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ABSTRACT 
The SVM has recently been introduced as a new learning 

technique for solving variety of real world applications based on 

learning theory. The classical RBF network has similar structure 

as SVM with Gaussian kernel. Similarly, the FNN also possess an 

identical structure with SVM. The support vector machine 

includes polynomial learning machine, radial-basis function 

network, Gaussian radial-basis function network, and two layer 

perceptron as special cases. 

  Genetic algorithm has been increasingly applied to various 

search and optimization problems in the recent past but in spite of 

its broad applicability, ease of use and global perspective, it has 

not yet been used in comparison and optimization of different 

support vector machines. In this paper attempt has been made to 

compare and optimize the rate of convergence of different SVMs 

by using the concepts of GAs and important results are worked 

out. 

General Terms 
Soft computing,  Evolutionary computation. 

Keywords 
Support vector machine, Genetic algorithm, Rate of Convergence, 
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1. INTRODUCTION 

The support vector machine is an elegant and highly principled 

learning method for the design of a FNN network with a single 

hidden layer of nonlinear units. Its derivation follows the 

principle of structural risk minimization that is rooted in VC 

dimension theory, which makes its derivation even more 

profound. As the name implies, the design of the machine hinges 

on the extraction of a subset of the training data that serves as 

support vectors and therefore represents a stable characteristic of 

the data. The support vector machine includes the polynomial 

learning machine, radial basis function network, Gaussian radial 

basis function network, and two layer perceptron as special cases. 

Although these methods provide different representations of 

intrinsic statistical regularities contained in training data, they all 

stem from a common root in a support vector  machine setting. 

Support vector machine performs structural risk minimization and 

creates a classifier with minimized VC dimension [1]. As the VC 

dimension is low, the expected probability of error is low to 
ensure a good generalization. When SVM is employed to tackle 

the problems of function approximation and regression 

estimation, it is referred as the support vector regression (SVR) 

[2]. SVR can perform high accuracy and robust properties for 

function approximation with noise [3]. Some researches have 

been done on combining SVM and FNN  and it is established that 

support Vector machines (SVMs) and Feed-forward Neural 

Networks (FNNs) are two alternative machine learning 

frameworks for classification and regression problems with 

different inductive bias and very interesting properties [4]-

[7][8][9]. 

   It is worthwhile to say that both schemes have been developed 

from very different genesis points of view, they exhibit a  number 

of elements that allow to make  a direct solutions. As a matter of 

fact, they are structurally identical, since both SVMs and FNNs 

induce a function which is expressed as a linear combination of 

simpler functions: ∑
=

+=
N

k

kk xwhbxf
1

),()( λ . In case of 

SVMs, N  is the number of support vectors, h  is the kernel 

function,
N

kkw 1}{ =    are the support vectors and 
N

kk 1}{ =λ are the 

coefficient found by the constrained optimization problem posed. 

For FNNs (fully connected with one hidden layer of units and 

output linear units), N is the number of units in the hidden 

layer, h is the activation function, N

kkw 1}{ = are the hidden layer 

weights and 
N

kk 1}{ =λ are the output-layer weights [10]. 

  As genetic algorithm is a search and optimization tool, which 

works differently compared to classical search and optimization 

method, we have made an analysis for the rate of convergence of 

different types of support vector machines using the concepts of 

genetic algorithms. 

The rest of this paper is organized as follows. Section II describes 

the brief working of the GA. The constrained optimization is 

discussed in section III. In section IV, theoretical aspects of SVM 

have been given. Section V describes experimental analysis of 

different types of SVMs.. Finally, the conclusions are summarized 

in section VI. 

2. GENETIC ALGORITHM 
Traditional optimization methods can be classified into two 

distinct groups: direct and gradient-based methods [11]. In direct 

search methods, only objective function and constraint values are 

used to guide the search strategy, whereas gradient-based methods 
use the first and /or second order derivatives of the objective 

function and/or constraints to guide the search process. That’s 
why, the direct search methods are usually slow, requiring many 

function evaluations for convergence and can also be applied to 

many problems without a major change of the algorithm. 
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On the other hand, gradient-based methods quickly converge to an 

optimal solution, but are inefficient for non-differentiable or 

discontinuous problems. In addition, traditional techniques suffer 

from some common difficulties: 

• The convergence to an optimal solution. 

• Most algorithms tend to get stuck to a suboptimal 

solution. 

• An algorithm efficient in solving one optimization 

problem may not be efficient in solving a different 

optimization problem. 

• Algorithms are not efficient in handling problems 

having discrete variables. 

• Algorithms can not be efficiently used on a parallel 

machine. 

Because of the nonlinearities and complex interactions among 
problem variables, the search space may have more than one 

optimal solution. When solving such problems, if traditional 

methods get attracted to any of locally optimal solutions, there is 

no escape. Further every traditional optimization algorithm is 

designed to solve a specific type of problems. Further, traditional 

method can not exploit the convenience provided by the parallel 

computing machine and it is fact that many complex engineering 

optimization problems require parallel computing. That’s why 

genetic algorithm shows precedence over the traditional 

optimization method. 

  Genetic algorithms are a computational model inspired by 
evolution. This algorithm encodes the substantial solutions of a 

problem in a simple chromosome like structure and then apply 

reproduction, cross-over and mutation operation in  way so as to 

preserve critical information.  

   An implementation of genetic algorithm begins with a 

population of (typically random) chromosomes. One then 

evaluates these structures and allocates reproductive. Genetic 

algorithm works with a coding of variables instead of the 

variables themselves. Binary GAs works with a discrete search 

space, even though the function may be continuous. On the other 

hand, since function values at various discrete solutions are 

required, a discrete or discontinuous function may be tackle 

during GAs. This allows GAs to be applied to a wide variety of 

problem domains. Other advantage is that GA operators exploit 

the similarities in string-structures to make an effective search. 

One of the drawbacks of using a coding is that a suitable coding 

must be chosen for proper working of a GA. Although it is 
difficult to know before hand what coding is suitable for a 

problem, a plethora of experimental studies [12] suggest that a 

coding which respects the underlying building block processing 

must be used. 

 

3. CONSTRAINED OPTIMIZATION 
Optimization is a common practice in engineering design. An 

optimal design problem having N variables is written as a 

nonlinear programming (NLP) problem, as follows: 

       Minimize )(xf  

       Subject to 

Jjxg j .,,.........2,10)( =≥  

Kkxhk .,,.........2,10)( ==  

Nixxx
u

ii

l

i ....,,........2,1
)()( =≤≤ It is 

possible to convert the constrained NLP problem to an 

unconstrained minimization problem by penalizing infeasible 

solutions. A proper choice of penalty parameters is the key aspect 

of the working of such a scheme. One thumb rule for selection of 
parameter is that they must be arranged in such a fashion that all 

penalty terms are of comparable values with themselves and with 

the objective function values. The penalty corresponding to a 

particular constraint is very large compared to that of other 

constraints; the search algorithm emphasizes solutions that do not 

violate the former constraint. This way other constraints get 

neglected and search process gets restricted in a particular way 

[13]. Actually, in most cases, most methods possess tendency of 

premature convergence to a suboptimal feasible or infeasible 

solution. It is also a common practice to normalize the constraints 

so that only one penalty parameter value can be used and the 

search and optimization  

method works much better if an approximate penalty parameter 

value is used [11, 14]. It is well known fact that GAs work with a 

population of solutions, instead of a single solution. It means a 

better penalty approach can be used and it also exploits the ability 

to have pair-wise comparison in tournament selection operator.  

Fig.1 shows a unconstrained single-variable function 

)(xf which has a minimum solution in the infeasible region. 

 

 

Fig.1 Constraint handling scheme. Five circles are solutions in a 

GA population. 

The fitness )(xF of any infeasible or feasible solution is defined 

as follows: 
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
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The parameter maxf is the maximum function value of all feasible 

solutions in the population. The objective function )(xf , the 
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constraint violation )(xg , and the fitness function )(xF  are 

shown in the figure. It is important to note that )()( xfxF = in 

the feasible region. When tournament selection operator is applied 

to such a fitness function )(xF , all the require criteria will be 

satisfied and search algorithm will proceed towards the feasible 

region. The figure also illustrates how the fitness value of five 

arbitrary solutions will be calculated. Thus, it is obvious that 

under this constraint handling scheme the fitness value of 

infeasible solutions may change from one generation to another, 

but contrary to this, the fitness value of a feasible solution will 

always be the same. Moreover, the tournament selection does not 

depend on the exact fitness function values, rather their relative 

difference is important; any arbitrary penalty parameter will work 

the same way. As a matter of fact, any explicit penalty parameter 

is not needed. It is imperative to mention that such constraint 

handling scheme is possible without the need of a penalty 

parameter as GAs use a population of solutions and pair-wise 

comparison of solution is possible by using the tournament 

selection. 

   From the above discussion, it is explicitly clear that the rate of 

convergence will be high, if the numbers of infeasible solutions 

are less. On the other hand, higher number of infeasible solutions 

will cause a reduced rate of convergence. 

 

4. SUPPORT VECTOR MACHINE 
This section presents the basic concepts of the SVMs. For gentle 

tutorials of SVMs, we refer interested readers to [15] and [16]. 

More exhaustive treatments can be found in [17] and [18]. Let 

)},(),......,,{( 11 ll yxyx }1,1{ −+×⊂ nR be a training set. The SVM 

learning approach attempts to find a canonical 

hyperplane },,0),(:{ RbRwbxwRx nn ∈∈=+∈ that 

maximally separates two classes of training samples. Here,(.,.) is 

an inner product in 
nR . The corresponding decision function (or 

classifier) }1,1{: −+→nRf is then given 

by ).),sgn(()( bxwxf +=  

  Considering that the training set may not be linearly separable, 

the optimal decision function is found by solving the following 

quadratic program: 

( )1,..,1,0,1)),((

),(
2

1
),(min

1

libxwytosubject
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 where T

l ],.......,[ 1 ξξξ = are slack variables introduced to 

allow for the possibility of misclassification of training 

samples, 0>C is some constant. 

   Applying the Karush-Kuhn-Tucker complementarity conditions 

one can show that a w , which minimizes (1), can be written as 

∑ =

l

i iii xy
1

α . This is called the dual representation ofw . 

An jx  with nonzero jα is called a support vector. Let S  be the 

index set of support vectors, then the optimal decision function 

becomes 

( )2),(sgn)( 







+= ∑

∈Si

iii bxxyxf α

    Where the coefficient iα can be found by solving the dual 

problem of (1) 
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                                                                                               The 

decision boundary given by (2) is a hyperplane in 
nR . More 

complex decision surfaces can be generated by employing a 

nonlinear mapping FR n →:φ to map the data into a new 

feature space F (usually has dimension higher than n ), and 

finding the maximal separating hyperplane in F . It should be 

noted that in (3) ix  never appears isolated but always in the form 

of inner product ),( ji xx . This implies that there is no need to 

evaluate the nonlinear mappingφ as long as we know the inner 

product in F for any given
nRzx ∈, . So for computational 

purposes, instead of defining FR n →:φ explicitly, a 

function RRRK nn →×: is introduced to directly define an 

inner product in F . Such a function K  is also called the Mercer 

kernel [1] [17] [18]. Substituting ),( ji xxK for ),( ji xx in (3) 

produces a new optimization problem 
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Table.1 Number of generation required for different SVM 
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Solving (4) forα gives a decision function of the form 

( )5),(sgn)( 







+= ∑

∈Si

iii bxxKyxf α                               

whose decision boundary is a hyperplane in F , and translates to 

nonlinear boundaries in the original space. Several techniques of 

solving quadratic programming problems arising in SVM 

algorithms are described in [19],[20], and [21]. Details of 

calculatingb  can be found in [22]. 

5. EXPERIMENTAL RESULTS 
 

In order to evaluate the performance of the proposed SVMs, 

experiments have been conducted on MatLab7 and different 

results are worked out pertaining to convergence of different 

support vector machines. The learning curves for these SVMs are 

shown in Fig.2. 

5.1 Radial Basis Function 

The radial-basis function 









−−=

2

2
2

1
exp i

i

xxy
σ

can be 

considered as a   Green’s   function    whose characteristic for a 

specified centre ix will be precluded only by the form of 

stabilizer D . 

  In case, when the form of stabilizer D is translationally 

invariant, the Green’s function centered at ix  will 

be )( ixxG − dependent i.e. the difference between the 

argument x and ix . On the other hand, a translationally and 

rotationally invariant stabilizer D  will bound the Green’s 

function to depend only on the  euclidean norm of the difference 

vector, i.e. ( )ixxG − . Here iσ denotes the width of radial-

basis function. To simplify matters, the condition σσ =i  for 

all i is often imposed. Even though RBF networks thus designed 
are of a somewhat restricted kind, they are still universal 

approximators [23]. Table-III shows the area under the infeasible 

portion of the learning curve of Fig. (2a). It is explicit from the 

data recorded in the table that for a constant centre value of the 

function,  area below the infeasible portion of curve will increase 

as σ increases, which in turn,  produces a decrease in the rate of  

 convergence. On the other hand, if σ is taken as a constant, an 

increase in centre will lead an increase in the rate of convergence.                                                

 

5.2 Gaussian Function 

Gaussian function is a function of the form 
2

2

2

)(

)( σ

ax

bexf

−−

=     

for some real constants 0,,0 >> σab . The graph of a 

Gaussian is a characteristic symmetric “bell curve” shape that 

quickly falls off towards plus/minus infinity. The parameterb  is 

height of curve  

                                                                                                                        

Table.2 Standard parameter set used for convergence analysis 
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SVM 

           Inner product    

kernel 
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tion 

for 

Converg 

ence 

Polynomial           PT XX )1( +  57 

RBF 
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17 

Two Layer 

Perceptron 
)tanh( 10 ββ += i

T
XXy  100 

Parameter Value 

Population size Pop_size=20 

Stopping criteria Generation=100 

Fitness normalization Rank 

Selection operator 
Stochastic 

uniform 

Elitism Elit=2 

Crossover 
Pc=0.8 

Scattered 

Mutation 

Scale=1.0 

Shrink=1.0 

Gaussian 
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Fig.2 (a) Learning curve for Radial Basis Function 
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Fig.2 (b) Learning curve for Two-Layer Perceptron 

 

Fig.2(c) Learning curve for Polynomial Kernel 
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Fig.2 (d) Learning curve for GaussianKernel 

peak, a is the position of the centre of the peak, and σ controls 

the width of the “bell”. Gaussian functions have wide applications 

e.g. in statistics they describe the normal distribution. Similarly, 
in signal processing they serve to define Gaussian filters. The 

integral of the Gaussian function is called “error function”. Taking 

the Fourier transform of a Gaussian function with 

parameter 0, =ba and σ yields another Gaussian function with 

parameters 0,, =ab σ     and σ/1  .  So in particular the 

Gaussian functions with 0=a and 1=σ  are kept fixed by the 

Fourier transforms. Gaussian functions centered at zero minimize 

the Fourier uncertain principle. The product of two Gaussian 

functions is again a Gaussian, and the convolution of two 

Gaussian functions is again a Gaussian. 

It has been observed from the area under the infeasible portion of 

the learning curve Fig.2 (d) that for a constant value ofa , the rate 

of convergence will increase as the value of σ increases. On the 

other hand, if σ is kept constant and a  is an increase, the area 

under the infeasible portion of the learning curve will also be 
increase and thus, cause a decrease in rate of convergence. 

5.3 Two-Layer Perceptron 
Two-Layer Perceptron can be applied to solve difficult and 

diverse problems by training them in a supervised manner with a 

highly popular algorithm known as the error back propagation 

algorithm. In a two-layer perceptron , the model of each neuron in 

the network includes a nonlinear activation function and the 

nonlinearity is smooth. The network contains layers of hidden 

neurons that are not part of the input or output of the network. 
These hidden neurons enable the network to learn complex tasks 

by extracting progressively more meaningful features from the 

input patterns. The network exhibits a high degree of connectivity 

which is determined by the synapses of the network. Further, a 

change in the connectivity of the network requires a change in the 

population of synaptic connections or their weights. Due to these 

characteristics two-layer perceptron are also responsible for the 

deficiencies in our present state of knowledge on the behavior of 

the network. Owing to presence of a distributed form of 

nonlinearity and the high connectivity of the network, the 

theoretical analysis of a two-layer perceptron is difficult to 

undertake. Further, the use of hidden layers makes the 
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visualization of learning process difficult. The learning process is 
therefore made more difficult because the search has to be 

conducted in a much larger space of possible functions, and a 

choice has to be made between alternative representations of the 

input patterns [24]. Table.4 shows an increase in the number of 
infeasible solutions as

10 & ββ increase (because area under the 

infeasible portion of the curve increases) rate of convergence will 
decrease. On the other hand, a reduced values of 

10 & ββ increases the rate of convergence. When two-layer 

perceptron is experimented on MatLab7 by using “gatool”, its 

convergence shows an oscillating pattern Fig.3 (d).  It is also  

 

Table.3 Area under the learning curve containing infeasible solutions for RBF and Gaussian

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.4 Area under the learning curve containing infeasible solutions for Polynomial and Two-Layer Perceptron 
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S.No. σ  
Centre 

ix  
Area σ  

Centre 

ix  
Area σ  a  Area σ  a  Area 

1 2 2 
6.4117e-

012 
2 2 

6.4117e-

012 
2 2 0.8413 2 2 0.8413 

2 4 2 0.0019 2 3 
2.0106e-

010 
3 2 0.7475 2 3 0.9332 

3 6 2 0.0840 2 4 
4.9345e-

009 
4 2 0.6912 2 4 0.9772 

4 8 2 0.3193 2 5 
9.4835e-

008 
5 2 0.6529 2 5 0.9938 

5 10 2 0.5942 2 6 
1.4283e-

006 
6 2 0.6207 2 6 0.9986 

        pT xx )1( +              )tanh( 10 ββ += i

T xxy  

S.No. p  Area        
0β         

1β         Area 

1 2 
6.4365e+00

5 
0.25 2/3 1.4703 

2 3 
1.8474e+00

8 
1 2 1.9773 

3 4 
5.7623e+01

0 
2 3 1.9978 

4 5 
1.8905e+01

3 
3 4 1.9998 

5 6 
6.4142e+01

5 
4 5 2.0000 
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(b) Polynomial                                                              (d) Two Layer Perceptron 

 

                                  Fig.3. Convergence of different SVM as shown by 7MATLabofgatool        

 

 

 

explicit from he fig(3) that the rate of convergence of two-layer 
perceptron is very much less than RBF and Gaussian networks. 

5.4 Polynomial 

A polynomial mapping is a popular method for non-linear 

modeling. It is of the two types (a) homogeneous 

i.e.,
pxxxxK )',()',( = and (b)Nonhomogeneous i.e., 

pxxxxK )'.1()',( += . The second kernel is usually 

preferable as it avoids problems with hessian becoming zero. 
Polynomial support vector machines have shown a competitive 

performance for the problems of pattern recognition. However, 

there is a large gap in performance vs. computing resources 

between the linear and quadratic approaches. Taking into account 

the fitness of a given learning set, the support vector machine 

minimizes the so called structural risk in order to reach robust 

generalization for unseen sample.Table4 shows that the rate of 

convergence of a polynomial SVM decreases as degree increases. 

6. CONCLUSION 
In this paper, a genetic algorithm based method for comparison of 

rate of convergence of different SVMs has been proposed. First, it 

is discussed that the rate of convergence will be high if the 

numbers of infeasible solutions are less. For this purpose, the 
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areas below the learning curve, containing the infeasible solutions 

have been calculated. It is observed that the rate of convergence is 
maximum for radial-basis function. Further, it has also been 

analyzed that rate of convergence decreases asσ increase. An 

increase in value of ix will cause increase in convergence rate. 

Similarly, for Gaussian function the rate of convergence will be 

slightly less than the RBF and its rate of convergence increases as 

σ increases but decreases with increase in a . The convergence 

analysis of two-layer perceptron shows oscillating pattern. Its rate 

of convergence is less than the Gaussian and increased values of 

10 & ββ cause decrease in rate of convergence. Lastly, in 

polynomial SVM, the rate of convergence decreases as degree of 

polynomial increases. The convergence of proposed SVMs is also 

tested on MATLAB7 using “gatool” with different set of 

parameters. The results obtained are analogous to theoretical 

analysis.  
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