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ABSTRACT 

It is well known to enhance the performance of noise robust 

speaker identification using visual speech information with audio 

utterances. This paper presents an approach to evaluate the 

performance of a noise robust audio-visual speaker identification 

system using likelihood ratio based score fusion in challenging 

environment. Though the traditional HMM based audio-visual 

speaker identification system is very sensitive to the speech 

parameter variation, the proposed likelihood ratio based score 

fusion method is found to be stance and performs well for 

improving the robustness and naturalness of human-computer-

interaction. In this paper, we investigate the proposed audio-

visual speaker identification system in typical office 

environments conditions. To do this, we investigated two 

approaches that utilize speech utterance with visual features to 

improve speaker identification performance in acoustically and 

visually challenging environment: one seeks to eliminate the 

noise from the acoustic and visual features by using speech and 

facial image pre-processing techniques. The other task combines 

speech and facial features that have been used by the multiple 

Discrete Hidden Markov Model classifiers with likelihood ratio 

based score fusion. It is shown that the proposed system can 

improve a significant amount of performance for audio-visual 

speaker identification in challenging official environment 

conditions.  
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1. INTRODUCTION 
Human speaker identification is bimodal in nature [1, 2]. Visual 

speech information can plays a vital role for the improvement of 

natural and robust human-computer interaction [3, 4, 5, 6, 7]. 

Most published works in the areas of speech recognition and 

speaker recognition focus on speech under the noiseless 

environments and few published works focus on speech under 

noisy conditions [8, 9, 10, 11]. Indeed, various important human-

computer components, such as speaker identification, verification 

[12, 13], localization [14], speech event detection [15], speech 

signal separation [16], coding [17], video indexing and retrieval 

[18], and text-to-speech [19, 20], have been shown to benefit 

from the visual channel [21]. 

 

In this paper, log likelihood ratio based score fusion for audio-

visual speaker identification system has been proposed at official 

environmental conditions. Discrete Hidden Markov Model with 

cepstral based feature such as RCC, MFCC, ΔMFCC, ΔΔMFCC, 

LPC and LPCC has been used to improve the performance of this 

proposed system. VALID audio-visual database has been used to 

measure the performance which has been shown in the 

experimental results and performance analysis section in this 

paper. Section 2 shows the audio-visual system components, 

section 3 elaborates the audio identification and visual 

identification process has been focused on section 4.  

2. AUDIO-VISUAL SPEAKER 

IDENTIFICATION COMPONENTS 
The block diagram for the proposed log likelihood ratio based 

audio-visual speaker identification system is shown in figure 1. 

At first speech utterance and facial image are captured, pre-

processing techniques are applied, features are extracted and 

HMM classification are applied for both audio and visual 

features. Finally audio and visual reliability are measured from 

the audio and visual classification output and audio-visual 

decision fusion are performed to get the final speaker 

identification result.  

  

 
 

Figure 1: Paradigm of the log likelihood ratio based audio-visual 

speaker identification. 

3. AUDIO IDENTIFICATION 
To capture the speech signal, sampling frequency of 11025 HZ, 

sampling resolution of 16-bits, mono recording channel and 

recorded file format = *.wav have been considered. The speech 

preprocessing part has a vital role for the efficiency of learning. 

After acquisition of speech utterances, winner filter has been 

used to remove the background noise from the original speech 

utterances [22, 23, 24]. Speech end points detection and silence 
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part removal algorithm has been used to detect the presence of 

speech and to remove pulse and silences in a background noise 

[25, 26, 27, 28, 29]. To detect word boundary, the frame energy 

is computed using the sort-term log energy equation [24],   
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Pre-emphasis has been used to balance the spectrum of voiced 

sounds that have a steep roll-off in the high frequency region [30, 

31, 32]. The transfer function of the FIR filter in the z-domain is 

[33], 
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Where is the pre-emphasis parameter. 

 

Frame blocking has been performed with an overlapping of 25% 

to 75% of the frame size. Typically a frame length of 10-30 

milliseconds has been used. The purpose of the overlapping 

analysis is that each speech sound of the input sequence would 

be approximately centered at some frame [34, 35].  

 

From different types of windowing techniques, Hamming 

window has been used for this system. The purpose of using 

windowing is to reduce the effect of the spectral artifacts that 

results from the framing process [36, 37, 38]. The hamming 

window can be defined as follows [39]: 
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To extract the features from the speech utterances, various types 

of standard speech feature extraction techniques [40, 41, 42, 43] 

such as RCC, MFCC, ΔMFCC, ΔΔMFCC, LPC, LPCC have 

been applied. Principal Component Analysis method has been 

used to reduce the dimensionality of the speech feature vector. 

Finally, HMM learning and classification and algorithms [44, 45, 

46] has been applied to classify the speakers.  

4. VISUAL IDENTIFICATION  
The first step in image pre-processing is image acquisition. To do 

so, an imaging sensor along with signal digitization capability 

has been used so that captured image can be converted to digital 

form directly. After acquisition of face image, Stams [47] Active 

Appearance Model (ASM) has been used to detect the facial 

features. Then the binary image has been taken. The Region Of 

Interest (ROI) has been chosen according to the ROI selection 

algorithm [48, 49]. Lastly the background noise has been 

eliminated [50] and finally appearance based facial feature has 

been found. The procedure of the facial image pre-processing 

parts is shown in figure 2.  

To reduce the dimensionality of the facial feature vector, PCA 

and HMM training and testing algorithm has been used to 

classify the facial images. 

 

 
Figure 2: Facial image pre-processing for the proposed system (a) 

Original image (b) Output taken from Stams Active Appearance 

Model (c) Facial edges are extracted (d) Region Of Interest 

(ROI) selection with background noise (e) Appearance based 

facial features. 

 

5. AUDIO-VISUAL LIKELIHOOD RATIO 

BASED SCORE FUSION 
After the acoustic and visual sub-systems perform identification 

separately, their outputs are combined by a weighted sum rule to 

produce the final decision. Sensor level fusion and feature level 

fusion can be used before matching and after matching match 

score level, rank level and decision level fusion can be 

introduced. In this work, match score level used to combine the 

audio and visual identification outputs.  For a given audio-visual 

speaker test datum of AO and VO , the identification utterance 

*C is given by [51],  
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Where 
i

A and 
i

V are the acoustic and the visual HMMs for the 

thi utterance class respectively and )/(log i

AAOP and 
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VVOP are there log likelihood against the 
thi class. 

Among various types of score fusion techniques, baseline 

reliability ratio-based integration has been used to combine the 

audio and visual identification results. The reliability of each 

modality can be measured from the outputs of the corresponding 

HMMs. When the acoustic speech is not corrupted by any noise, 

there are large differences between the acoustic HMMs output 

otherwise the differences become small. The reliability of each 

modality can be calculated by the most appropriate and best in 

performance [52], 
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Which means the average difference between the maximum log-

likelihood and the other ones and N is the number of classes 

being considered to measure the reliability of each modality, 

},{ VAm . 

Then the integration weight of audio reliability measure A can 

be calculated by [53] 
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Where AS and VS are the reliability measure of the outputs of 

the acoustic and visual HMMs respectively.                                                                                                                   

The integration weight of visual modality measure can be found 

as, 

)1( AV                                                                        

(7) 

6. EXPERIMENTAL RESULTS AND 

PERFORMANCE ANALYSIS 
There are some critical parameters such as frame length, frame 

increment for the speech pre-processing and number of cepstral 

coefficients, number of hidden states, pre-emphasizing parameter 

etc for HMM that affect the performance of the developed 

system. A trade off is made to explore the optimal values of the 

above parameters and experiments are performed using those 

parameters. The optimal values of the above parameters are 

chosen and finally find out the results which are shown in the 

following subsections.  

6.1 Optimum Parameter Selection for Speech 

Pre-preprocessing 

6.1.1 Experiment on the Window Shift, N1 
In this experiment hamming window has been used. The shifting 

effect of hamming window has been measured. By setting the 

window length, NL = 15 ms, number of Mel-frequency Cepstral 

Coefficients excluding 0th coefficients, NMC =12, number of 

hidden states, NH =5 and the pre-emphasizing parameter, α = 0.9, 

we have found the highest speaker identification rate of 85% at 

65% window shift as shown in figure 3. 

 

 
Figure 3: Performance measurement according to the window 

shift. 

6.1.2 Experiment on the Pre-emphasize Parameter,   
The performance of the developed speaker identification system 

has been measured according to the pre-emphasized parameter α. 

We have set NL = 15 ms, N1 = 65%, NMC =12 and NH =5. We 

have studied the value of the parameter ranging from 0.7 to 0.99. 

We have found that the speaker identification performance was 

86% at α = 0.95 which is shown in figure 4. 

 

Figure 4: Speaker identification rate on the variation of pre-

emphasis parameter. 

6.2 Optimum Parameter Selection for HMM 

6.2.1 Experiment on the Number of Hidden States of 

DHMM, NH 
In the learning phase of DHMM, We have chosen the hidden 

states in the range from 5 to 20. We have set NL = 15 ms, N1 

=65%, NMC =12, and α = 0.95. The highest performance of 87% 

have been achieved at NH =15 which is shown in figure 5. 

 

 

Figure 5: Results after setting up the hidden states of DHMM. 

6.2.2 Experiment on the Window Length, NL 
The performance of the identification system has also been 

investigated by varying the length of the window from 10 ms to 

30 ms. By setting N1 = 65%, NMC = 12, NH = 15 and α = 0.95, the 

highest performance has been achieved with MFCC based 

system to be 87% which is shown in the figure 6. 

 

 

Figure 6: Effect of the window length on the identification rate. 
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6.2.3 Experiment on the Number of Cepstral 

Coefficients, NMC 
In this experiment, the number of cepstral coefficients varies 

from 10 to 20. The highest speaker identification rate 93% has 

been found at NL = 15 ms, N1 = 65%, α = 0.95 and NMC =15 

which is shown in figure 7. 

 

 

Figure 7: Speaker identification accuracy according to the 

number of cepstral coefficients. 

 

From figure 7, it is found that in HMM the highest speaker 

identification rate was 93% which was achieved for ΔMFCC per 

frame. 

6.3 Accuracies of Speaker Identification 

under Various SNRs 
VALID audio-visual database [54] has been used to measure the 

performance of the proposed speaker identification system. 

Artificial white Gaussian noise was added to the original clean 

speech utterances to simulate various SNR levels. The models 

were trained at clean speech utterances and tested under SNR 

level ranging from 0dB to 30dB at 5dB intervals. Figure 8 shows 

the results of the performance of the proposed system under 

various SNR levels. 

 

 

Figure 8: Accuracies (%) of speaker identification under different 

SNRs on VALID database. 

 

From figure 8, it has been seen that when the noise level is low, 

the acoustic modality performs better than the visual one and, 

thus, the audio-visual recognition performance should be at least 

as good as that of the acoustic speech recognition. When the 

noise level is high and the visual recognition performance is 

better than the acoustic one, the integrated recognition 

performance should be at least the same to or better than the 

performance of the visual-only recognition. 

7. CONCLUSIONS AND OBSERVATIONS 
The experimental results show the versatility of the Audio-visual 

speaker identification system. This paper also investigates the 

correlations between audio and visual features.  Experiment on 

the VALID database shows that the proposed strategy achieves 

the best accuracies of speaker identification at all levels of 

acoustic signal-to-noise ratio, ranging from 0dB to 30dB. The 

identification rate of this system revels that this proposed system 

can be used in various security and access control purposes. The 

performance of the system can be improved by using efficient 

speech and signal pre-processing techniques. Finally the 

performance of this proposed system can be populated according 

to the largest audio-visual speech database. 
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