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ABSTRACT 

This paper presents a brief introduction to multi-objective 

genetic algorithms and FPGAs[5][9].  In this paper we have 

discussed that how test pattern generation method can be 

formulated in terms of CNF form [2]and this CNF form can be 

used to generate test patterns using genetic algorithm. We have 

proposed that by applying a multi-objective genetic algorithm on 

this CNF form we can increase number of instances to satisfy 

boolean equation. 
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1. INTRODUCTION 

1.1 Multi-objective Genetic Algorithm 
In general, a multi-objective optimization is defined by a function 

f which maps a vector of decision variables, the so-called 

decision vector, to a vector of objective values, the so-called 

objective vector: 
(y1, y2, . . . , yn) = f(x1, x2, . . . , xn) 

Equation No:1 

where y1, y2, . . . , yn are decision vector variables,  x1, x2, . . . , xn 

are objective values 

Without loss of generality, it is assumed here and in the 

following that each of the n components of the objective vector is 

to be maximized[9][11]. In this scenario, a solution (defined by 

the corresponding decision vector) can be better, worse, equal, 

but also indifferent to another solution with respect to the 

objective values ”Better” means a solution is not worse in any 

objective and at least better in one objective than another; the 

superior solution is also said to dominate the inferior one. Using 

this concept one can define what an optimal solution is: a 

solution which is not dominated by any other solution in the 

search space. Such a solution is called Pareto optimal, and the 

entire set of optimal trade-offs is called the Pareto-optimal set[4]. 

The concept of Pareto optimality is only the first step in solving a 

multiobjective optimization problem because at the end, a single 

solution is sought[5][9][11]. Therefore a decision making process 

is necessary in which preference information is used in order to 

select an appropriate trade-off. Although there are different ways 

of integrating this process, in the field of evolutionary 

multiobjective optimization it is usually assumed that 

optimization takes places before decision making. That is the 

goal  to find or approximate the Pareto-optimal set[5].  

2. Field Programmable Gate Array       

(FPGA) 
Field Programmable Gate Arrays (FPGAs) feature their ability to 

be configured in the field to implement an arbitrary desired 

function according to the real-time demands. This ability of 

FPGAs can help people to achieve a faster design cycle, lower 

development costs and a reduced time-to market compared to 

conventional Application-Specific Integrated Circuits (ASICs). 

FPGAs, therefore, are widely used in many applications such as 

networking, storage systems, communication, and adaptive 

computing. 

Testing FPGAs requires solutions different from those applicable 

to ASICs. In literatures, there are several different FPGA testing 

strategies. 

 The first strategy is based on configuring several 

application         vectors developed specifically for each 

circuit and supplied by an external tester[8] 

 The second strategy of external testing techniques 

exploits regular internal structure and reconfigurability 

of an FPGA to concurrently examine its individual 

components configurable logic blocks (CLBs) and 

interconnects[10] 

 The third strategy of testing techniques for FPGA is 

based on the concept of Built-In Self-Test 

(BIST)[14][15]. 

2.1 Types of faults in FPGA 

A static RAM based FPGA is composed of a two-dimensional 

array of configurable logic blocks (CLBs), programmable 

interconnects, and programmable input/output blocks (IOBs). To 

realize a specific user-given application on a FPGA chip, a 

compiler software provided by the FPGA vendor is required to 

divide the application into several parts with each of them small 

enough to be fit in a CLB, implement each part in a CLB, and 

finally connect all used CLBs through a programmed 

interconnect network[16]. Only if all the programmable resources 

of the FPGA chip used by the application configuration function 

correctly, the application can run well on the chip. In order to 

discuss the application-dependent FPGA testing, it is important 
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to give some detailed information about the fault models widely 

used and studied in FPGA testing[14][17]. 

Bridging Fault: The fault represents a short between groups of 

signals. The logic value of the shorted net may be modeled as  

1-dominant (OR bridge), 0-dominant (AND bridge), or 

indeterminate, depending upon the technology used in  circuit. In 

FPGAs, bridging faults are the most common failure mode in 

interconnects.  

Stuck-at Fault: The fault is modeled by assigning a fixed (0 or 

1) value to a signal line in the circuit and its most popular form 

are the single stuck-at faults. It is one of the significant failure 

modes happened in interconnects [4].  

Delay Fault: The fault causes the combinational delay of a 

circuit to exceed clock period. Because the delays caused by 

interconnection can account for 70% of the FPGA clock cycle 

period and the programmable interconnects are the primary 

source of large variations in propagation delays, testing for delay 

faults in FPGAs should focus on excessive delays in the 

interconnect network. The C-exhaustive testing 

(combinationally-exhaustive testing) proposed, aims at the 

detection of delay faults in the interconnect network. Because a 

programmable FPGA chip, to some extent, can be configured in 

the field to realize an arbitrary function, FPGA testing can be 

easily performed through a way of functional testing, the 

functional defects of the programmable resources in a FPGA chip 

are also well used in FPGA testing. 

3. Automatic Test Pattern Generation   

Using SAT :   

Boolean Satisfiability (SAT) solvers have been the subject of 

remarkable improvements since the mid 90s [3].One of the main 

reasons for these improvements has been the wide range of 

practical applications of SAT. Indeed, examples of modern 

applications of SAT range from termination analysis in term 

rewrite systems to circuit-level prediction of crosstalk noise. The 

success of SAT solvers motivated many practical applications, 

but many practical applications have also provided the examples 

and the challenges that allowed the development of more 

efficient SAT solvers. This paper provides an overview of some 

of the most well known applications of SAT and outlines several 

other successful applications of SAT[3][4]. Moreover, the 

improvements in SAT solvers motivated the development of new 

algorithms for strategic extensions of SAT. To produce reliable 

computer systems, defect free components must be available. 

Automatic test pattern generation (ATPG) systems distinguish 

defective components from defect-free components by generating 

input sets that cause the outputs of a component under test to be 

different if the component is defective than if it is defect 

free[2][17].Existing algorithmic ATPG systems for single Stuck 

at faults in combinational circuits fall into two classes[8]: 

 The structural methods, which perform a topological search of 

the circuit under test. 

 The algebraic methods, which generate test patterns by 

manipulating algebraic formulas. 

 The Boolean satisfiability method for test pattern generation is 

used for single stuck-at faults in combinational circuits that is 

neither a purely structural method nor an algebraic one. The most 

successful ATPG systems use structural search methods[15]. Of 

these, the most notable are 

The D-algorithm, PODEM, FAN, and SOCRATE[7] .To generate 

a test pattern for a single fault, first extract a formula that defines 

the set of test patterns that detect the fault and then use a 

Boolean satisfiability algorithm to satisfy the formula. 

4. Structure-based Algorithms and 

ATPGs 

A principle common to all structure-based test generation appr- 

-oaches is constructed of a combinational model of the circuit. 

The feedback signals are regenerated from the previous-time 

copies of the circuit. Algorithms based on deterministic approach 

generate tests by activating faults and sensitizing paths for fault 

propagation though the multiple copies of the combinational 

circuit. With the exception of a few algorithms, normally, 

forward time processing (FTP)is used to propagate the effect of 

fault and reverse time processing (RTP) is used for initialization. 

In FTP step, a sequence of vectors is generated in the order in 

which the test will be applied. The RTP test vectors are 

generated in the reverse order in which they are to be applied. 

 

4.1 Structure-based Algorithms[7] 

 
4.1.1 D-algorithm 
The D-algorithm has been widely used in ATPG. It has two basic 

operations, namely D and J-operations. D-operation performs 

forward fault sensitization by selecting a single or multiple paths 

such that a D or D at the fault site can be driven forward until it 

reaches a PO. The J-operation, also called the backward line 

justification, is employed to a PI pattern (test pattern) that will 

realize all the necessary gate input values on sensitized paths. D 

algorithm has been used to generate tests for single stuck-at 

faults in combinational and sequential circuits. The algorithm 

uses either the 5-valued model or the 9-valued model. Five 

values for 5valued model are 1 (1/1), 0 (0/0), X (X/X), D (0/1), 

and D (1/0). The nine values for the 9-valued model are 1 (1/1), 

0 (0/0), U (X/X), S0 (0/1, same as D), S1 (1/0, same as D),G0 

(0/X, Good Zero), G1 (1/X, Good One), F0 (X/0, Faulty Zero) 

and F1 (X/1, Faulty One). 

In sequential circuits, a single fault behaves like multiple faults 

for its repeated fault effects through time. Use of 9-valued 

model overcomes this deficiency while using D-algorithm for 

sequential test generation. 

4.1.2 PODEM 

Unlike D-algorithm that assigns values to internal lines, the 

PODEM (Path Oriented Decision Making) algorithm [1] assigns 

values only to PIs. The assignments are determined by an 

objective of either activating the fault or propagating the fault  

 towards a PO. First objective of PODEM is to generate D or D 

on the targeted line, then the next objective is to propagate the D 

or D one level closer to a PO. The circuit is traced toward PIs, 

known as back trace, to determine the PIs required to the meet 
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the objective. A logic value is assigned to a PI, and then the 

effect on the circuit is determined by the forward implication. If 

the objective is not satisfied, the process repeats from the 

unsatisfied objective. If there is a conflict, it will backtrack and 

change the PI(s) to untried value(s). Assignments made to PIs 

and the information about backtracks is maintained in a

 binary In the worst case, PODEM will examine all possible 

input patterns exhaustively. Since backtracks in PODEM can 

occur only at PIs, and not on the internal lines, the total number 

of backtracks is expected to be fewer than those in D-algorithm. 

4.1.3 FAN 

Fujiwara and Shimono proposed the FAN algorithm, which  

is a refinement of PODEM with an aim to reduce the number  

of backtracks. FAN performs special processing of fan-out points 

and has been shown to be more efficient and faster than 

PODEM. 

 His method splits the values in the 9-valued model into two sets 

of values, one for the good machine and the other for the faulty 

machine such that one can treat two difference machines 

separately in J-operation.

J-operation. Chang claims that the following three problems 

are solved when the values of two machines are split. First, 

justification at the output of an n-input gate in one machine 

requires at most n choices as in the 5-value model. Second, 

since each J-drive is for one machine only, the selections can 

be based on the testability of each machine as in the 5-valued 

model. Third, since each J-drive involves 3 values only, the 

tables used to store the functions of gates will have the same 

size as the tables used for the 5-valued model. In the split 

model, the relation information (UN: unknown, DI: difference 

and EQ: equivalence) is included in the circuit status to 

dynamically identify the area affected by the fault-site. 

initialization has completed. The memory element inputs are 

selected for both the current and previous time frames to 

extend the backtrack across time. If a PPI line needs to be set 

to a certain value in the current time frame, the back trace 

procedure selects PI and PPI values in the previous time frame 

too. When the previous time frame becomes the current time 

frame, subsequent assignments of values to PPI lines do not 

require any forward processing since all necessary 

assignments have been made. This simplifies the test 

generation algorithm and improves its performance.  

4.1.4 BACK 

Chang proposed the BACK algorithm as an improvement of 

the EBT algorithm and like EBT, it also uses the RTP 

technique. However, unlike the EBT, instead of pre-selecting 

a path, the BACK algorithm pre-selects a primary output. It 

assigns D or D to the selected primary output and justifies the 

value backward. Without the forward propagation process of 

the D-algorithm, the BACK algorithm performs backward 

justification process through topological path (TP) is selected 

from the fault site to a PO. The TP is processed in reverse 

order from circuit output back to the site of the fault. The test 

generation procedure starts with a single time frame in the 

iterative array model. PI and PPI values are determined

 that will propagate the effect of the fault along the TP to 

the PO in the current time frame. The objective of back trace 

is to determine the PI or PPI values to achieve a desired value 

on the target line. After a time frame is processed, all memory 

elements that are not initialized are selected, and back trace 

continues in the previous time frame until relevant.  

4.1.5 EBT 

The previous algorithms were primarily developed for 

combinational circuits. The Extended Back Track (EBT) 

algorithm [18] performs sequential test generation using RTP. 

BACK algorithm performs backward justification process 

through the circuit and through time thus making it easier to 

implement while requiring less run time memory. Cheng also 

proposed a circuit model called SPLIT to implement 9-valued 

model decision tree. 

4. Applying Genetic Algorithm to Test 

Pattern Generation: 

GA can be used in ATPG for exploring the work space. In 

genetic terms every test vector is considered as a chromosome 

and set of test vector is called as population. The ATPG 

performs in 2 phases. To assess every test vector in a 

population in any generation of evolution. The ATPG 

algorithm performs in two phases. In the first phase the initial 

population is being generated with the help of pseudo random 

process. In the second phase the GA phase the test vectors are 

evolved based on fitness function[14].The fitness function 

used is : 

Fitness = NFi 

Where NFi is the number of faults detected. 

{ 

FL= {total number of faults} 

initial pop=phase I (FL); 

if (FL =NULL) 

break; 

phase II (initial pop, FL); 

} 

Figure 1: Pseudo-code of overall GA based test pattern 

generation 

Phase I 

In this phase the initial sequences composed of M vectors are 

generated based on pseudo random process. The generated 

sequences are fault simulated for the faults in the fault list. If 

the sequence detects fault that fault is removed from the fault 

list and the corresponding sequence is added into the solution 

set. If no faults are detected by the sequence, then the last 

sequence generated in the corresponding cycle is added to the 

set. This process is repeated for max_iter.  

Function Phase I 

initial pop (FL) 

for (i=1; i<max_iter-1, i++) 

{ 

initial pop=phase I(FL); 

randomly generate sequences of length L; 

for (each sequence) 

    {  if sequence detects faults in the fault list 

        { 

            add sequence to the test set; 
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            drop the faults detected by that sequence; 

               } 

            } 

      return (initial population); 

   } 

Figure 2: The Pseudo-code of Phase I 

 

Phase II 

The initial population of GA is composed of the sequences 

generated in phase I. To generate a new population from the 

existing one, two individuals (parents) are selected and 

crossed to create two entirely individuals (child) and each 

child is mutated with some small mutation probability. The 

selection operator is rank based selection. In rank based 

selection, the solutions are sorted according to their fitness 

from the worst (rank 1) to the best (rank N).Each member in 

the sorted list is assigned a fitness equal to the rank of the 

solution in the list. Thereafter the proportionate selection 

operator is applied with the ranked fitness value and better 

solutions are chosen. The two parents are crossed to create 

two entirely new individuals (i.e.) child and each child is 

mutated with some small mutation probability. The two new 

individuals are than placed in the new population and the 

process continues until the generation is entirely filled. The 

previous population is discarded. Crossover used is one point 

crossover. A crossover probability of 2 and mutation 

probability of 0.03 is used in all circuits. The no_gen is 

assumed to be 16, to reduce the execution time. During test 

generation pop_size of 25 is used.  

Function Phase II 

{ 

Initial pop from phase1; 

for (l=1;l<no_gen-1;l++) 

  {  for (k=1; k<popsize-1;k++) 

       {   select two individuals from 

            population; 

            apply crossover with probability 2; 

            apply mutation with probability 0.03;} 

            compute fitness of the individuals; 

         for (each sequence) 

           if (sequence detects the faults in the fault list 

               {   add sequence to the solution set; 

                            drop the faults detected by the sequence; 

                        } 

                    } 

                } 

Figure 3: Pseudo-code of Phase II 

5. Conclusion 

SAT problems produce excellent results on various 

benchmarks. Multi-objective when applied on Boolean SAT 

makes it more scalable. It can also be applied to solve 

multiple SAT instances simultaneously in order to increase 

the speed of execution. 

 Multi-objective optimization is that in which we have to 

optimize multiple objectives. So this field can be applied to 

various SAT instances to increase the efficiency of test 

generation. 
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