
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

5

Test Case Generation from Behavioral UML Models

Santosh Kumar Swain
School of Computer Engineering

KIIT University, Bhubaneswar
Orissa, India

Durga Prasad Mohapatra
Department of Computer Science & Engineering

National Institute of Technology, Rourkela
Orissa, India

ABSTRACT
We propose an integrated approach to generate test cases from UML

sequence and activity diagrams. We first transform these UML
diagrams into a graph. Then, we propose an algorithm to generate test
scenarios from the constructed graph. Next, the necessary information
for test case generation, such as method-activity sequence, associated
objects, and constraint conditions are extracted from test scenario. Our
approach reduces the number of test cases and still achieves adequate
test coverage. We achieve message-activity path coverage and category
partitioning method for each predicate conditions found in the specific

path of the design model.

Keywords

Software Testing, UML Models, Sequence diagram, Activity diagram,
Model Flow Graph, Test Sequence.

1. INTRODUCTION
Thorough software testing is necessary to produce highly reliable
systems. Quality of the end product and effective reuse of software
depend to a large extent on testing [1, 2]. Unless we can find more
efficient ways to perform effective testing, the percentage of
development costs devoted to testing will increase significantly. Testing

requires executing a program on a set of test cases and comparing the
actual results with the expected results [3]. Large systems are inherently
complex to test and require large number of test cases to be designed.
Creation of test cases is possibly the most difficult step in testing.
Developers therefore spend considerable time and effort to achieve
thorough testing. Designing a large number of test cases and carrying
out the tests turn out to be very labor-intensive and time consuming. To
reduce the testing cost and effort and to achieve better quality software,

automatic testing has become an urgent necessity. This is especially
true since program sizes and complexities are rapidly increasing.
Automatic test case generation can reduce development cost by
eliminating costly manual test case design efforts and at the same time
help increase reliability through increased test coverage. A test
adequacy criterion defines the extent to which a property that must be
tested [4, 5]. Tests that are adequate with respect to a criterion, covers
all the elements in the domain determined by the criterion.
Generating test data form high level design notations has several

advantages over code-based test case design [6]. Testing based on
design models has the advantage that the test cases remain valid even
when the code changes a little bit. Design models can be used as a basis
for test case generation, significantly reducing the costs of testing [7].
The process of generating test cases from design will help to discover
problems early in the development process and thus it saves time and
resources during development of the system. However, selection of test
cases from UML model is one of the most challenging tasks [8].

We report our work concerning automatic test case generation based on
UML sequence and activity diagrams. UML has now become the de
facto standard for object oriented modeling and design [9]. UML
models are an important source of information for test case design,
which if satisfactorily exploited, can go a long way in reducing testing

cost and effort and at the same time improve software quality [10].
UML-based automatic test generation is a practically important and
theoretically challenging topic and is receiving increasing attention
from researchers. Traditionally there have been lots of efforts to
generate test cases from UML diagrams using heuristic based
techniques such as statement-coverage, branch-coverage, message
sequence coverage etc.

In UML, the behavior of a use case can be represented by using

interaction, activity and state machine diagrams. Sequence diagrams
capture the exchange of messages between objects during execution of
a use case. It focuses on the order in which the messages are sent.
Activity diagrams, on the other hand, focus upon control flow as well as
the activity-based relationships among objects. These are very useful
for visualizing the way several objects collaborate to get a job done.
These are very useful for describing the procedural flow of control
through many objects.

In our approach, we transform the sequence and activity diagrams to an
intermediate graph. From the constructed graph, we generate different
test sequences, which represent different scenarios. From the generated
test sequences, test cases are generated, which satisfy the message-
sequence test path adequacy criteria. We focus on generating tests from
design description, as it represents a significant opportunity for testing
in a form that can easily be manipulated by automated means.

The rest of the paper is organized as follows: The next section discusses
review of relevant UML diagrams. The third section describes analysis
of related works. Section 4 defines the different testing criteria. Section
5 presents concepts, notations and terminologies with intermediate
representations of UML diagram. Section 6 describes our approach for
generating test cases from sequence and activity diagram. Section 7
illustrates a case study to measure the effectiveness of our approach.

Section 8 reports the comparison with related works. The paper
concludes with section 9.

2. RELEVANT UML DIAGRAMS
A sequence diagram shows system events for a use case. It is said to
implement a use case [11]. A sequence diagram shows the messages

that are exchanged among several objects, as well as certain control-
flow information (e.g. the order in which messages are sent and the
conditions that guard the messages). It shows the dynamic
collaborations between a certain number of objects, highlighting the
way in which a particular scenario is realized using the interactions of a

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

6

(sub)set of these objects [3]. Sequence diagrams include flows of
events during interactions, with primary flows and alternative flows.
Alternative flows represent conditional branches in the processing. In
UML, a message is a request for a service from one object to another;
these are typically implemented as method calls. Each sequence
diagram represents a complete trace of messages during the execution
of a user-level operation. Such diagrams capture important aspects of

object interactions, and can be naturally used to define testing goals that
must be achieved during testing. When a message is sent to an object, it
invokes an operation of that object. Once a message is received, the
operation that has been invoked begins to execute.

An UML activity diagram describes the sequential or concurrent
control flow between activities. Activity diagram can be used to model
the dynamic behavior of a group of objects. Activity diagrams

emphasize the activities of the object or a group of objects, so it is the
perfect one to describe the realization of the operation in the design
phase and to describe the sequence of the activities among the
involving objects in the control flow during the implementation of an
operation. It also describes the relationship between the activity and the
object in the message flow, the state change of object in the object flow
at the time of execution of activity [12]. Use cases are often
supplemented with activity diagrams if the control structure of the use

case includes loops or branches. The use of activity diagrams allows
defining a coverage criterion to ensure a particular degree of
completeness of the test scenarios. This diagram is able to reflect all
possible scenarios for one use case.

3. RELATED WORK
Trung D.Trong [13] proposed a systematic approach to testing design

models described by UML class diagrams, sequence diagrams and
activity diagrams and also test adequacy criteria for those diagrams.
These criteria are presented as a general discussion and not explicitly
defined. They suggested all edge criterions which require every activity
edge of an activity diagram to be covered during testing.

Pilskalns et al. [14] propose a graph-based approach to combine the
information from class diagrams and sequence diagrams. In this

approach, each sequence diagram is transformed into an Object-
Method Directed Acyclic Graph (OMDAG). The OMDAG can be used
to derive test execution paths and their corresponding conditions, which
are recorded in a table called the Object-Method Execution Table
(OMET).

Ghose et al [4] propose a graph-based approach to combine the
information from class and sequence diagrams. In their approach, the

relevant information are integrated into a Variable Assignment Graph
(VAG). The VAG is used to derive test input that satisfies the test
adequacy criteria.

Linzhang et al. [12] propose a method to automatically generate test
cases from UML activity diagrams using a gray-box method. In their
method they generate test cases directly from UML activity diagrams.
Their proposed method exploits the advantage of black box testing to

analyze the expected external behavior and white box testing to cover
the internal structure of the activity diagram of the system under test to
generate test cases. Basanieri and Bertolino [3] define a testing
approach that considers all message sequences in a sequence diagram
and apply the category-partition method to choose appropriate test data
for exercising these sequences.They characterize a test case as a
combination of all suitable choices of the involved settings and
interactions in a sequence of messages. In another work, Basanieri et al.

describe the CowSuite approach [15] which provides a method to
derive the test suites and a strategy for test case prioritization and
selection. CowSuite is mainly based on the analysis of the use case and
sequence diagrams. From these two diagrams they construct a graph
structure which is a mapping of the project architecture and this graph
is traversed using a modified version of the depth-first search
algorithm. They use category partition method for generating tests.

Their test procedure consists of a sequence of messages, and the
associated parameters.

Fraikin and Leonhardt [16] describe the SeDiTeC tool for testing based
on sequence diagrams. Their approach achieves coverage of all
possible sequences of messages in a set of related sequence diagrams.
The diagrams are augmented with information about expected input and
output values for method invocations and these values are checked

during test execution.

4. BASIC CONCEPT
In this section, we define different testing Criteria.
1. Test Criteria based on Sequence Diagram
We have adopted message path test adequacy criteria for sequence

diagram. They are described as follows:
1) Message Sequence Path criterion: For each sequence diagram, there
must be at least one test case T such that when the software is executed
using T , the software that implements the message sequence path of
the sequence diagram must be executed. The message sequence path
coverage criterion is used to generate tests from the sequence diagrams.
For each sequence diagram in the specification, a test case is generated
for each normal and for each alternative message sequence.

2. Test criteria based on Activity Diagram
The test adequacy criteria proposed in the literature based on activity
diagram are as follows:
1) All Basic Path Coverage Criterion: A basic path is a complete path
through an activity diagram where each loop is exercised either zero or
one times. This ensures that all iterations in an activity diagram are
exercised.
2) All Activity Path Coverage: Given at test set T and Activity Diagram
AD, T must cause each possible activity path in AD to be taken at least

once. An Activity Path is any sequence of activities from the initial
activity into the terminal activity in the activity diagram.
3. Coverage Criteria based on both Sequence and Activity Diagram
In this section, we describe a few criteria that can be defined by
considering both Sequence and activity diagram together. A message
path represents the flow of message from the start message to the last in
a sequence diagram. The message invokes a method call. All the
activities to execute the method can be shown through activity diagram.

Using sequence diagram, we can show only message paths. But if we
use sequence and activity diagram we can cover message as well as
activity path which is called message-activity-path. So errors uncovered
in message-activity-path can not be uncovered by message-path. But
the reverse is possible. Thus message-activity-path coverage which is
the super set ensures message-path coverage which is subset.
Theorem1: Message Path Coverage is a stronger testing technique

compared to message coverage.

Proof: A message path in a MFG is a path from the root node to any

other node in the MFG. All message paths in the MFG implies that

there is no any message in the MFG, which is not covered by some

message path(s). Hence, if a test suit achieves message path coverage,

then it essentially covers all messages. Therefore, message path

coverage ensures message coverage. So, message path coverage is a

stronger testing technique compared to message coverage.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

7

All Message-Activity Path Coverage: Given a test set T and a sequence
diagram SD and an activity diagram AD, T must cause each possible
message path in SD with corresponding activity path in AD to be taken
at least once.
Theorem2: Message-Activity path Coverage is a stronger testing

technique compared to message path coverage.

To prove above theorem2, we need to prove that

i) Message-path coverage does not ensure Message-Activity-Path
coverage.
ii) Message-Activity-Path coverage ensures Message-Path coverage.
The proof is given in [17].
4. Category Partition Method

The category-partition method [16, 18] is a specification-based testing
strategy that uses an informal functional specification to produce formal
test specifications. The category-partition method offers a general

procedure for creating test specifications. The key job is to develop
categories, which are defined to be the major characteristics of the input
domain of the function under test, and to partition each category into
equivalence classes of inputs called choices. By definition, choices in
each category must be disjoint, and together the choices in each
category must cover the input domain. The category partitioning
approach utilizes a program‟s specification to 1) identify separately
testable functional units 2) categorize the inputs for each functional unit
and 3) partition the input categories into equivalence classes. The

category-partition method identifies behavioral equivalence of classes
within the structure of a system under test. A category or partition is
defined by specifying all possible data choices that it can represent.

5. INTERMEDIATE REPRESENTATION
To generate test data, it is first required to transform the diagram into a

suitable intermediate representation. Both the UML sequence and
activity diagrams represent behavioral aspects of the design phase.
Thus we have proposed a method to integrate both the diagrams into
intermediate graph structure called Model Flow Graph (MFG) and
generate test sequence from the graph. The algorithm for generating
MFG from the UML diagrams is described in the next section. In this
section we present a few basic concepts, notations, and terminologies
with intermediate graph representation (MFG).

Definition 1 (Model Flow Graph): A Model Flow Graph (MFG) G of a

diagram D is a flow graph quadruple (V, E, S, T) where each node

v V represents either a message or control predicate and an edge

e E represents a transition between the corresponding nodes. An

edge (m, n) E indicates the possible flow of control from the node m

to the node n. Nodes S and T are unique nodes representing entry and

exit of the diagram D, respectively.

Note that the existence of an edge (x, y) in the MFG does not mean that
control must transfer from x to y during execution of the diagram.
Fig. 1 shows a sequence diagram and Fig.2 is its corresponding MFG.

In Fig. 2, we have labeled the nodes using message sequence numbers.

A Model Flow Graph (MFG) generated from sequence diagram
represents possible message/method sequences in an interaction. We
generate test cases from MFG. A MFG can be viewed as a graph
G= (V, E), where V is a set of nodes of G, and E is a set of edges. The
nodes of G represent messages and edges represent transition between
two nodes exists, if the corresponding messages in the sequence
diagram occur one after the other. The message that initiates the

interaction is made the root of the graph. In the activity diagram all
transitions are labeled with a guard condition. The conditional predicate

of a guard might trivially be an empty predicate which is always true. In
case of an activity diagram, the nodes of G represent conditional
predicates and edges represent transition between two nodes, if the
corresponding predicate in the activity diagram occur one after the
other. In order to handle hierarchical states we consider the activity
diagram as a tree of sub graphs. The initial predicate is represented as
the start node of the graph.

An event in a Message/Activity Set is denoted by a tuple, maEvent:
<messageName; SendObject; ReceiveObject [/guard]> where,
messageName is the name of the message with its signature,
SendObject is the sender object of the message and ReceiveObject is
the receiver of the message and the optional part /guard is the guard
condition subject to which the maEvent will take place.

6. OUR APPROACH TO GENERATE TEST

CASES
The test generation process is divided into three main phases. The first
phase is to generate MFG from sequence and activity diagram
separately. The second phase is to generate test sequences from MFG
corresponding to sequence and activity diagrams. The test sequences
are a set of theoretical paths starting from initialization to end, while
taking conditions (pre-condition and post-condition) into consideration.
Each generated test sequence corresponds to a particular scenario of the
considered use case. The third phase is to generate test case from the
generated sequences satisfying the message-activity path test adequacy

criteria.

A. Algorithm for Generating MFG from UML diagrams
The MFG for sequence diagram is created by 1. Associating methods
in the sequence diagram with their originating objects, 2. Traversing
the sequence diagram from beginning to end, showing choices and
condition for method execution.
1. Associating methods with their objects:

a) For each method call m originating from object O, create an entry
into the object method association (OMA) table and labeled as
„A‟. For example O:m().

b) Each explicit return form any object has also an entry into the
object method association table. For example O:return().

Create the MFG by analyzing the OMAT (Object Method Association
table). The edges are directed to reflect the ordering of the method calls.
The edges are labeled with a sequence number. Concentric circles

denote method call of another object (transfer of control). The MFG for
activity diagram is created by traversing the activity diagram from
beginning to end, showing choices, conditions, concurrent executions,
loop statements.
a) For each conditional statement create an entry into the Method

Activity Table (MAT). Then traversing the MAT, create nodes in
the MFG.

b) The loop statements are transformed into conditional statements,

listed in the MAT.
c) For each concurrent execution statements an entry is made into the

MAT for each execution path and in turn is represented by
different execution paths in MFG.

The edges are labeled according to the following rule:
a) Each call must be assigned a positive integer value based upon the

sequence, thus each new call will require being incremented by
one.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

8

b) A „dot‟ notation indicates nesting within a calling sequence. Each
time a nested call is made an additional number is appended to the
sequence number. For example 1.1a, 1.2b where a, b represent
conditions.

c) The conditions use letters to denote the options.
d) For each loop activity, transform the loop into series of conditional

activity. This is possible because the max and min values are

specified.
e) For concurrent statements use capital letters as prefix to denote

concurrent execution paths. For example A1.1a, A1.1b.
B. Test Sequence Generation Process
From the MFG different control flow sequence are identified by
traversing the MFG by depth first traversal algorithm. During traversal,
we look for conditional predicates on each of the transitions. For each
conditional predicate, we apply category partitioning method to identify

the partitions which will be listed in the test sequence. The test
sequence consists of the edge label of the current message or activity,
the name of the activity, the object associated and the corresponding
category for each guard condition. In case of no guard condition, NULL
is used.
C. Test Case Generation Process

To generate test cases that satisfy the message-activity path criteria, we
first enumerate all possible basic paths from the start node to a final

node in the MFG of sequence and activity diagrams. Each path then is
visited to generate test cases. During visit, we look for conditional
predicates on each of the transitions for execution of corresponding
message and activity. For each conditional predicate, we apply category
partitioning method to identify, to which partition the guard condition
belongs to and the partitions are listed in the test sequence.

To generate test cases that satisfy the message-activity path coverage

criterion, we propose an algorithm called TestCaseGeneration.
TestcaseGeneration starts by enumerating all basic paths in the SDG,
from the start node to the final node. Each basic path then is visited to
generate test cases. Steps 2 to 21 are iterated for each path in the MFG.
A basic path essentially corresponds to a scenario. Step 4 determines
the initial pre-condition of the scenario from the start node S. For each
considered path, Steps 6 to 17 determine the various pre-conditions,
input, output and post-conditions for each interaction of the considered
test sequence. This gives the test cases for finding out interaction faults

if any. Finally, Step 20 gives the test case corresponding to the test
sequence as a whole. The algorithm TestCaseGeneration to generate
test cases satisfying the coverage criterion is presented below.

Algorithm TestCaseGeneration
Input: MFG of Sequence and Activity diagram
Output: Test suite T
Steps:
1. P[] = EnumerateAllBasicPaths(MFG) //Enumerate all paths P
={P[1],P[2] ,...,P[n]} from the start node to a final node in the MFG.

2. For each path P[i] P do

3. curr_node=S // current node is assigned
with start node S
4. preCi = FindPreCond (S)
5. ti←Φ // the test case for the path i

6. while (curr_node final_node of path P[i]) do

7. eventcurr_node= FindEvent (curr_node)// Event contains method or
activity, parameters
 and condition C. The event corresponding to
the node curr_node

8. If C G //If there is no guard condition

G
9. t ={preC, I(a1 ,a2 ,...,al),O(d1,d2 ,...,dm), postC}
 // preC = precondition of the method or activity
 // I(a1 ,a2 ,...,al) = set of input values for the method or activity in
sendObject
 // O(d1 ,d2 ,...,dm) = set of resultant values in the receiveObject
when the method or activity is executed

 // postC = the postcondition of the method or activity
10. End-if
11. If (C== G) then //method or activity is under guard condition
12. C(val)= (C1 ,C2 ,...,Cl) // The set of value of
clauses on the path P[i]
13. t={preC, I(a1 ,a2 ,...,al),O(d1 ,d2 ,..., dm), C(val), postC}
14. End-if

15. ti = ti t // Add t to the test case set ti

16. curr_node=next_node // Move to the next node on the path P[i].
17. End-while

18. Determine the final output Oi and postCi for the final_node of P[i]
19. t = {preCi , Ii ,Oi , postCi}

20. ti ←ti t

21. T ←T ti

22. End-for
23. Return (T)
24. Stop

7. CASE STUDY
We give a case study of technique. The first section provides the
overview of the problem, the sequence diagram and activity diagram of
the design models. The next sections describe the process of the test
case generation from the diagrams.

A. The problem and the model of the solution
The model described in this paper is a design solution to an ATM
(Automated Teller Machine) System. The bank system has an account
for each customer. The customer of the system enter an amount to the
ATM machine and the system checks whether the enter amount can be

withdrawn from the corresponding account by comparing it with the
current account balance. The Fig. 1 shows the sequence diagram of a
simple ATM withdraw operation. The users of the system enter the
amount. The ATM system then sends the amount and the account
number to the bank system. The bank system retrieves the current
balance of the corresponding account and compares it with the entered
amount. If balance amount is greater than the entered amount then the
amount can be withdrawn and the bank system returns true otherwise it

checks for credit limit if the entered amount is less than the total
amount (current balance + credit amount) then return true otherwise
return false. Depending on the return value the ATM machine dispenses
the cash and prints receipts or displays the failure message.

B. Sequence Diagram for ATM Machine and Object Method
Association Table

The sequence diagram of the ATM system is first transformed into
MFG in Fig. 2. In the MFG construction each message in the sequence
diagram is represented by a node in the MFG. The timing ordering of
the diagram is maintained in the system. The conditional message in the

diagram is represented by a node and two outward nodes. Whether the
condition is true or false one of the edges is covered.

Whenever the withdraw method is called it is represented by a
concentric circle because by calling the withdraw method a message is
passed to the account object. The OMAT (Object Method Association
Table) is created by analyzing the sequence diagram. The MFG is
created by analyzing the OMAT is shown in Fig 3. For each label in the

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

9

OMAT a node is created in MFG. The sequence of message flow in the
OMAT is maintained in the MFG.

TABLE 1: Object Method Association Table (OMAT) for the Fig. 1

SYMBOL OBJECT-METHOD ASSOCIATION

A atm:Validate Amount

B cstact: Withdraw

C atm: Display Message

D cstact: Return

E atm: Dispense Cash

F atm: Print Receipt

G atm: Return

Figure.2 Activity diagram for ATM withdraw method

C. Activity Diagram for method Withdraw() and Method Activity
Table

Fig 2 shows the activity diagram that describes the flow of activities
inside the account object. There are different conditional predicates are
associated with the activity diagram. The MFG is created directly from
the activity diagram. Fig. 4 shows the corresponding MFG generated by
analyzing the CPT (Conditional Predicate Table) shown in table 2.

Then we have to consider the pre and post conditions and main scenario
for generating the test case.

TABLE 2: Method Activity Table (MAT) for the Fig, 2

SYMBOL ACTIVITY

A Amount < Balance

B Update Balance

C Check for Overdraft

D Check WithDraw Limit

E Does not have Permission for Overdraft

F With in Limit

G Beyond Limit

H Return True

I Return False

J Return

Figure 3 MFG for sequence diagram of withdraw use case

Conditions for accounts withdraw method are:
Pre Condition:
 1) Account does have some minimum balance.
 2) Amount entered should be a valid amount.

Post Condition
1) Withdraw successful.
2) Withdraw unsuccessful.

Main Scenario
1) The user invokes the withdraw method.
2) The user enter amount to be drawn.
3) The user successfully withdraw from the ATM.

Alternate course of action

The user can not withdraw the enter amount. The system notifies the
user.

b = Balance

Check Withdraw

Return True Return False

Insufficient

Amount

Doesn‟t have Permission

for Overdraft

Has Permission

for Overdraft

Within Limit Cross Limit

Sufficient

Amount

A

F

G

C

E

D

B 1b

1a

1a.1

1a.1.2a 1a.1.2b

1a.1.2a.1

1a.1.2a.2

3

cstact: Account

4. Return

cst: User

Figure 1 sequence diagram for ATM withdraw use case

3. Withdraw (Amt, a)

 2. Display
Message

5.Display

Message

splay Message

atm: ATM

 6. Dispense Cash

1. Enter Amount

7. Print Receipt

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

10

Figure. 4 MFG for activity diagram of withdraw method

D. Test Sequence Generation
From the MFG we identify five control flow sequence by traversing the

MFG by depth first traversal algorithm. During traversal, we look for
conditional predicates on each of the transitions. For each conditional
predicate we apply category partitioning method to identify, to which
partition the guard condition belongs to and the partitions are listed in
the test sequence. The test sequence 1 lists customer object, transaction
object and customer account object. The test sequence for scenario
(customer enter invalid amount) consists of the edge label of the current
message or activity, the name of the activity, the object associated and

the corresponding category partitioning value for each guard condition.
In case of no guard condition NULL is used.
1) Test Sequence 1
Objects: {cst: Customer, txn: Transaction, cstact: Customer Account}
Link: {cst-txn,txn-cst}

TABLE 3 Test Sequence 1

EDGE

LABEL

MESSAGE/ACTIVITIES

OBJECT

CATEGORY

PARTITION

1 Check Amount ATM Amount<0

1b Display Message ATM NULL

3 Return ATM NULL

2) Test Sequence 2
Objects: {cst: Customer, txn: Transaction, cstact: Customer Account,
crd: CreditCard, ctg: Category}
Link : {cst-txn, txn-cstact, cstact, txn-cst}

TABLE 4 Test Sequence 3

EDGE

LABEL
MESSAGE/ACTIVI

TIES
OBJECT CATEGORY PARTITION

1 Check Amount ATM
Amount>0 &&

Amount mod 100 ==
0)

1a Withdraw () Account NULL

Withdraw ()

1a Check Amount Account Amount>Balance

1b.2a
Check For
Overdraft

Credit Card TRUE

1b.2a.3a
Check for

Withdraw Limit
Category

Amount<=Balance+
Credit Limit

1b.2a.3a.
1

return= TRUE Account NULL

4 Return Account NULL

1a.1 Check Return ATM COR==TRUE

1a.1.2a Cash Dispense ATM NULL

1a.1.2a.1 Print Receipt ATM NULL

1a.1.2a.2 Return ATM NULL

E. Test Case Generation
The test cases following the message-activity paths are given below.
Test case 1 {Input : Invalid amount, Output : Return Card with failure
message}

Test case 2 {Input : Valid amount , Output : Dispense Cash}
Test case 3 {Input : Amount > Balance within Credit limit, Output :
Dispense Cash}
Test case 4 {Input : Amount > Balance with no Credit facilities ,
Output: Return the card with failure message}
Test case 5:{Input : Amount > Balance + Credit limit, Output : Return
card with failure message}

8. COMPARISON WITH RELATED WORK
Many of the related works reported in the literature attempt to use UML
state chart diagrams for testing [3, 15, 16, 19]. State chart diagrams are
appropriate in the context of class level testing as these do not represent
message and activity sequences and communications. Our approach
uses sequence and activity diagrams and targets cluster level testing
involving interaction among objects. Further, we use exactly the same

UML diagrams developed for analysis and design, without requiring
any additional formalism or effort specifically made for testing
purposes. Many reported methods require augmenting the UML
specifications with specific annotations to facilitate the test derivation,
or an additional formalism that the methods can process [19, 20, 21].

On the other hand, many of the UML related testing works reported.
They require manual methods for test data generation [6, 12, 18, 20]. At

the same time many were successful up to the extent of, automatically
generating valid test requirements. Their test requirements [10] are
specific things like possible execution sequences of use cases,
messages, transitions, etc., that must be satisfied or covered during
testing. We consider these test requirements as a part of test case, but a
test case should also specify the values of test data for which a
particular test sequence (or a path) will be executed together with the
expected output.

From the sequence diagram, it is evident that covering all paths from
the start node to a final node would eventually cover all interactions as
well as all message sequence paths. An activity diagram shows control
and data flow of activities in an operation. It depicts the detail of logic
of procedurally complex operations. Several faults such as incorrect
response to a message, message/method invocation with improper or
incorrect arguments, incorrect sequencing of messages, inappropriate

control flows and missing flows etc. may occur in an interaction [9].We
follow the message-activity path coverage criterion to derive the test
set. In our approach, no redundant test cases are generated. Further, as
we use Model Flow Graph, path selection is simple and the number of
paths is bounded. We select predicates through a depth first traversal of

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

11

the MFG which can reduce the number of execution steps as well as
helps to achieve message-activity paths coverage.

9. CONCLUSION
We have presented a method to generate test cases automatically from

UML sequence and activity diagrams. We convert the models into an
intermediate representation called Model Flow Graph (MFG), which is
an integration of intermediate representation of sequence and activity
diagrams. Integration of these representations is helpful for the
following reasons. Our approach covers three important faults, which
usually occur in a system: message sequence faults, operation
consistency faults and activity synchronization faults. The first two
category of faults can be covered from the sequence diagram, whereas

the later from the activity diagram. Our approach is meant for cluster
level testing where object interactions are tested. It may be noted that
MFG models the operational details of a use case. The integration will
help us to guide whether a test driver needs to apply a specific test suite
or not. Another, important reason of integrating is that test data those
are necessary for test case are mined once and used in different level
such as, sequence diagram (message sequence faults within the logic of
one operation), activity diagram (to test activity synchronization fault)

etc. Integration of models also uncovers new sequence of message-
activity faults.

In our approach, Tests are intended to exercise behavioral paths
determined by conditions and uncover faults related to interactions
between objects. Our approach can also work on executable forms of
UML as well as code implementing a design. But the test cases
generated are to be optimized to reduce unduly increasing number of

test cases.

10. REFERENCES

[1]. R.V.Binder, Testing object-oriented software: a survey. Software

Testing Verification and Reliability, 6(3/4): 125-252, 1996.
[2]. R. Mall. Fundamentals of Software Engineering. Prentice Hall,

2nd edition, 2003.
[3]. Bertolino, F. Basanieri, A practical approach to UML-based

derivation of integration tests, in: Proceedings of the Fourth
International Software Quality Week Europe and International
Internet Quality Week Europe (QWE), Brussels, Belgium, 2000.

[4]. S. Ghose, R. France, C. Braganza, N. Kawane, A. Andrews, O.
Pilskalns: “Test adequacy assessment for UML design model
testing” In: Proceeding of the International Symposium on
Software Reliability Engineering, Denver, CO , pp. 332-343, 2003.

[5]. N. Kawanw: “Fault Detection Effectiveness of UML Design

Model Test Adequacy Criteria “. ISSRE (2003).
[6]. A. Abdurazik, J. Offutt: Using UML collaboration diagrams for

static checking and test generation. In: 3rd International
Conference on the UML. 383-395, 2000.

[7]. P. Samuel and R. Mall: “Boundary Value Testing based on UML
Models”. In: Proceedings of the 14th Asian Test Symposium (ATS
‟05), 2005.

[8]. J. Offutt, A. Abdurazik: “Generating tests from UML

specifications”, In Proceedings of 2nd International Conference on
the UML, pp. 416-429,

[9]. Object Management Group: The Unified Modeling Language
UML 1.5 Technical Report formal/03-03-01, The Object
Management Group (OMG) , 2003.

[10]. T. Dinh Trong: “A Systematic Procedure for Testing UML
Designs”. ISSRE(2003).

[11]. Booch, J. Rumbaugh and I. Jacobson: “Unified Modeling
Language User Guide”. Addition-Wesley, 1999.

[12]. W.Linzhang,Y.Jiesong et al.: “Generating Test Cases from UML
Activity Diagram based on Gray-Box Method”. In Proceedings of
the 11th Asia-Pacific Software Engineering Conference
(APSEC04), pages 284-291. IEEE,2004.

[13]. T. Dinh Trong: “A Systematic Approach to Testing Design

Models” In Doctoral Symposium, 7th International Conference on
the Unified Modeling Language, Lisbon, Portugal, 10-15, October
2004.

[14]. O. Pilskalns, A. Andrews, S. Ghose, Robert France: “Rigorous
testing by merging structural and behavioral uml representations. “
In: Proceeding of the 6th International Conference on the Unified
Modeling Language, San Francisco, CA , pp. 234-248, 2003.

[15]. Basanieri, A. Bertolino, E. Marchetti, The cow suit approach to

planning and deriving test suites in UMLprojectsProceedings of
the Fifth International Conference on the UML, LNCS, 2460,
Springer-Verlag GmbH, Dresden, Germany, pp. 383–397, 2000.

[16]. Fraikin, T. Leonhardt, SEDITEC-testing based on sequence
diagrams, in: Proceedings 17th IEEE International Conference on
Automated Software Engineering, IEEE Computer Society, pp.
261–266, 2000.

[17]. S. K. Swain. UML-based Testing of Software System, Technical

Report, KIIT, 2005.
[18]. Andrew, R. France, S. Ghose, G. Craig: “Test Adequacy Criteria

for UML Design Models”. Journal of Software Testing,
Verification and Reliability 13 : 95-127, 2003

[19]. Cavarra, C. Crichton and j. Davies: “A method for the automatic
generation of test suites from object models. Information and
Software Technology, 46(5): 309-314, 2004.

[20]. Hartmann, C. Imoberdorf, M. Meisinger, UML-based integration

testing, in: ACM SIGSOFT Software Engineering Notes,
Proceedings of International Symposium on Software testing and
analysis, 2000.

[21]. T. Dinh Trong “Rules for Generating Code From UML
Collaboration diagram and Activity Diagrams” Master‟s Thesis,
Colorado State University, Fort Collins, Colorado,2003.

[22]. A. Abdurazik, J. Offutt, A. Baldini: “A Controlled Experimental
Evaluation of Test Cases Generated from UML Diagrams”,
Technical report, George Mason University, Department of

Information and Software Engineering, May, 2004.

11. AUTHORS PROFILE
Santosh Kumar Swain is presently working as faculty in School of
Computer Engineering, KIIT University, Bhubaneswar, Orissa, India.
He has acquired his M.Tech degree from Utkal University,
Bhubaneswar. He has contributed more than seven papers to
international Journals and Proceedings. He is having 18 years of
teaching experience. He has written one book on "Fundamentals of
Computer and Programming in C". His special fields of interest include
Software Engineering, Object-Oriented Systems, Sensor Network and

Compiler Design etc.

Durga Prasad Mohapatra studied his M.Tech at National Institute of
Technology, Rourkela, India. He has received his Ph.D from Indian
Institute of Technology, Kharagpur, India. He is currently working as
associate Professor at National Institute of Technology, Rourkela. His
special fields of interest include Software Engineering, Discrete
Mathematical Structure, Program Slicing and Distributed Computing.
He is a member of IEEE.

