
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

1

Generating Boolean SAT based Test Pattern Generation

using Multi-objective Genetic Algorithm

Sangeeta
P.T.U.Jalandhar

Computer Science & Engg.
D.A.V.I.E.T Jalandhar

Vinay Chopra
P.T.U.Jalandhar

 Computer Science & Engg,
D.A.V.I.E.T Jalandhar

H.P.S.Dhami
P.T.U.Jalandhar

Computer Science & Engg,
C.T.I.E.M.T.Jalandhar

ABSTRACT

This paper presents a brief introduction to multi-objective

genetic algorithms and FPGAs[5][9]. In this paper we have

discussed that how test pattern generation method can be

formulated in terms of CNF form [2]and this CNF form can be

used to generate test patterns using genetic algorithm. We have

proposed that by applying a multi-objective genetic algorithm on

this CNF form we can increase number of instances to satisfy

boolean equation.

Keywords

FPGAs , CNF, Multi-objective Algorithm

1. INTRODUCTION

1.1 Multi-objective Genetic Algorithm
In general, a multi-objective optimization is defined by a function

f which maps a vector of decision variables, the so-called

decision vector, to a vector of objective values, the so-called

objective vector:
(y1, y2, . . . , yn) = f(x1, x2, . . . , xn)

Equation No:1

where y1, y2, . . . , yn are decision vector variables, x1, x2, . . . , xn

are objective values

Without loss of generality, it is assumed here and in the

following that each of the n components of the objective vector is

to be maximized[9][11]. In this scenario, a solution (defined by

the corresponding decision vector) can be better, worse, equal,

but also indifferent to another solution with respect to the

objective values ”Better” means a solution is not worse in any

objective and at least better in one objective than another; the

superior solution is also said to dominate the inferior one. Using

this concept one can define what an optimal solution is: a

solution which is not dominated by any other solution in the

search space. Such a solution is called Pareto optimal, and the

entire set of optimal trade-offs is called the Pareto-optimal set[4].

The concept of Pareto optimality is only the first step in solving a

multiobjective optimization problem because at the end, a single

solution is sought[5][9][11]. Therefore a decision making process

is necessary in which preference information is used in order to

select an appropriate trade-off. Although there are different ways

of integrating this process, in the field of evolutionary

multiobjective optimization it is usually assumed that

optimization takes places before decision making. That is the

goal to find or approximate the Pareto-optimal set[5].

2. Field Programmable Gate Array

(FPGA)
Field Programmable Gate Arrays (FPGAs) feature their ability to

be configured in the field to implement an arbitrary desired

function according to the real-time demands. This ability of

FPGAs can help people to achieve a faster design cycle, lower

development costs and a reduced time-to market compared to

conventional Application-Specific Integrated Circuits (ASICs).

FPGAs, therefore, are widely used in many applications such as

networking, storage systems, communication, and adaptive

computing.

Testing FPGAs requires solutions different from those applicable

to ASICs. In literatures, there are several different FPGA testing

strategies.

 The first strategy is based on configuring several

application vectors developed specifically for each

circuit and supplied by an external tester[8]

 The second strategy of external testing techniques

exploits regular internal structure and reconfigurability

of an FPGA to concurrently examine its individual

components configurable logic blocks (CLBs) and

interconnects[10]

 The third strategy of testing techniques for FPGA is

based on the concept of Built-In Self-Test

(BIST)[14][15].

2.1 Types of faults in FPGA

A static RAM based FPGA is composed of a two-dimensional

array of configurable logic blocks (CLBs), programmable

interconnects, and programmable input/output blocks (IOBs). To

realize a specific user-given application on a FPGA chip, a

compiler software provided by the FPGA vendor is required to

divide the application into several parts with each of them small

enough to be fit in a CLB, implement each part in a CLB, and

finally connect all used CLBs through a programmed

interconnect network[16]. Only if all the programmable resources

of the FPGA chip used by the application configuration function

correctly, the application can run well on the chip. In order to

discuss the application-dependent FPGA testing, it is important

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

2

to give some detailed information about the fault models widely

used and studied in FPGA testing[14][17].

Bridging Fault: The fault represents a short between groups of

signals. The logic value of the shorted net may be modeled as

1-dominant (OR bridge), 0-dominant (AND bridge), or

indeterminate, depending upon the technology used in circuit. In

FPGAs, bridging faults are the most common failure mode in

interconnects.

Stuck-at Fault: The fault is modeled by assigning a fixed (0 or

1) value to a signal line in the circuit and its most popular form

are the single stuck-at faults. It is one of the significant failure

modes happened in interconnects [4].

Delay Fault: The fault causes the combinational delay of a

circuit to exceed clock period. Because the delays caused by

interconnection can account for 70% of the FPGA clock cycle

period and the programmable interconnects are the primary

source of large variations in propagation delays, testing for delay

faults in FPGAs should focus on excessive delays in the

interconnect network. The C-exhaustive testing

(combinationally-exhaustive testing) proposed, aims at the

detection of delay faults in the interconnect network. Because a

programmable FPGA chip, to some extent, can be configured in

the field to realize an arbitrary function, FPGA testing can be

easily performed through a way of functional testing, the

functional defects of the programmable resources in a FPGA chip

are also well used in FPGA testing.

3. Automatic Test Pattern Generation

Using SAT :

Boolean Satisfiability (SAT) solvers have been the subject of

remarkable improvements since the mid 90s [3].One of the main

reasons for these improvements has been the wide range of

practical applications of SAT. Indeed, examples of modern

applications of SAT range from termination analysis in term

rewrite systems to circuit-level prediction of crosstalk noise. The

success of SAT solvers motivated many practical applications,

but many practical applications have also provided the examples

and the challenges that allowed the development of more

efficient SAT solvers. This paper provides an overview of some

of the most well known applications of SAT and outlines several

other successful applications of SAT[3][4]. Moreover, the

improvements in SAT solvers motivated the development of new

algorithms for strategic extensions of SAT. To produce reliable

computer systems, defect free components must be available.

Automatic test pattern generation (ATPG) systems distinguish

defective components from defect-free components by generating

input sets that cause the outputs of a component under test to be

different if the component is defective than if it is defect

free[2][17].Existing algorithmic ATPG systems for single Stuck

at faults in combinational circuits fall into two classes[8]:

 The structural methods, which perform a topological search of

the circuit under test.

 The algebraic methods, which generate test patterns by

manipulating algebraic formulas.

 The Boolean satisfiability method for test pattern generation is

used for single stuck-at faults in combinational circuits that is

neither a purely structural method nor an algebraic one. The most

successful ATPG systems use structural search methods[15]. Of

these, the most notable are

The D-algorithm, PODEM, FAN, and SOCRATE[7] .To generate

a test pattern for a single fault, first extract a formula that defines

the set of test patterns that detect the fault and then use a

Boolean satisfiability algorithm to satisfy the formula.

4. Structure-based Algorithms and

ATPGs

A principle common to all structure-based test generation appr-

-oaches is constructed of a combinational model of the circuit.

The feedback signals are regenerated from the previous-time

copies of the circuit. Algorithms based on deterministic approach

generate tests by activating faults and sensitizing paths for fault

propagation though the multiple copies of the combinational

circuit. With the exception of a few algorithms, normally,

forward time processing (FTP)is used to propagate the effect of

fault and reverse time processing (RTP) is used for initialization.

In FTP step, a sequence of vectors is generated in the order in

which the test will be applied. The RTP test vectors are

generated in the reverse order in which they are to be applied.

4.1 Structure-based Algorithms[7]

4.1.1 D-algorithm
The D-algorithm has been widely used in ATPG. It has two basic

operations, namely D and J-operations. D-operation performs

forward fault sensitization by selecting a single or multiple paths

such that a D or D at the fault site can be driven forward until it

reaches a PO. The J-operation, also called the backward line

justification, is employed to a PI pattern (test pattern) that will

realize all the necessary gate input values on sensitized paths. D

algorithm has been used to generate tests for single stuck-at

faults in combinational and sequential circuits. The algorithm

uses either the 5-valued model or the 9-valued model. Five

values for 5valued model are 1 (1/1), 0 (0/0), X (X/X), D (0/1),

and D (1/0). The nine values for the 9-valued model are 1 (1/1),

0 (0/0), U (X/X), S0 (0/1, same as D), S1 (1/0, same as D),G0

(0/X, Good Zero), G1 (1/X, Good One), F0 (X/0, Faulty Zero)

and F1 (X/1, Faulty One).

In sequential circuits, a single fault behaves like multiple faults

for its repeated fault effects through time. Use of 9-valued

model overcomes this deficiency while using D-algorithm for

sequential test generation.

4.1.2 PODEM

Unlike D-algorithm that assigns values to internal lines, the

PODEM (Path Oriented Decision Making) algorithm [1] assigns

values only to PIs. The assignments are determined by an

objective of either activating the fault or propagating the fault

 towards a PO. First objective of PODEM is to generate D or D

on the targeted line, then the next objective is to propagate the D

or D one level closer to a PO. The circuit is traced toward PIs,

known as back trace, to determine the PIs required to the meet

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

3

the objective. A logic value is assigned to a PI, and then the

effect on the circuit is determined by the forward implication. If

the objective is not satisfied, the process repeats from the

unsatisfied objective. If there is a conflict, it will backtrack and

change the PI(s) to untried value(s). Assignments made to PIs

and the information about backtracks is maintained in a

 binary In the worst case, PODEM will examine all possible

input patterns exhaustively. Since backtracks in PODEM can

occur only at PIs, and not on the internal lines, the total number

of backtracks is expected to be fewer than those in D-algorithm.

4.1.3 FAN

Fujiwara and Shimono proposed the FAN algorithm, which

is a refinement of PODEM with an aim to reduce the number

of backtracks. FAN performs special processing of fan-out points

and has been shown to be more efficient and faster than

PODEM.

 His method splits the values in the 9-valued model into two sets

of values, one for the good machine and the other for the faulty

machine such that one can treat two difference machines

separately in J-operation.

J-operation. Chang claims that the following three problems

are solved when the values of two machines are split. First,

justification at the output of an n-input gate in one machine

requires at most n choices as in the 5-value model. Second,

since each J-drive is for one machine only, the selections can

be based on the testability of each machine as in the 5-valued

model. Third, since each J-drive involves 3 values only, the

tables used to store the functions of gates will have the same

size as the tables used for the 5-valued model. In the split

model, the relation information (UN: unknown, DI: difference

and EQ: equivalence) is included in the circuit status to

dynamically identify the area affected by the fault-site.

initialization has completed. The memory element inputs are

selected for both the current and previous time frames to

extend the backtrack across time. If a PPI line needs to be set

to a certain value in the current time frame, the back trace

procedure selects PI and PPI values in the previous time frame

too. When the previous time frame becomes the current time

frame, subsequent assignments of values to PPI lines do not

require any forward processing since all necessary

assignments have been made. This simplifies the test

generation algorithm and improves its performance.

4.1.4 BACK

Chang proposed the BACK algorithm as an improvement of

the EBT algorithm and like EBT, it also uses the RTP

technique. However, unlike the EBT, instead of pre-selecting

a path, the BACK algorithm pre-selects a primary output. It

assigns D or D to the selected primary output and justifies the

value backward. Without the forward propagation process of

the D-algorithm, the BACK algorithm performs backward

justification process through topological path (TP) is selected

from the fault site to a PO. The TP is processed in reverse

order from circuit output back to the site of the fault. The test

generation procedure starts with a single time frame in the

iterative array model. PI and PPI values are determined

 that will propagate the effect of the fault along the TP to

the PO in the current time frame. The objective of back trace

is to determine the PI or PPI values to achieve a desired value

on the target line. After a time frame is processed, all memory

elements that are not initialized are selected, and back trace

continues in the previous time frame until relevant.

4.1.5 EBT

The previous algorithms were primarily developed for

combinational circuits. The Extended Back Track (EBT)

algorithm [18] performs sequential test generation using RTP.

BACK algorithm performs backward justification process

through the circuit and through time thus making it easier to

implement while requiring less run time memory. Cheng also

proposed a circuit model called SPLIT to implement 9-valued

model decision tree.

4. Applying Genetic Algorithm to Test

Pattern Generation:

GA can be used in ATPG for exploring the work space. In

genetic terms every test vector is considered as a chromosome

and set of test vector is called as population. The ATPG

performs in 2 phases. To assess every test vector in a

population in any generation of evolution. The ATPG

algorithm performs in two phases. In the first phase the initial

population is being generated with the help of pseudo random

process. In the second phase the GA phase the test vectors are

evolved based on fitness function[14].The fitness function

used is :

Fitness = NFi

Where NFi is the number of faults detected.

{

FL= {total number of faults}

initial pop=phase I (FL);

if (FL =NULL)

break;

phase II (initial pop, FL);

}

Figure 1: Pseudo-code of overall GA based test pattern

generation

Phase I

In this phase the initial sequences composed of M vectors are

generated based on pseudo random process. The generated

sequences are fault simulated for the faults in the fault list. If

the sequence detects fault that fault is removed from the fault

list and the corresponding sequence is added into the solution

set. If no faults are detected by the sequence, then the last

sequence generated in the corresponding cycle is added to the

set. This process is repeated for max_iter.

Function Phase I

initial pop (FL)

for (i=1; i<max_iter-1, i++)

{

initial pop=phase I(FL);

randomly generate sequences of length L;

for (each sequence)

 { if sequence detects faults in the fault list

 {

 add sequence to the test set;

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.8, September 2010

4

 drop the faults detected by that sequence;

 }

 }

 return (initial population);

 }

Figure 2: The Pseudo-code of Phase I

Phase II

The initial population of GA is composed of the sequences

generated in phase I. To generate a new population from the

existing one, two individuals (parents) are selected and

crossed to create two entirely individuals (child) and each

child is mutated with some small mutation probability. The

selection operator is rank based selection. In rank based

selection, the solutions are sorted according to their fitness

from the worst (rank 1) to the best (rank N).Each member in

the sorted list is assigned a fitness equal to the rank of the

solution in the list. Thereafter the proportionate selection

operator is applied with the ranked fitness value and better

solutions are chosen. The two parents are crossed to create

two entirely new individuals (i.e.) child and each child is

mutated with some small mutation probability. The two new

individuals are than placed in the new population and the

process continues until the generation is entirely filled. The

previous population is discarded. Crossover used is one point

crossover. A crossover probability of 2 and mutation

probability of 0.03 is used in all circuits. The no_gen is

assumed to be 16, to reduce the execution time. During test

generation pop_size of 25 is used.

Function Phase II

{

Initial pop from phase1;

for (l=1;l<no_gen-1;l++)

 { for (k=1; k<popsize-1;k++)

 { select two individuals from

 population;

 apply crossover with probability 2;

 apply mutation with probability 0.03;}

 compute fitness of the individuals;

 for (each sequence)

 if (sequence detects the faults in the fault list

 { add sequence to the solution set;

 drop the faults detected by the sequence;

 }

 }

 }

Figure 3: Pseudo-code of Phase II

5. Conclusion

SAT problems produce excellent results on various

benchmarks. Multi-objective when applied on Boolean SAT

makes it more scalable. It can also be applied to solve

multiple SAT instances simultaneously in order to increase

the speed of execution.

 Multi-objective optimization is that in which we have to

optimize multiple objectives. So this field can be applied to

various SAT instances to increase the efficiency of test

generation.

6. REFERENCES

[1] P. Goel, An Implicit Enumeration Algorithm to Generate

Test for Combinational Circuits," IEEE Trans.on Computers,

pp. 215,222, March 1981

[2] V. Sivaramalcrishnan Sharad C.Seth Parallel Test Pattern

Generation Using Boolean Satisfiability TH0340-0/0000/00

1991 IEEE

[3] Tracy Larrabee, member IEEE 1992 “Test Pattern

Generation using Boolean Satisfiability” IEEE Transactions

on Computer-Aided Design, VOL. 11, NO. 1, January 1992

[4] Carlos M. Fonsecay and Peter J. Flemingz “An Overview

of Evolutionar Algorithms in Multiobjective

Optimization”, April 7,1995

[5] Paolo Prinetto, Maurizio Rebaudengo, and Matteo

Soriza “GATTO: A Genetic Algorithm for Automatic Test

Pattern Generation for Large Synchronous Sequential

Circuits” IEEE TRANSACTIOIVS ON COMPUTER-AIDED

DESIGN , VOL. 15, NO. 8, AUGUST 1996

[6] V. Rajesh, Ajai Jain “Automatic Test Pattern Generation

for Sequential Circuits Using Genetic Algorithms” 1063-

9667/9 IEEE 1997

[7] Yong Chang Kim and Kewal K. Saluja“ Sequential test

generators: past, present and future “Integration,the VLSI

Journal Volume 26,Issues 1-2,1 ,Pages 41-54 December 1998

[8] Carlos A Coello Coello., “A Comparative survey of

Evolutionary based Multiobjective Optimization” December

1998

[9] Li Shen “Genetic Algorithm Based Test Generation for

Sequential Circuits” Institute of Computing Technology,

Beijing May 2000

[10] Ying Gao Lei Shi Pingjin Yao ”Study on Multi-Objective

Genetic Algorithm” July,2000

[11] Arslan, T. Horrocks, D.H. Ozdemir, E. Sch. of Eng.,

Univ. of Wales Coll. of Cardiff “Structural synthesis of cell-

based VLSI circuits using a multi-objective genetic algorithm

“ Electronics Letter Volume: 32 Issue 7 ,651 - 652 ISSN:

0013-5194 ,06 August 2002

[12] Gregor Papa ,Tomasz Garbolino ,Franc Novak ,Andrzej H

lawiczka Deterministic Test Pattern Generator Design With

Genetic Algorithm Approach Journal of ELECTRICAL

ENGINEERING,VOL.58,NO.3,121–127,2007

[13] Charles Stroud, John Sunwoo, Srinivas Garimella, and

Jonathan Harris Built-In Self-Test for System-on-Chip: A Case

Study0-7803-8580-2/copyright IEEE 2004

[14] Michael S. Hsiao Virginia Tech, Blacksburg, Virginia

VLSI Principles And Architecture , Pages 161-262 2006

[15] S.Jayanthy M.C.Bhuvaneswari Sri Ramakrishna

Engineering College, Coimbatore, India P.S.G. College Of

Technology, Coimbatore, India “Simulation Based ATPG for

Crosstalk Delay Faults in VLSI circuits using Genetic

Algorithm ICGST- AIML journal, ISSN: 1687-4846, Volume

9,Issue2,December,2009.

