
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

34

Genetic Algorithm Based Comparison of Different SVM

Subhash Chandra Pandey
Department of Computer Science

Birla Institute of Technology, Ranchi-Allahabad Campus
B-7, Industrial Area, Naini,

Allahabad-211010, India

G.C. Nandi
Indian Institute of Information Technology

Deoghat, Jhalwa

Allahabad-211012 India

ABSTRACT
The SVM has recently been introduced as a new learning

technique for solving variety of real world applications based on

learning theory. The classical RBF network has similar structure

as SVM with Gaussian kernel. Similarly, the FNN also possess an

identical structure with SVM. The support vector machine

includes polynomial learning machine, radial-basis function

network, Gaussian radial-basis function network, and two layer

perceptron as special cases.

 Genetic algorithm has been increasingly applied to various

search and optimization problems in the recent past but in spite of

its broad applicability, ease of use and global perspective, it has

not yet been used in comparison and optimization of different

support vector machines. In this paper attempt has been made to

compare and optimize the rate of convergence of different SVMs

by using the concepts of GAs and important results are worked

out.

General Terms
Soft computing, Evolutionary computation.

Keywords
Support vector machine, Genetic algorithm, Rate of Convergence,

Learning.

1. INTRODUCTION

The support vector machine is an elegant and highly principled

learning method for the design of a FNN network with a single

hidden layer of nonlinear units. Its derivation follows the

principle of structural risk minimization that is rooted in VC

dimension theory, which makes its derivation even more

profound. As the name implies, the design of the machine hinges

on the extraction of a subset of the training data that serves as

support vectors and therefore represents a stable characteristic of

the data. The support vector machine includes the polynomial

learning machine, radial basis function network, Gaussian radial

basis function network, and two layer perceptron as special cases.

Although these methods provide different representations of

intrinsic statistical regularities contained in training data, they all

stem from a common root in a support vector machine setting.

Support vector machine performs structural risk minimization and

creates a classifier with minimized VC dimension [1]. As the VC

dimension is low, the expected probability of error is low to
ensure a good generalization. When SVM is employed to tackle

the problems of function approximation and regression

estimation, it is referred as the support vector regression (SVR)

[2]. SVR can perform high accuracy and robust properties for

function approximation with noise [3]. Some researches have

been done on combining SVM and FNN and it is established that

support Vector machines (SVMs) and Feed-forward Neural

Networks (FNNs) are two alternative machine learning

frameworks for classification and regression problems with

different inductive bias and very interesting properties [4]-

[7][8][9].

 It is worthwhile to say that both schemes have been developed

from very different genesis points of view, they exhibit a number

of elements that allow to make a direct solutions. As a matter of

fact, they are structurally identical, since both SVMs and FNNs

induce a function which is expressed as a linear combination of

simpler functions: ∑
=

+=
N

k

kk xwhbxf
1

),()(λ . In case of

SVMs, N is the number of support vectors, h is the kernel

function,
N

kkw 1}{ = are the support vectors and
N

kk 1}{ =λ are the

coefficient found by the constrained optimization problem posed.

For FNNs (fully connected with one hidden layer of units and

output linear units), N is the number of units in the hidden

layer, h is the activation function, N

kkw 1}{ = are the hidden layer

weights and
N

kk 1}{ =λ are the output-layer weights [10].

 As genetic algorithm is a search and optimization tool, which

works differently compared to classical search and optimization

method, we have made an analysis for the rate of convergence of

different types of support vector machines using the concepts of

genetic algorithms.

The rest of this paper is organized as follows. Section II describes

the brief working of the GA. The constrained optimization is

discussed in section III. In section IV, theoretical aspects of SVM

have been given. Section V describes experimental analysis of

different types of SVMs.. Finally, the conclusions are summarized

in section VI.

2. GENETIC ALGORITHM
Traditional optimization methods can be classified into two

distinct groups: direct and gradient-based methods [11]. In direct

search methods, only objective function and constraint values are

used to guide the search strategy, whereas gradient-based methods
use the first and /or second order derivatives of the objective

function and/or constraints to guide the search process. That’s
why, the direct search methods are usually slow, requiring many

function evaluations for convergence and can also be applied to

many problems without a major change of the algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

35

On the other hand, gradient-based methods quickly converge to an

optimal solution, but are inefficient for non-differentiable or

discontinuous problems. In addition, traditional techniques suffer

from some common difficulties:

• The convergence to an optimal solution.

• Most algorithms tend to get stuck to a suboptimal

solution.

• An algorithm efficient in solving one optimization

problem may not be efficient in solving a different

optimization problem.

• Algorithms are not efficient in handling problems

having discrete variables.

• Algorithms can not be efficiently used on a parallel

machine.

Because of the nonlinearities and complex interactions among
problem variables, the search space may have more than one

optimal solution. When solving such problems, if traditional

methods get attracted to any of locally optimal solutions, there is

no escape. Further every traditional optimization algorithm is

designed to solve a specific type of problems. Further, traditional

method can not exploit the convenience provided by the parallel

computing machine and it is fact that many complex engineering

optimization problems require parallel computing. That’s why

genetic algorithm shows precedence over the traditional

optimization method.

 Genetic algorithms are a computational model inspired by
evolution. This algorithm encodes the substantial solutions of a

problem in a simple chromosome like structure and then apply

reproduction, cross-over and mutation operation in way so as to

preserve critical information.

 An implementation of genetic algorithm begins with a

population of (typically random) chromosomes. One then

evaluates these structures and allocates reproductive. Genetic

algorithm works with a coding of variables instead of the

variables themselves. Binary GAs works with a discrete search

space, even though the function may be continuous. On the other

hand, since function values at various discrete solutions are

required, a discrete or discontinuous function may be tackle

during GAs. This allows GAs to be applied to a wide variety of

problem domains. Other advantage is that GA operators exploit

the similarities in string-structures to make an effective search.

One of the drawbacks of using a coding is that a suitable coding

must be chosen for proper working of a GA. Although it is
difficult to know before hand what coding is suitable for a

problem, a plethora of experimental studies [12] suggest that a

coding which respects the underlying building block processing

must be used.

3. CONSTRAINED OPTIMIZATION
Optimization is a common practice in engineering design. An

optimal design problem having N variables is written as a

nonlinear programming (NLP) problem, as follows:

 Minimize)(xf

 Subject to

Jjxg j .,,.........2,10)(=≥

Kkxhk .,,.........2,10)(==

Nixxx
u

ii

l

i,,........2,1
)()(=≤≤ It is

possible to convert the constrained NLP problem to an

unconstrained minimization problem by penalizing infeasible

solutions. A proper choice of penalty parameters is the key aspect

of the working of such a scheme. One thumb rule for selection of
parameter is that they must be arranged in such a fashion that all

penalty terms are of comparable values with themselves and with

the objective function values. The penalty corresponding to a

particular constraint is very large compared to that of other

constraints; the search algorithm emphasizes solutions that do not

violate the former constraint. This way other constraints get

neglected and search process gets restricted in a particular way

[13]. Actually, in most cases, most methods possess tendency of

premature convergence to a suboptimal feasible or infeasible

solution. It is also a common practice to normalize the constraints

so that only one penalty parameter value can be used and the

search and optimization

method works much better if an approximate penalty parameter

value is used [11, 14]. It is well known fact that GAs work with a

population of solutions, instead of a single solution. It means a

better penalty approach can be used and it also exploits the ability

to have pair-wise comparison in tournament selection operator.

Fig.1 shows a unconstrained single-variable function

)(xf which has a minimum solution in the infeasible region.

Fig.1 Constraint handling scheme. Five circles are solutions in a

GA population.

The fitness)(xF of any infeasible or feasible solution is defined

as follows:







+

∈∀≥
=

∑ =

J

j j

j

otherwisexgf

Jjxgifxf
xF

1max))((

,,0)()(
)(

The parameter maxf is the maximum function value of all feasible

solutions in the population. The objective function)(xf , the

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

36

constraint violation)(xg , and the fitness function)(xF are

shown in the figure. It is important to note that)()(xfxF = in

the feasible region. When tournament selection operator is applied

to such a fitness function)(xF , all the require criteria will be

satisfied and search algorithm will proceed towards the feasible

region. The figure also illustrates how the fitness value of five

arbitrary solutions will be calculated. Thus, it is obvious that

under this constraint handling scheme the fitness value of

infeasible solutions may change from one generation to another,

but contrary to this, the fitness value of a feasible solution will

always be the same. Moreover, the tournament selection does not

depend on the exact fitness function values, rather their relative

difference is important; any arbitrary penalty parameter will work

the same way. As a matter of fact, any explicit penalty parameter

is not needed. It is imperative to mention that such constraint

handling scheme is possible without the need of a penalty

parameter as GAs use a population of solutions and pair-wise

comparison of solution is possible by using the tournament

selection.

 From the above discussion, it is explicitly clear that the rate of

convergence will be high, if the numbers of infeasible solutions

are less. On the other hand, higher number of infeasible solutions

will cause a reduced rate of convergence.

4. SUPPORT VECTOR MACHINE
This section presents the basic concepts of the SVMs. For gentle

tutorials of SVMs, we refer interested readers to [15] and [16].

More exhaustive treatments can be found in [17] and [18]. Let

)},(),......,,{(11 ll yxyx }1,1{ −+×⊂ nR be a training set. The SVM

learning approach attempts to find a canonical

hyperplane },,0),(:{ RbRwbxwRx nn ∈∈=+∈ that

maximally separates two classes of training samples. Here,(.,.) is

an inner product in
nR . The corresponding decision function (or

classifier) }1,1{: −+→nRf is then given

by).),sgn(()(bxwxf +=

 Considering that the training set may not be linearly separable,

the optimal decision function is found by solving the following

quadratic program:

()1,..,1,0,1)),((

),(
2

1
),(min

1

libxwytosubject

Cwwwjimize

iiii

l

i

i

=≥−≥+

+= ∑
=

ξξ

ξξ

 where T

l],.......,[1 ξξξ = are slack variables introduced to

allow for the possibility of misclassification of training

samples, 0>C is some constant.

 Applying the Karush-Kuhn-Tucker complementarity conditions

one can show that a w , which minimizes (1), can be written as

∑ =

l

i iii xy
1

α . This is called the dual representation ofw .

An jx with nonzero jα is called a support vector. Let S be the

index set of support vectors, then the optimal decision function

becomes

()2),(sgn)(







+= ∑

∈Si

iii bxxyxf α

 Where the coefficient iα can be found by solving the dual

problem of (1)

()30

,,....,1,0

),(
2

1
)(max

1

1,1

∑

∑∑

=

==

=

=≥≥

−=

l

i

ii

i

l

ji

jijiji

l

i

i

yand

liCtosubject

xxyyWimize

α

α

αααα

 The

decision boundary given by (2) is a hyperplane in
nR . More

complex decision surfaces can be generated by employing a

nonlinear mapping FR n →:φ to map the data into a new

feature space F (usually has dimension higher than n), and

finding the maximal separating hyperplane in F . It should be

noted that in (3) ix never appears isolated but always in the form

of inner product),(ji xx . This implies that there is no need to

evaluate the nonlinear mappingφ as long as we know the inner

product in F for any given
nRzx ∈, . So for computational

purposes, instead of defining FR n →:φ explicitly, a

function RRRK nn →×: is introduced to directly define an

inner product in F . Such a function K is also called the Mercer

kernel [1] [17] [18]. Substituting),(ji xxK for),(ji xx in (3)

produces a new optimization problem

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

37

Table.1 Number of generation required for different SVM

()40

,,....,1,0

),(
2

1
)(max

1

1,1

∑

∑∑

=

==

=

=≥≥

−=

l

i

ii

i

l

ji

jijiji

l

i

i

yand

liCtosubject

xxKyyWimize

α

α

αααα

Solving (4) forα gives a decision function of the form

()5),(sgn)(







+= ∑

∈Si

iii bxxKyxf α

whose decision boundary is a hyperplane in F , and translates to

nonlinear boundaries in the original space. Several techniques of

solving quadratic programming problems arising in SVM

algorithms are described in [19],[20], and [21]. Details of

calculatingb can be found in [22].

5. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed SVMs,

experiments have been conducted on MatLab7 and different

results are worked out pertaining to convergence of different

support vector machines. The learning curves for these SVMs are

shown in Fig.2.

5.1 Radial Basis Function

The radial-basis function 









−−=

2

2
2

1
exp i

i

xxy
σ

can be

considered as a Green’s function whose characteristic for a

specified centre ix will be precluded only by the form of

stabilizer D .

 In case, when the form of stabilizer D is translationally

invariant, the Green’s function centered at ix will

be)(ixxG − dependent i.e. the difference between the

argument x and ix . On the other hand, a translationally and

rotationally invariant stabilizer D will bound the Green’s

function to depend only on the euclidean norm of the difference

vector, i.e. ()ixxG − . Here iσ denotes the width of radial-

basis function. To simplify matters, the condition σσ =i for

all i is often imposed. Even though RBF networks thus designed
are of a somewhat restricted kind, they are still universal

approximators [23]. Table-III shows the area under the infeasible

portion of the learning curve of Fig. (2a). It is explicit from the

data recorded in the table that for a constant centre value of the

function, area below the infeasible portion of curve will increase

as σ increases, which in turn, produces a decrease in the rate of

 convergence. On the other hand, if σ is taken as a constant, an

increase in centre will lead an increase in the rate of convergence.

5.2 Gaussian Function

Gaussian function is a function of the form
2

2

2

)(

)(σ

ax

bexf

−−

=

for some real constants 0,,0 >> σab . The graph of a

Gaussian is a characteristic symmetric “bell curve” shape that

quickly falls off towards plus/minus infinity. The parameterb is

height of curve

Table.2 Standard parameter set used for convergence analysis

Types of

SVM

 Inner product

kernel

genera

tion

for

Converg

ence

Polynomial PT XX)1(+ 57

RBF








 −−
2

22

1
exp iXX

σ

15

Gaussian
 2

2

2

)(

2
2

1 σ

πσ

ax

ey

−−

=

17

Two Layer

Perceptron
)tanh(10 ββ += i

T
XXy 100

Parameter Value

Population size Pop_size=20

Stopping criteria Generation=100

Fitness normalization Rank

Selection operator
Stochastic

uniform

Elitism Elit=2

Crossover
Pc=0.8

Scattered

Mutation

Scale=1.0

Shrink=1.0

Gaussian

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

38

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

x 10
12

x

Radial Basis Function

y

Fig.2 (a) Learning curve for Radial Basis Function

0 2 4 6 8 10 12 14 16 18 20
0.995

0.996

0.997

0.998

0.999

1

1.001

x

y

Two Layer Perceptron

Fig.2 (b) Learning curve for Two-Layer Perceptron

Fig.2(c) Learning curve for Polynomial Kernel

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

y

Gaussian

Fig.2 (d) Learning curve for GaussianKernel

peak, a is the position of the centre of the peak, and σ controls

the width of the “bell”. Gaussian functions have wide applications

e.g. in statistics they describe the normal distribution. Similarly,
in signal processing they serve to define Gaussian filters. The

integral of the Gaussian function is called “error function”. Taking

the Fourier transform of a Gaussian function with

parameter 0, =ba and σ yields another Gaussian function with

parameters 0,, =ab σ and σ/1 . So in particular the

Gaussian functions with 0=a and 1=σ are kept fixed by the

Fourier transforms. Gaussian functions centered at zero minimize

the Fourier uncertain principle. The product of two Gaussian

functions is again a Gaussian, and the convolution of two

Gaussian functions is again a Gaussian.

It has been observed from the area under the infeasible portion of

the learning curve Fig.2 (d) that for a constant value ofa , the rate

of convergence will increase as the value of σ increases. On the

other hand, if σ is kept constant and a is an increase, the area

under the infeasible portion of the learning curve will also be
increase and thus, cause a decrease in rate of convergence.

5.3 Two-Layer Perceptron
Two-Layer Perceptron can be applied to solve difficult and

diverse problems by training them in a supervised manner with a

highly popular algorithm known as the error back propagation

algorithm. In a two-layer perceptron , the model of each neuron in

the network includes a nonlinear activation function and the

nonlinearity is smooth. The network contains layers of hidden

neurons that are not part of the input or output of the network.
These hidden neurons enable the network to learn complex tasks

by extracting progressively more meaningful features from the

input patterns. The network exhibits a high degree of connectivity

which is determined by the synapses of the network. Further, a

change in the connectivity of the network requires a change in the

population of synaptic connections or their weights. Due to these

characteristics two-layer perceptron are also responsible for the

deficiencies in our present state of knowledge on the behavior of

the network. Owing to presence of a distributed form of

nonlinearity and the high connectivity of the network, the

theoretical analysis of a two-layer perceptron is difficult to

undertake. Further, the use of hidden layers makes the

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18
x 10

4

x

y

Polynomial

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

39

visualization of learning process difficult. The learning process is
therefore made more difficult because the search has to be

conducted in a much larger space of possible functions, and a

choice has to be made between alternative representations of the

input patterns [24]. Table.4 shows an increase in the number of
infeasible solutions as

10 & ββ increase (because area under the

infeasible portion of the curve increases) rate of convergence will
decrease. On the other hand, a reduced values of

10 & ββ increases the rate of convergence. When two-layer

perceptron is experimented on MatLab7 by using “gatool”, its

convergence shows an oscillating pattern Fig.3 (d). It is also

Table.3 Area under the learning curve containing infeasible solutions for RBF and Gaussian

Table.4 Area under the learning curve containing infeasible solutions for Polynomial and Two-Layer Perceptron









−−

=
2

22

1
ixx

ey σ
 2

2

2

)(

22

1 σ

πσ

ax

ey

−−

=

S.No. σ
Centre

ix
Area σ

Centre

ix
Area σ a Area σ a Area

1 2 2
6.4117e-

012
2 2

6.4117e-

012
2 2 0.8413 2 2 0.8413

2 4 2 0.0019 2 3
2.0106e-

010
3 2 0.7475 2 3 0.9332

3 6 2 0.0840 2 4
4.9345e-

009
4 2 0.6912 2 4 0.9772

4 8 2 0.3193 2 5
9.4835e-

008
5 2 0.6529 2 5 0.9938

5 10 2 0.5942 2 6
1.4283e-

006
6 2 0.6207 2 6 0.9986

 pT xx)1(+)tanh(10 ββ += i

T xxy

S.No. p Area
0β

1β Area

1 2
6.4365e+00

5
0.25 2/3 1.4703

2 3
1.8474e+00

8
1 2 1.9773

3 4
5.7623e+01

0
2 3 1.9978

4 5
1.8905e+01

3
3 4 1.9998

5 6
6.4142e+01

5
4 5 2.0000

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

40

0 20 40 60 80 100 120

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

generation

Best, Worst, and Mean Scores

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation

Best, Worst, and Mean Scores

(a) Gaussian (c) Radial-Basis Function

0 10 20 30 40 50 60
0

50

100

150

200

250

generation

Best, Worst, and Mean Scores

0 10 20 30 40 50 60 70 80 90 100
0.995

0.996

0.997

0.998

0.999

1

1.001

generation

Best, Worst, and Mean Scores

(b) Polynomial (d) Two Layer Perceptron

 Fig.3. Convergence of different SVM as shown by 7MATLabofgatool

explicit from he fig(3) that the rate of convergence of two-layer
perceptron is very much less than RBF and Gaussian networks.

5.4 Polynomial

A polynomial mapping is a popular method for non-linear

modeling. It is of the two types (a) homogeneous

i.e.,
pxxxxK)',()',(= and (b)Nonhomogeneous i.e.,

pxxxxK)'.1()',(+= . The second kernel is usually

preferable as it avoids problems with hessian becoming zero.
Polynomial support vector machines have shown a competitive

performance for the problems of pattern recognition. However,

there is a large gap in performance vs. computing resources

between the linear and quadratic approaches. Taking into account

the fitness of a given learning set, the support vector machine

minimizes the so called structural risk in order to reach robust

generalization for unseen sample.Table4 shows that the rate of

convergence of a polynomial SVM decreases as degree increases.

6. CONCLUSION
In this paper, a genetic algorithm based method for comparison of

rate of convergence of different SVMs has been proposed. First, it

is discussed that the rate of convergence will be high if the

numbers of infeasible solutions are less. For this purpose, the

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

41

areas below the learning curve, containing the infeasible solutions

have been calculated. It is observed that the rate of convergence is
maximum for radial-basis function. Further, it has also been

analyzed that rate of convergence decreases asσ increase. An

increase in value of ix will cause increase in convergence rate.

Similarly, for Gaussian function the rate of convergence will be

slightly less than the RBF and its rate of convergence increases as

σ increases but decreases with increase in a . The convergence

analysis of two-layer perceptron shows oscillating pattern. Its rate

of convergence is less than the Gaussian and increased values of

10 & ββ cause decrease in rate of convergence. Lastly, in

polynomial SVM, the rate of convergence decreases as degree of

polynomial increases. The convergence of proposed SVMs is also

tested on MATLAB7 using “gatool” with different set of

parameters. The results obtained are analogous to theoretical

analysis.

7. REFERENCES
[1] N. Cristianini and J.Showe-Tayler, An Introduction to

support vector machine and other kernel based learning

methods, Cambridge University Press,2000.

[2] V.Vapnik, S. Golowich, and A.J. Smola,Support vector

method for function approximation,regression estimation,

and signal processing, in neural information processing

systems, Cambridge,MA:MIT press,vol.99,1997.

[3] C.C. Chuang, S.F.Su,, J.T. Jeng, and C.C.Hsiao, Robust

support vector regression network for function

approximation with outlier, IEEE Trans.neural

networks,vol.13, Nov.2002,pp. 1322-1330.

[4] J.H. Chiang, and P.Y. Hao, Support vector learning

mechanism for fuzzy rule-based modeling: a new approach.,

IEEE Trans.Fuzzysyst.vol.2,Feb-2004,pp.1-12.

[5] S.Sohn and C.H. Dagli, Advantages of using fuzzy class

memberships in self-organising map and support vector

machines, Proc international joint conference on neural

networks (IJCNN’01),vol.3, july 2001,pp.1886-1890.

[6] Z.Sun and Y.Sun,Fuzzy support vector machine for

regression estimation, IEEE international conference on

systems, man, and cybernetics (SMC’03),vol.4, oct

2003,pp.3336-3341.

[7] C.F. Lin and S.D. Wang, Fuzzy support vector machines,

IEEE Trans. Neural networks, vol.13,March 2002,pp.464-

471.

[8] Bishop, C.M.: Neural networks for pattern recognition,

Oxford univ. press inc., New York, 1995.

[9] Vapnik,V.N,The nature of statistical learning

theory,springer-verlag,1995.

[10] E. Romero and D. Toppo, Comparing support vector

machines and feed-forward neural networks with similar

parameters, springer-verlag, 2006, pp.90-98.

[11] K.Deb, Optimization for engineering design:algorithms and

examples,Delhi:Prentice-Hall, 1995

[12] T. Back, D.Fogel and Z. Michalewiez, (Eds.), Handbook of

evolutionary computation, Institute of physics publishing and

oxford university press, New York, 1997.

[13] K.Deb, An introduction to genetic algorithm, IIT, Kanpur,

India [online].

[14] K. Deb and M.Goel, A robust optimization procedure for

mechanical component design based on genetic adaptive

search, ASME journal of mechanical design (In press).

[15] C.L. Blake and C.J. Merz,UCI repository of machine

learning databases. Dept. informs. Comput. Sc., Univ.
California, Irvine, Irvine, C.A.

[Online}.Available:http://www.ics.uci.edu/~mlearn/ML.Rep

ository,1998.

[16] K.R. Miller, S. Mika, G. Ratsch, K. Tsuda, and B.

Scholkopf, An introduction to kernel based learning

algorithms, IEEE Trans. neural networks, vol.12,,Apr. 2001,

pp. 181-202.

[17] V. Vapnik, The nature of statistical learning theory, New

york: Springer-verlog, 1995.

[18] V. Vapnik, Statistical learning theory, New York:,Weley,

1998.

[19]] T. Joachims, Making large scale SVM learning practical,

Advances in kernel methods support vector learning, B.

Scholkopf, C.J.C. Burges, and A.J. Smola, Eds, Cambridge,

MA: MIT Press, 1999, pp. 169-184.

[20] L. Kaufman, Solving the quadratic programming problem

arising in support vector classification, Advances in kernel

methods-support vector learning. B.Schdkopf, C.J.C. Burges,

and A.J. Smola, Eds. Cambridge, MA:MIT

Press,1999,pp.147-167.

[21] J.C. Platt, Fast training of support vector machines using

sequential minimal optimization, Advances in kernel

methods-support vector learning, B. Scholkopf, C.J.C.

Burges, and A.J. Smola, Eds. Cambridge, MA: MIT Press,

1999, pp. 185-208.

[22] C.C. Chang and C.J. Lin, LBSVM: A library for support

vector machines, Taiwan [Online], Available:

http://www.csie.ntu.edu.tw/~cjlin/libsvm[[[23] Park and

Sandberg, Universal approximation using radial basis

function networks, neural computation,vol.3(2), 1991,pp.

246-257.

[23] Park and Sandberg, Universal approximation using radial

basis function networks, neural computation,vol.3(2),

1991,pp. 246-257.

[24] Hinton,G.E., Connectionistic learning procedure, Artificial

intelligence,vol.40,1989,pp.185-234.

