
International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

20

An Optimised Density Based Clustering Algorithm

J. Hencil Peter

Department of Computer Science
St. Xavier’s College, Palayamkottai, India

A. Antonysamy
Department of Mathematics

St. Xavier’s College, Kathmandu, Nepal

ABSTRACT
The DBSCAN [1] algorithm is a popular algorithm in Data
Mining field as it has the ability to mine the noiseless arbitrary
shape Clusters in an elegant way. As the original DBSCAN
algorithm uses the distance measures to compute the distance

between objects, it consumes so much processing time and its
computation complexity comes as O (N2). In this paper we have
proposed a new algorithm to improve the performance of
DBSCAN algorithm. The existing algorithms A Fast DBSCAN
Algorithm[6] and Memory effect in DBSCAN algorithm[7] has
been combined in the new solution to speed up the performance
as well as improve the quality of the output. As the RegionQuery
operation takes long time to process the objects, only few objects

are considered for the expansion and the remaining missed border
objects are handled differently during the cluster expansion.
Eventually the performance analysis and the cluster output show
that the proposed solution is better to the existing algorithms.

Keywords
Optimised DBSCAN, Density Cluster, Optimised
RegionQuery, RegionQuery.

1. INTRODUCTION
Data mining is a fast growing field in which clustering plays a
very important role. Clustering is the process of grouping a set of
physical or abstract objects into classes of similar objects [2].
Among the many algorithms proposed in the clustering field,
DBSCAN is one of the most popular algorithms due to its high
quality of noiseless output clusters. As the original DBSCAN

algorithm RegionQuery function is very expensive factor in terms
of time, we have proposed a solution to minimize the
RegionQuery function call to cover the maximum neighbours in
an elegant way. The Fast DBSCAN Algroithm‟s[6] seleted seed
objects‟ RegionQuery has been improved to give the better
output, at the same time within less time using Memory effect in
DBSCAN algorithm[7]. The remaining objects present in the
border area have been examined separately during the cluster

expansion which is not done in the Fast DBSCAN Algorithm. So
the new algorithm is capable to give the better performance than
the existing DBSCAN algorithms.

Rest of the paper is organised as follows. Section 2 gives the brief
history about the related works in the same area. Section 3 gives
the introduction of original DBSCAN and section 4 explains the
proposed algorithm. After the new algorithm‟s explanation,

section 5 shows the Experimental Results and final section 6
presents the conclusion and future work associated with this
algorithm.

2. RELATED WORK
The DBSCAN (Density Based Spatial Clustering of Application
with Noise) [1] is the basic clustering algorithm to mine the

clusters based on objects density. In this algorithm, first the
number of objects present within the neighbour region (Eps) is
computed. If the neighbour objects count is below the given
threshold value, the object will be marked as NOISE. Otherwise

the new cluster will be formed from the core object by finding the
group of density connected objects that are maximal w.r.t density-
reachability.

The CHAMELEON [3] is a two phase algorithm. It generates a
k-nearest graph in the first phase and hierarchical cluster
algorithm has been used in the second phase to find the cluster by
combining the sub clusters.

The OPTICS [4] algorithm adopts the original DBSCAN
algorithm to deal with variance density clusters. This algorithm
computes an ordering of the objects based on the reachability
distance for representing the intrinsic hierarchical clustering
structure. The Valleys in the plot indicate the clusters. But the
input parameters ξ is critical for identifying the valleys as ξ
clusters.

The DENCLUE [5] algorithm uses kernel density estimation. The
result of density function gives the local density maxima value
and this local density value is used to form the clusters. If the
local density value is very small, the objects of clusters will be
discarded as NOISE.

A Fast DBSCAN (FDBSCAN) Algorithm[6] has been invented to
improve the speed of the original DBSCAN algorithm and the

performance improvement has been achieved through considering
only few selected representative objects belongs inside a core
object‟s neighbour region as seed objects for the further
expansion. Hence this algorithm is faster than the basic version of
DBSCAN algorithm and suffers with the loss of result accuracy.

The MEDBSCAN [7] algorithm has been proposed recently to
improve the performance of DBSCAN algorithm, at the same

time without loosing the result accuracy. In this algorithm totally
three queues have been used, the first queue will store the
neighbours of the core object which belong inside Eps distance,
the second queue is used to store the neighbours of the core object
which belong inside 2 * Eps distance and the third queue is the
seeds queue which store the unhandled objects for further
expansion. This algorithm guarantees some notable performance
improvement if Eps value is not very sensitive.

Though the DBSCAN algorithm‟s complexity can be reduced to
O (N * log N) using some spatial trees, it is an extra effort to
construct, organize the tree and the tree requires an additional
memory to hold the objects. In this new algorithm we have
achieved good performance with original computation complexity
O (N2).

3. INTRODUCTION TO DBSCAN

ALGORITHM
In the following definitions, a database D with set of points of k-
dimensional space S has been used. As we need to find out the
object neighbours which are exist/surrounded with in the given
radius (Eps), Euclidean function dist (p, q) has been used, where p
and q are the two objects. This function takes two objects and
gives the distance between them.

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

21

Definition 1: Eps Neighbourhood of an object p
The Eps Neighbourhood of an object p is referred as NEps(p),
defined as

 NEps(p) = {q D | dist(p,q) <=Eps}.

Definition 2: Core Object Condition

An Object p is referred as core object, if the neighbour objects
count >= given threshold value (MinObjs).

 i.e.|NEps(p)|>=MinObjs

Where MinObjs refers the minimum number of neighbour objects
to satisfy the core object condition. In the above case, if p has
neighbours which are exist within the Eps radius count is >=
MinObjs, p can be referred as core object.

Definition 3: Directly Density Reachable Object
An Object p is referred as directly density reachable from another
object q w.r.t Eps and MinObjs if

p NEps(q) and

|NEps(q)|>= MinObjs (Core Object condition)

Definition 4: Density Reachable Object
An object p is referred as density reachable from another object q

w.r.t Eps and MinObjs if there is a chain of objects p1,…,pn,
p1=q, pn=p such that pi+1 is directly density reachable from pi.

Definition 5: Density connected object
An Object p is density connected to another object q if there is an
object o such that both, p and q are density reachable from o w.r.t
Eps and MinObjs.

Definition 6: Cluster
A Cluster C is a non-empty subset of a Database D w.r.t Eps and
MinObjs which satisfying the following conditions.

For every p and q, if p cluster C and q is density reachable

from p w.r.t Eps and MinObjs then q C.

 For every p and q, q C; p is density connected to q w.r.t Eps
and MinObjs.

Definition 7: Noise
An object which doesn‟t belong to any cluster is called noise.

The DBSCAN algorithm finds the Eps Neighbourhood of each
object in a Database during the clustering process. Before the
cluster expansion, if the algorithm finds any non core object, it
will be marked as NOISE. With a core object, algorithm initiate a
cluster and surrounding objects will be added into the queue for

the further expansion. Each queue objects will be popped out and
find the Eps neighbour objects for the popped out object. When
the new object is a core object, all its neighbour objects will be
assigned with the current cluster id and its unprocessed neighbour
objects will be pushed into queue for further processing. This
process will be repeated until there is no object in the queue for
the further processing.

4. PROPOSED SOLUTION
A new algorithm has been proposed in this paper to overcome the
problem of the performance issue which exists in the density
based clustering algorithms. In this algorithm, number of
RegionQuery call has been reduced as well as some RegionQuery

calls speed has been improved. For reducing the RegionQuery

function calls, FDBSCAN Algorithm‟s [3] selected representative
objects as seed objects approach during the cluster expansion has
been used in this solution and this approach has been proved
theoretically using the following Lemmas 1 and 2. As the
RegionQuery retrieve the neighbour objects which belong inside

the Eps radius, Circle lemmas are given and which can be directly
used in the RegionQuery optimization.

Lemma 1: Minimum number of identical circles required to
cover the circumference of a circle with same radius which passes

through the centres of other circles is three.

Proof: Let C and C1 be the identical circles of radius r with
centre at O and O1 respectively. Assume the circle C passes
through the centre O1 of the circle C1 and the circle C1 passes
through the centre O of the circle C. Let the circles intersect at P
and Q.

Figure 1 Two Identical Circles‟ Intersection with respect to first
circle‟s Center Point.

Clearly, OP = OQ = r; O1P = O1Q = r and OO1 = r.

 O1OP and O1QO are equilateral.

 POO1 = QOO1 =
60

POQ = POO1 + QOO1 =
120

Now length of arc PO1Q =

r2
360

120

 = 3

r2

Thus arcual length 3

r2

of the circumference of the given circle
C is covered by C1. In order to cover the remaining part of the
circumference of circle C, draw a circle C2 of same radius r with
centre O2, passes through O and P. Let C2 intersect C at another
point R (say).

Figure 2 Four Identical Circles intersection w.r.t first Circle‟s

center point.

P

Q

O O1 C C1

120
o

P

Q

R

O2

O O1

O3

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

22

Length of arc PO2R = 3

r2

[proceeding as above]

i.e., arcual length 3

r2

of the circumference of the given circle C

is covered by C2

Thus the circles C1 and C2 can able to cover only 3

r4

part of the
circumference of the circle C. i.e., in order to cover the complete
circumference of the circle C we are required to draw one more

circle C3 passes through O , Q and R with centre at O3 and radius
r.

 Length of arc RO3Q = 3

r2

 Now, Length of arc PO1Q + Length of arc PO2R + Length

of arc RO3Q = 3 3

r2

= r2 , which is the perimeter of the
circumference of the circle C. Hence minimum three identical

circles required to cover the circumference of a circle with same
radius which passes through the centres of other circles.

 Lemma 1 proves that the minimum requirement to cover the
circumference of the center circle and these minimum circles
selection is equivalent to the RegionQuery call in the DBSCAN
algorithm. In the real scenario, three RegionQuery call is not
sufficient to cover most the neighbours which exist in the center

object‟s neighbours when the objects in the dataset is distributed
uniformly(assume the objects are distributed uniformly and the
distance between an object and its neighbour is 1). Moreover
these three RegionQuery function calls are not sufficient to cover
immediate neighbours of the center object‟s neighbours and this
problem is explained below:

Figure 3 Missing immediate neighbour Objects.

Above picture shows that a circle (“Original Circle”) is been
intersected by three other identical circles. Even though the three
circles are covering the full circumference of the original circle,
these three circles are not able to cover center circle‟s immediate
neighbours which are marked in red colour (p1, p2 and p3). i.e.
even if the distance between the intersection point and the
immediate neighbour point is 1, above scenario can‟t cover the all
its immediate neighbours. So the Lemma 2 has been introduced to

prove the minimum circles requirement to cover all the immediate
neighbours.
Lemma 2: Four identical circles are sufficient to cover all the
immediate neighbour objects of the original circle when the
objects are distributed uniformly.

Figure 4 Minimum Circles to cover the immediate neighbours.

Proof:

Clearly, O1OO2P is a square of side r.

OP = Diagonal of the square of side r = 2r

 Distance AP = 2r - r =
r12

 = 0.4142 r
Thus four circles are able to cover the objects which are at most

0.4142 r distance apart from the circumference of the original
circle C.
So we need minimum four RegionQuery call to cover all the
immediate neighbours of the center Object‟s neighbours and this
will cover > 80% of the neighbour objects of center object‟s
neighbours. This can be proved as follows:

Lemma 3: Four Identical Circles are sufficient to cover more
than 80 % of the neighbour objects of center circle when objects
are distributed uniformly.

Proof:

Figure 5 Neighbours unreachable area.

Area of outer circle (with radius 2r) =

2
r2

 = 4
2r

Area of the square PQRS (with side 2r) =

2
r2

 = 4r
2

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

23

Total area of four semi circles (each with radius r) =

2

r
4

2

=
2r2

Hence area of unmarked region = 4r
2

+
2r2

Area of marked region = 4
2r - (4r

2
+

2r2) =
2r2 - 4r

2

 = 2(

2r)2

Percentage of area in outer circle covered by the marked area =

%100
r4

2)r- 2(
2

2

 =

%50
2

= 18.169 %

Hence the area occupied by the marked region is < 20 percentage.

So in the real time scenario we can conclude that if we select four
seed objects for the cluster expansion from the center object‟s
neighbours we have the chances to ignore ~20 % of the objects
which present in the border region and the previous FDBSCAN

algorithm ignore these objects. In this solution, this problem has
been rectified and all the border objects have been considered for
the clustering operation.

To improve the performance of the algorithm, MEDBSCAN
Algorithm [6] approach has been applied. So there are two types
of Regionquery functions have been introduced in this algorithm
namely, LongRegionQuery and ShortRegionQuery. First
LongRegionQuery function will be called to get the region objects

present in Eps neighbours as well as 2*Eps neighbours
surrounded by the given object, the Eps distance neighbours from
the center object will be stored in the InnerRegionObjects queue
and the objects which are greater than Eps and less than or equal
to 2*Eps distance from the center objects will be stored in
OuterRegionObjects queue respectively. Later the selected seed
objects present in the Eps neighbour region will be processed
using the ShortRegionQuery function call. So the

ShortRegionQuery function call will be always faster than the
LongRegionQuery function as it needs to process only few
objects which are present in the InnerRegionObjects as well as
OuterRegionObjects and no need to process the entire objects
present in the data set.

Another change in the proposed solution to improve the speed is
modification of queue structure. i.e InnerRegionObjects and

OuterRegionObjects queues are the combination of four sub
queues.

RegionObjectsQueue
{
 TopRightQueue;
 RightBottomQueue;
 BottomLeftQueue;

 LeftTopQueue;
}

4.1 Proposed Queue Structure
So InnerRegionObjects and OuterRegionObjects queues will

maintain the corresponding region objects internally in four
queues. Following diagram shows each queue‟s object storage
areas.

Figure 6 RegionObjectsQueue‟s storage area classification.

This type of separation helps to minimize the unwanted distance
computation while processing the border objects. i.e. while
processing OuterRegionObjects queue‟s unprocessed objects, we
can consider only the adjacent portion of the InnerRegionObjects
queue‟s objects and other non adjacent portions objects can be
ignored. This concept has been explained as follows.

4.2 Neighbour computation Ignore Case
Let „O‟ is an Outer Circle with radius 2r and „I‟ is an inner circle
with radius r. Both of these circles are sharing the same Center
point „C‟ and these two circles are equally divided into four parts
as shown in the below picture (to perform the RegionQuery

operation).

Figure 7 Inner and Outer Region Objects.

Here the inner circle objects‟ neighbour objects are present in the
outer circle‟s marked area (with brown colour) and the inner
circle itself. Now we can confirm that any object present in the
inner circle‟s any one of the quarter area (I1 OR I2 OR I3 OR I4),
will have its neighbour(s) in the 3 of the adjacent quarter part of
the outer circle and the inner circle itself (four quarter parts). Thus

we can ignore the outer circle‟s non adjacent quarter part from the
unnecessary computation.

 (e.g)

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

24

Figure 8 Availability of Neighbour Objects in the Circle‟s
Portion.

In the above diagram Inner Circle‟s I3 quarter portion has been

considered for the neighbour computation. The object present in
the I3 quarter portion will have its neighbours in O4, O3, O2 and
the Inner circle itself (I1, I2, I3 and I4), but not in O1 portion. i.e.
Maximum r distance is the valid distance for neighbour
computation and I3‟s object require minimum r+1 distance to
reach another object which is present in the O1 portion and this
condition is not possible (Invalid condition has been shown in the
diagram in red colour). Similarly while processing the border

objects present in the OuterRegion, only the adjacent quarter
portion of inner region objects are enough for the computation to
know whether it is density reachable to any of the objects present
in the InnerRegionObjects.

This is another optimization done in the new algorithm to speed
up the computation as well as improve the accuracy of output. In
the FDBSCAN algorithm, chances of missing the core objects as

well as border objects are applicable and in this new approach all
the border objects have been covered. Also it is proved that the
core objects loss is very rare case and the new solution is better in
most of the cases in the real time scenario.

4.3 Algorithm

1. Read D, Eps and MinObjs.
2. Initialize all objects Cluster ID field as

UNCLASSIFIED.

3. For each UNCLASSIFIED object o D
4. Call LongRegionQuery function with D, Eps and o

parameters to be obtain InnerRegionObjects
and OuterRegionObjects.

5. IF o is a core object Then
6. Get the ClusterID for the new Cluster.
7. Select four UNCLASSIFIED objects from the

InnterRegionObjects‟ TopRight, RightBottom,
BottomLeft and LeftTop Queues each for the further
cluster expansion and push the selected objects to

FourObjectsQueue. The selected objects should have
the max distance from the center object o.

8. Assign ClusterID to all the UNCLASSIFIED and
NOISE type Objects present in the
InnterRegionObjects.

9. For each object T FourObjectsQueue

10. Call ShortRegionQuery function with
InnerRegionObjects, OuterRegionObjects, Eps and
Object T to obtain the ShortRegionObjects.

11. Select four UNCLASSIFIED objects from the
ShortRegionObjects‟ TopRight, RightBottom,

BottomLeft and LeftTop Queues for the further cluster
expansion. The selected Objects should have the max
distance from the center object T. Push the selected
objects to SeedQueue for the further processing.

12. Assign ClusterID to all the UNCLASSIFIED and

NOISE type Objects present in the ShortRegionObjects.
13. End For
14. Remove the clustered objects from the

OuterRegionObjects and process the remaining
(UNCLASSIFIED and NOISE type) Objects to know if
any one of the InnerRegionObjects neighbour present in
the UNCLASSIFIED and NOISE type
OuterRegionObjects. i.e if any remaining objects

present in the OuterRegionObjects is density reachable
from the center object o‟s neighbour, assign ClusterID
to the Object.

15. Pop the objects s from SeedQueue, Repeat the steps
from 4-14 and until the SeedQueue is Empty. For all
the above steps replace the object o with SeedQueue
Object s wherever it is applicable.

16. Else

17. Mark o as NOISE
18. End If
19. End For

This algorithm read the same input as like original DBSCAN and
all the objects are initialized as UNCLASSIFIED in the
beginning. Afterwards all the UNCLASSIFIED objects are
processed one by one. So the algorithm starts with
LongRegionQuery function call to obtain the Neighbour objects
(InnerRegionobjects and OuterRegionObjects) and the cluster

expansion will happen only if the current object is a core object,
otherwise the current object will be market as NOISE. During the
cluster expansion, the new Cluster ID will get created and four
UNCLASSIFIED objects are selected from the
InnerRegionobjects‟ four queues each and these objects should
have the maximum distance from the center object. After
assigning the Cluster ID to all the Objects present in the
InnerRegionObjects queue, the selected four objects will be

processed. Here the four objects are the maximum count and if
there is no UNCLASSIFIED object present in one or more
specific queues, the selected objects count will be less than 4. For
processing these objects, ShortRegionQuery has been used and
each ShorRegionQuery operation, maximum four seed objects
will be selected which meets the above condition and pushed into
seed queue for the further cluster expansion. The
ShortRegionQuery takes the return array objects of
LongRegionQuery function and will not process the whole Data

set in the subsequent iteration. Thus the performance
improvement has been guaranteed when the Eps value is
reasonably insensitive. The Cluster ID will be assigned to the
ShortRegionQuery‟s output objects if the object is either
UNCLASSIFIED or NOISE. Now the remaining
UNCLASSIFIED or NOISE type objects present in the
OuterRegionObjects queue is processed and which uses the
“Neighbour computation Ignore Case” computation approach to

minimize the computation and speed up the performance. After
repeating these steps as mentioned in the algorithm and when the
SeedQueue become empty, the current cluster expansion will stop
and the control moves to process the next object
UNCLASSIFIED type object using the parent for loop. The
whole clustering process will be over once the main loop visits
the entire N objects present in the data set.

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

25

5. PERFORMANCE ANALYSIS
The basic DBSCAN, Fast DBSCAN and proposed Optimized

DBSCAM algorithms are implemented in Visual C++ (2008) on
Windows Vista OS and tested using two dimensional Dataset. To
know the real performance difference achieved in the new
algorithm, we haven‟t used any additional data structures (like
spatial tree) to improve the performance. These algorithms are
tested using two dimensional synthetic dataset and the
performance results are shown below.

Table 1 Running time of Algorithms in Seconds

N
u

m
b

er
 o

f

O
b

je
ct

s

DBSCAN FDBSCAN ODBSCAN

R
u

n
n

in
g

ti
m

e

O
b

je
ct

s

lo
ss

R

u
n

n
in

g

ti
m

e

O
b

je
ct

s

lo
ss

R
u

n
n

in
g

ti
m

e

O
b

je
ct

s

lo
ss

 300 0.096 0 0.078 3 0.064 0

500 0.274 0 0.185 11 0.128 1

700 0.483 0 0.256 26 0.177 3

1200 1.024 0 0.581 34 0.345 7

2500 4.850 0 1.021 77 0.662 13

Above table shows that the new algorithm‟s performance is better
to the existing algorithms in terms of computation time and the
new algorithm has small number of object loss than the Fast
DBSCAN algorithm.

6. CONCLUSION AND FUTURE WORK
In this paper we have proposed ODBSCAN algorithm to improve
the performance with less amount of object loss. In this new
algorithm FDBSCAN and MEDBSCAN algorithms approach has
been used to improve the performance. Also some new techniques
have been introduced to minimize the distance computation during
the RegionQuery function call. Eventually the performance
analysis and the output shows that the newly proposed ODBSCAN
algorithm gives better output, at the same time with good
performance.

In this algorithm, all the border objects have been considered for

the clustering process. But there are few possibilities to miss the
core objects and which causes some loss of objects. Though the
new algorithm gives better result than the previous FDBSCAN
algorithm, this problem needs to be resolved in the further work to
give the accurate result with same performance.

7. REFERENCES
[1] Ester M., Kriegel H.-P., Sander J., and Xu X. (1996) “A

Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise” In Proceedings of the 2nd
International Conference on Knowledge Discovery and Data
Mining (KDD‟96), Portland: Oregon, pp. 226-231

[2] J. Han and M. Kamber, Data Mining Concepts and
Techniques. Morgan Kaufman, 2006.

[3] G. Karypis, E. H. Han, and V. Kumar, “CHAMELEON: A
hierarchical clustering algorithm using dynamic modeling,”
Computer, vol. 32, no. 8, pp. 68–75, 1999.

[4] M. Ankerst, M. Breunig, H. P. Kriegel, and J. Sander,
“OPTICS: Ordering Objects to Identify the Clustering Structure,
Proc. ACM SIGMOD,” in International Conference on
Management of Data, 1999, pp. 49–60.

[5] A. Hinneburg and D. Keim, “An efficient approach to
clustering in large multimedia data sets with noise,” in 4th
International Conference on Knowledge Discovery and Data
Mining, 1998, pp. 58–65.

[6] SHOU Shui-geng, ZHOU Ao-ying JIN Wen, FAN Ye and
QIAN Wei-ning.(2000) "A Fast DBSCAN Algorithm" Journal of
Software: 735-744.

[7] Li Jian; Yu Wei; Yan Bao-Ping; , "Memory effect in
DBSCAN algorithm," Computer Science & Education, 2009.
ICCSE '09. 4th International Conference on , vol., no., pp.31-36,
25-28 July 2009.

AUTHOR PROFILES
J. Hencil Peter is Research Scholar, St. Xavier‟s College
(Autonomous), Palayamkottai, Tirunelveli, India. He earned his
MCA (Master of Computer Applications) degree from
Manonmaniam Sundaranar University, Tirunelveli. Now he is

doing Ph.D in Computer Applications and Mathematics
(Interdisciplinary) at Manonmaniam Sundranar University,
Tirunelveli. His interested research area is algorithms inventions
in data mining.

Dr. A. Antonysamy is Principal of St. Xavier‟s College,
Kathmandu, Nepal. He completed his Ph.D in Mathematics for
the research on “An algorithmic study of some classes of
intersection graphs”. He has guided and guiding many research

students in Computer Science and Mathematics. He has
published many research papers in national and international
journals. He has organized Seminars and Conferences in state and
national level.

