc <0) then

12: o1.posp and |o1.str||pc|

13: p'MSITDD(o1, o2)

14: endif

15: return p'

 Algorithm 4 transforms operation deletion o2 with

another operation that is replacement o1 to incorporate the

effects of o2 in o1. Let s be their common definition state. In

it o1 replace a substring st1 that is already in s with other new

substring st2 and o2 is to do deletion on s. In it both deletion

and replacement are getting operated on same string s.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

29

Here p' what is getting returned by ITRD is equal to

new start position of replace and Find functions.

3.3 Basic Swap Functions
The basic swapping function for swapping two operations.

Given two operations o1 and o2, where o1  o2, function

swap(o1, o2) transposes them into o1' and o2' such that o2'

o1'.The precondition of swap(o1, o2) is o1  o2.

 Algorithm swapRI and swapRD is to swap

replace operation on string with other primitive operations

like insertion and deletion on strings.

Algorithm5:

swapRI(o1,o2,pc,start,end,st1):(o2',o1')

1: o1' o1 : o2' o2

2: pFind(st1,start,end)

3: if(p > o2.pos) then

4: p'  p-| o2.str |

5: o1'.pos p'

6: else if (p < o2.pos) then

7: for (i=0;i<occr and start<=end ;i++)

8: pFind(st1,start,end)

9: if(p!= null) then

10: if pc>=0 then

11: o2'.pos o2'.pos - | pc|

12: else if pc<0 then

13: o2'.pos o2'.pos + | pc|

14: endif

15: endif

16: start = p

17: endfor

18: endif

19: return(o2', o1')

20: end

 Algorithm 5 swaps replace o1 with an insertion o2.

Here it takes as its parameter o1, o2, pc, start, end, st1 . Also

pc is difference in |st1| and |st2|, where st1 is string existing

in present document and st2 is new string by what we need to

replace st1,so pc=(|st2|-|st1|). Again start is starting position

of function and end is ending position of function. It returns

o2', o1' that are modified operations where o2'.pos is new

position for insertion and o1'.pos is new starting position for

modified replace and Find functions.

 In Algorithm 6 swaps replace o2 with a deletion o1.

Here parameters are like algorithm5. It returns o2', o1' that are

modified operations where o1'.pos is new position for deletion

and o2'.pos is new starting position for modified replace and

Find functions. In these swapping algorithms overlapping of

replace with insertion or deletion is not considered for

reducing extra overhead.

Algorithm 6:

swapDR(o1,o2,pc,start,end,st1):(o2', o1')

1: o1' o1 : o2' o2

2: pFind(st1,start,end)

3: if(p > o1.pos) then

4: p'  p+| o1.str |

5: o2'.pos p'

6: else if (p < o1.pos) then

7: for (i=0;i<occr and start<=end ;i++)

8: pFind(st1,start,end)

9: if(p!= null) then

10: if pc>=0 then

11: o1'.pos o1'.pos + | pc|

12: else if pc<0 then

13: o1'.pos o1'.pos - | pc|

14: endif

15: endif

16: start = p

17: endfor

18: endif

19: return(o2', o1')

20: end

4. CONCLUSION
This paper contributes a group of new optimized generic

operational transformation algorithms that first time in

history consider new composite string operations, Find and

replace. It also support existing primitive operations like

insert and delete.

 First time in history birth of composite string

operations like Find and replace in multi user shared

environment take place in this paper.

 Most of OT algorithms are developed under the

framework of Sun et al [5], which includes an informal

condition called "intention preservation". As a consequence,

in general their correctness cannot be formally proved. In

general all OT algorithms only consider two character-based

primitive operations and hardly two or three of them support

string based two primitive operations ,insert and delete.

 To address the above challenges, this paper proposes a

novel OT algorithm. It is based on the ABT framework [15,

17] which formalizes two correctness condition, causality and

admissibility preservation. In general the ABT framework

algorithms can be formally proved. The new proposed

algorithms first time in history are handling string operations

like Find and replace in addition to primitive operations

insert and delete and handles overlapping and splitting of

operations when concurrent operations are transformed in

particular situations. These algorithms can be applied in a

wide range of practical collaborative applications that require

string operations.

 This paper proposed new algorithm like swapRI,

swapDR, ITRI ,ITIR, ITDR and ITRD for replace operation

of strings , where swapRI and swapDR are basic swap

functions and ITRI, ITIR, ITRD and ITDR are basic IT

functions for string replace operations.

4.1 Future Work
There is a lot of efforts needed to preserve intention

preservation and also to preserve semantic consistency and

syntactic consistency. There is still scope to extend the support

to other composite operations of string handling and char

handling. Also it can support other better data structures also.

A lot of work is done to reduce space complexity and time

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

30

complexity. Still there is a scope to reduce space complexity

and time complexity.

5. REFERENCES
 [1] ABTS: A Transformation-Based Consistency Control

Algorithm for Wide-Area Collaborative Applications Bin Shao ,

Du Li , Ning Gu . IEEE Paper published in 2009

 [2] C. A. Ellis and S. J. Gibbs.Concurrency control in groupware

systems. In Proceedings of the ACM SIGMOD'89 Conference on

Management ofData, pages 399-407, Portland Oregon, 1989.

[3] H. Yu and A. Vahdat. Design and evaluation of a conit-based

continuous consistency model for replicated services. ACM

Transactions on Computer Systems, 20(3):239–282, Aug. 2002.

[4] N.Vidot, M.Cart, J.Ferrie,and M.Suleiman. Copies

convergence in a distributed realtime collaborative environment.

In ACM CSCW‟00, pages 171–180, Dec. 2000.

[5] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving

convergence, causality- preservation, and intention-preservation

in real-time cooperative editing systems. ACM Transactions on

Computer-Human Interaction, 5(1):63–108, Mar. 1998.

[6] H. Shen and C. Sun. Flexible notification for collaborative

systems. In ACM CSCW‟02, pages 77–86, Nov. 2002.

[7] C. Sun and C. Ellis. Operational transformation in real-time

group editors: issues, algorithms, and achievements. In ACM

CSCW‟98, pages 59–68, Dec. 1998.

[8] R. Li and D. Li. A new operational transformation framework

for real-time group editors. IEEE Transactions on Parallel and

Distributed Systems, 18(3):307-319, Mar. 2007.

[9] G. Oster, P. Urso, P. Molli, and A. Imine. Proving correctness

of transformation functions in collaborative editing systems.

Technical Report 5795, INRIA, Dec. 2005.

[10] M. Suleiman, M. Cart, and J. Ferrie. Concurrent operations

in a distributed and mobile collaborative environment. In IEEE

ICDE '98 International Conference on Data Engineering, pages

36-45, Feb. 1998.

[11] C. Sun and C. Ellis. Operational transformation in real-time

group editors: issues, algorithms, and achievements. In

Proceedings of the ACM Conference on Computer- Supported

Cooperative Work, pages 59-68, Dec. 1998.

[12] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving

convergence, causality- preservation, and intention preservation

in real-time cooperative editing systems. ACM Transactions on

Computer-Human Interaction, 5(1):63108, Mar. 1998.

[13] D. Sun and C. Sun. Context-based operational

transformation in distributed collaborative editing systems. IEEE

Transactions on Parallel and Distributed Systems, 20(10):1454-

1470,2009.

[14] Decouchant D., Quint V., Vatton I.; "L'édition Coopérative

de documents avec riffon," Colloque IHM'92, Paris, Décembre

1992.

[15] R. Li and D. Li. Commutativity-based concurrency control in

groupware. In Proceedings of the First IEEE Conference

on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom '05), San Jose, CA,

Dec. 2005.

[16] Ellis C.A., Gibbs S.J., Rein G.L.; "Groupware: Some issues

and experiences," Commun. ACM,vol.34, n°. 1, pp. 39-59,

January 1991.

[17] Greenberg S., Marwood D.; "Real Time Groupware as a

Distributed System: Concurrency Control and its Effect on the

Interface," in Proc. ACM Int. Conf. on Computer Supported

Cooperative Work, Canada, October 1994, pp. 207-217.

[18] C. A. Ellis and S. J. Gibbs. Concurrency control in

groupware systems. In Proceedings of the ACM SIGMOD'89

Conference on Management ofData, pages 399-407, Portland

Oregon, 1989.

 [19] D. Li and R. Li. An admissibility-based operational

transformation framework for collaborative editing systems.

Computer Supported Cooperative Work: The Journal of

Collaborative Computing, Aug. 2009. Accepted.

[20] Prakash A., Shim H. S.; “DistView: Support for Building

Efficient Collaborative Applications using Replicated Object,”

in Proc. ACM Int. Conf. on Computer Supported Cooperative

Work, October 1994, pp. 153-164.

 [21] Santosh Kumawat and Ajay Khunteta

A Transformation based New Algorithm for Transforming

Deletions in String Wise Operations for Wide-Area

Collaborative Applications ,International Journal of Computer

Applications (0975 – 8887) Volume 4– No.12, Aug

