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ABSTRACT 
The DBSCAN [1] algorithm is a popular algorithm in Data 
Mining field as it has the ability to mine the noiseless arbitrary 
shape Clusters in an elegant way. As the original DBSCAN 
algorithm uses the distance measures to compute the distance 

between objects, it consumes so much processing time and its 
computation complexity comes as O (N2).  In this paper we have 
proposed a new algorithm to improve the performance of 
DBSCAN algorithm.  The existing algorithms A Fast DBSCAN 
Algorithm[6] and Memory effect in DBSCAN algorithm[7] has 
been combined in the  new solution  to speed up the performance 
as well as improve the quality of the output.  As the RegionQuery 
operation takes long time to process the objects, only few objects 

are considered for the expansion and the remaining missed border 
objects are handled differently during the cluster expansion. 
Eventually the performance analysis and the cluster output show 
that the proposed solution is better to the existing algorithms. 
 

Keywords 
Optimised DBSCAN, Density Cluster, Optimised 
RegionQuery, RegionQuery. 

 

1. INTRODUCTION 
Data mining is a fast growing field in which clustering plays a 
very important role. Clustering is the process of grouping a set of 
physical or abstract objects into classes of similar objects [2]. 
Among the many algorithms proposed in the clustering field, 
DBSCAN is one of the most popular algorithms due to its high 
quality of noiseless output clusters. As the original DBSCAN 

algorithm RegionQuery function is very expensive factor in terms 
of time, we have proposed a solution to minimize the 
RegionQuery function call to cover the maximum neighbours in 
an elegant way.   The Fast DBSCAN Algroithm‟s[6] seleted seed 
objects‟ RegionQuery has been improved to give the better 
output, at the same time within less time using Memory effect in 
DBSCAN algorithm[7].  The remaining objects present in the 
border area have been examined separately during the cluster 

expansion which is not done in the Fast DBSCAN Algorithm.  So 
the new algorithm is capable to give the better performance than 
the existing DBSCAN algorithms. 
 
Rest of the paper is organised as follows. Section 2 gives the brief 
history about the related works in the same area.  Section 3 gives 
the introduction of original DBSCAN and section 4 explains the 
proposed algorithm.  After the new algorithm‟s explanation, 

section 5 shows the Experimental Results and final section 6 
presents the conclusion and future work associated with this 
algorithm.   

 

2. RELATED WORK 
The DBSCAN (Density Based Spatial Clustering of Application 
with Noise) [1] is the basic clustering algorithm to mine the 

clusters based on objects density.  In this algorithm, first the 
number of objects present within the neighbour region (Eps) is 
computed.  If the neighbour objects count is below the given 
threshold value, the object will be marked as NOISE.  Otherwise 

the new cluster will be formed from the core object by finding the 
group of density connected objects that are maximal w.r.t density-
reachability.   

 
The CHAMELEON [3] is a two phase algorithm.  It generates a 
k-nearest graph in the first phase and hierarchical cluster 
algorithm has been used in the second phase to find the cluster by 
combining the sub clusters.   

 
The OPTICS [4] algorithm adopts the original DBSCAN 
algorithm to deal with variance density clusters.  This algorithm 
computes an ordering of the objects based on the reachability 
distance for representing the intrinsic hierarchical clustering 
structure.   The Valleys in the plot indicate the clusters.  But the 
input parameters ξ is critical for identifying the valleys as ξ 
clusters. 

 
The DENCLUE [5] algorithm uses kernel density estimation.  The 
result of density function gives the local density maxima value 
and this local density value is used to form the clusters.  If the 
local density value is very small, the objects of clusters will be 
discarded as NOISE.  
 
A Fast DBSCAN (FDBSCAN) Algorithm[6] has been invented to 
improve the speed of the original DBSCAN algorithm and the 

performance improvement has been achieved through considering 
only few selected representative objects belongs inside a core 
object‟s neighbour region as seed objects for the further 
expansion.  Hence this algorithm is faster than the basic version of 
DBSCAN algorithm and suffers with the loss of result accuracy.   
 
The MEDBSCAN [7] algorithm has been proposed recently to 
improve the performance of DBSCAN algorithm, at the same 

time without loosing the result accuracy.   In this algorithm totally 
three queues have been used, the first queue will store the 
neighbours of the core object which belong inside Eps distance, 
the second queue is used to store the neighbours of the core object 
which belong inside  2 * Eps distance and the third queue is the 
seeds queue which store the unhandled objects for further 
expansion. This algorithm guarantees some notable performance 
improvement if Eps value is not very sensitive.  

 
Though the DBSCAN algorithm‟s complexity can be reduced to 
O (N * log N) using some spatial trees, it is an extra effort to 
construct, organize the tree and the tree requires an additional 
memory to hold the objects.  In this new algorithm we have 
achieved good performance with original computation complexity 
O (N2). 

 

3. INTRODUCTION TO DBSCAN 

ALGORITHM 
In the following definitions, a database D with set of points of k-
dimensional space S has been used.   As we need to find out the 
object neighbours which are exist/surrounded with in the given 
radius (Eps), Euclidean function dist (p, q) has been used, where p 
and q are the two objects.  This function takes two objects and 
gives the distance between them. 
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Definition 1:  Eps Neighbourhood of an object p 
The Eps Neighbourhood of an object p is referred as NEps(p), 
defined as 
 

   NEps(p) = {q D | dist(p,q) <=Eps}. 

 
Definition 2:  Core Object Condition 

An Object p is referred as core object, if the neighbour objects 
count >= given threshold value (MinObjs). 
 
 i.e.|NEps(p)|>=MinObjs 
 
Where MinObjs refers the minimum number of neighbour objects 
to satisfy the core object condition.  In the above case, if p has 
neighbours which are exist within the Eps radius count is >= 
MinObjs, p can be referred as core object. 

 
Definition 3: Directly Density Reachable Object  
An Object p is referred as directly density reachable from another 
object q w.r.t Eps and MinObjs if 
 

p NEps(q) and 

 
|NEps(q)|>= MinObjs (Core Object condition) 
 
Definition 4:  Density Reachable Object 
An object p is referred as density reachable from another object q 

w.r.t Eps and MinObjs if there is a chain of objects p1,…,pn, 
p1=q, pn=p such that pi+1 is directly density reachable from pi. 
 
Definition 5:  Density connected object 
An Object p is density connected to another object q if there is an 
object o such that both, p and q are density reachable from o w.r.t 
Eps and MinObjs. 
 

Definition 6: Cluster 
A Cluster C is a non-empty subset of a Database D w.r.t Eps and 
MinObjs which satisfying the following conditions. 
 

For every p and q, if p  cluster C and q is density reachable 

from p w.r.t Eps and MinObjs then q  C. 

 For every p and q, q  C; p is density connected to q w.r.t Eps 
and MinObjs. 

 
Definition 7: Noise 
An object which doesn‟t belong to any cluster is called noise. 
 
The DBSCAN algorithm finds the Eps Neighbourhood of each 
object in a Database during the clustering process. Before the 
cluster expansion, if the algorithm finds any non core object, it 
will be marked as NOISE.  With a core object, algorithm initiate a 
cluster and surrounding objects will be added into the queue for 

the further expansion.  Each queue objects will be popped out and 
find the Eps neighbour objects for the popped out object.  When 
the new object is a core object, all its neighbour objects will be 
assigned with the current cluster id and its unprocessed neighbour 
objects will be pushed into queue for further processing.  This 
process will be repeated until there is no object in the queue for 
the further processing. 
 

4.   PROPOSED SOLUTION 
A new algorithm has been proposed in this paper to overcome the 
problem of the performance issue which exists in the density 
based clustering algorithms.  In this algorithm, number of 
RegionQuery call has been reduced as well as some RegionQuery 

calls speed has been improved.  For reducing the RegionQuery 

function calls, FDBSCAN Algorithm‟s [3] selected representative 
objects as seed objects approach during the cluster expansion has 
been used in this solution and this approach has been proved 
theoretically using the following Lemmas 1 and 2. As the 
RegionQuery retrieve the neighbour objects which belong inside 

the Eps radius, Circle lemmas are given and which can be directly 
used in the RegionQuery optimization.  

 
Lemma 1:   Minimum number of identical circles required to 
cover the circumference of a circle with same radius which passes 

through the centres of other circles is three. 
 
Proof:   Let C and C1 be the identical circles of radius r with 
centre at O and O1 respectively. Assume the circle C passes 
through the centre O1 of the circle C1 and the circle C1 passes 
through the centre O of the circle C. Let the circles intersect at P 
and Q. 

 

 
 

 
Figure 1 Two Identical Circles‟ Intersection with respect to first 
circle‟s Center Point. 
 
Clearly, OP = OQ = r; O1P = O1Q = r and OO1 = r. 
 

 O1OP and   O1QO are equilateral. 

  POO1 = QOO1 = 
60  

POQ = POO1 + QOO1 = 
120  

Now length of arc PO1Q = 

r2
360

120




    = 3

r2

 

Thus arcual length 3

r2

of the circumference of the given circle 
C is covered by C1.  In order to cover the remaining part of the 
circumference of circle C, draw a circle C2 of same radius r with 
centre O2, passes through O and P. Let C2 intersect C at another 
point R (say). 

 
Figure 2 Four Identical Circles intersection w.r.t first Circle‟s 

center point. 

P 

Q 
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Length of arc PO2R =   3

r2

[proceeding as above] 

i.e., arcual length 3

r2

of the circumference of the given circle C 

is covered by C2 

Thus the circles C1 and C2 can able to cover only 3

r4

part of the 
circumference of the circle C. i.e., in order to cover the complete 
circumference of the circle C we are required to draw one more 

circle C3 passes through O , Q and R with centre at O3 and radius 
r.   

          Length of arc RO3Q =   3

r2

 
          Now, Length of arc PO1Q + Length of arc PO2R + Length 

of arc RO3Q   = 3 3

r2

= r2 ,  which is the perimeter of the 
circumference of the circle C.  Hence minimum three identical 

circles required to cover the circumference of a circle with same 
radius which passes through the centres of other circles. 
 
 Lemma 1 proves that the minimum requirement to cover the 
circumference of the center circle and these minimum circles 
selection is equivalent to the RegionQuery call in the DBSCAN 
algorithm.  In the real scenario, three RegionQuery call is not 
sufficient to cover most the neighbours which exist in the center 

object‟s neighbours when the objects in the dataset is distributed 
uniformly(assume the objects are distributed  uniformly and the 
distance between an object and its neighbour is 1).  Moreover 
these three RegionQuery function calls are not sufficient to cover 
immediate neighbours of the center object‟s neighbours and this 
problem is explained below: 

 
Figure 3 Missing immediate neighbour Objects. 

 
Above picture shows that a circle (“Original Circle”) is been 
intersected by three other identical circles.  Even though the three 
circles are covering the full circumference of the original circle, 
these three circles are not able to cover center circle‟s immediate 
neighbours which are marked in red colour (p1, p2 and p3). i.e. 
even if the distance between the intersection point and the 
immediate neighbour point is 1, above scenario can‟t cover the all 
its immediate neighbours. So the Lemma 2 has been introduced to 

prove the minimum circles requirement to cover all the immediate 
neighbours.  
Lemma 2: Four identical circles are sufficient to cover all the 
immediate neighbour objects of the original circle when the 
objects are distributed uniformly. 

 

 
 
Figure 4 Minimum Circles to cover the immediate neighbours. 

 
Proof: 
 
Clearly, O1OO2P  is a square of side r. 

OP   = Diagonal of the square of side r     = 2r  

 Distance AP = 2r  - r = 
r12

        = 0.4142 r 
Thus four circles are able to cover the objects which are at most 

0.4142 r distance apart from the circumference of the original 
circle C. 
So we need minimum four RegionQuery call to cover all the 
immediate neighbours of the center Object‟s neighbours and this 
will cover > 80% of the neighbour objects of center object‟s 
neighbours.  This can be proved as follows: 
 
Lemma 3:  Four Identical Circles are sufficient to cover more 
than 80 % of the neighbour objects of center circle when objects 
are distributed uniformly. 
 

Proof: 

 
 
Figure 5 Neighbours unreachable area.  

Area of outer circle (with radius 2r) =

2
r2

 = 4
2r  

Area of the square PQRS (with side 2r) = 

2
r2

 = 4r
2
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Total area of four semi circles (each with radius r) = 

2

r
4

2

=
2r2  

Hence area of unmarked region           = 4r
2

+ 
2r2  

 

Area of marked region = 4
2r - (4r

2
+ 

2r2 ) = 
2r2 - 4r

2

    = 2(

2r)2
 

 
Percentage of area in outer circle covered by the marked area = 

%100
r4

2)r- 2(
2

2

 
      

    = 

%50
2

= 18.169 % 

Hence the area occupied by the marked region is < 20 percentage. 
 
So in the real time scenario we can conclude that if we select four 
seed objects for the cluster expansion from the center object‟s 
neighbours we have the chances to ignore ~20 % of the objects 
which present in the border region and the previous FDBSCAN 

algorithm ignore these objects.  In this solution, this problem has 
been rectified and all the border objects have been considered for 
the clustering operation.   
 
To improve the performance of the algorithm, MEDBSCAN 
Algorithm [6] approach has been applied. So there are two types 
of Regionquery functions have been introduced in this algorithm 
namely, LongRegionQuery and ShortRegionQuery.  First 
LongRegionQuery function will be called to get the region objects 

present in Eps neighbours as well as 2*Eps neighbours 
surrounded by the given object, the Eps distance neighbours from 
the center object will be stored in the InnerRegionObjects queue 
and the objects which are greater than Eps and less than or equal 
to 2*Eps distance from the center objects will be stored in 
OuterRegionObjects queue respectively. Later the selected seed 
objects present in the Eps neighbour region will be processed 
using the ShortRegionQuery function call.   So the 

ShortRegionQuery function call will be always faster than the 
LongRegionQuery function as it needs to process only few 
objects which are present in the InnerRegionObjects as well as 
OuterRegionObjects and no need to process the entire objects 
present in the data set. 
 
Another change in the proposed solution to improve the speed is 
modification of queue structure. i.e  InnerRegionObjects and 

OuterRegionObjects queues are the combination of  four sub 
queues.  
 
RegionObjectsQueue 
{ 
       TopRightQueue; 
       RightBottomQueue; 
       BottomLeftQueue; 

       LeftTopQueue;  
} 

 

 

 

4.1 Proposed Queue Structure 
So InnerRegionObjects and OuterRegionObjects queues will 

maintain the corresponding region objects internally in four 
queues. Following diagram shows each queue‟s object storage 
areas. 

 

 
 
Figure 6 RegionObjectsQueue‟s storage area classification. 

 
This type of separation helps to minimize the unwanted distance 
computation while processing the border objects.  i.e. while 
processing OuterRegionObjects queue‟s unprocessed objects, we 
can consider only the adjacent portion of the InnerRegionObjects 
queue‟s objects and other non adjacent portions objects can be 
ignored.  This concept has been explained as follows. 
 

4.2 Neighbour computation Ignore Case 
Let „O‟ is an Outer Circle with radius 2r and „I‟ is an inner circle 
with radius r.  Both of these circles are sharing the same Center 
point „C‟ and these two circles are equally divided into four parts 
as shown in the below picture (to perform the RegionQuery 

operation). 
 

 

 
 
Figure 7 Inner and Outer Region Objects. 
 
Here the inner circle objects‟ neighbour objects are present in the 
outer circle‟s marked area (with brown colour) and the inner 
circle itself.   Now we can confirm that any object present in the 
inner circle‟s any one of the quarter area (I1 OR I2 OR I3 OR I4), 
will have its neighbour(s) in the 3 of the adjacent quarter part of 
the outer circle and the inner circle itself (four quarter parts). Thus 

we can ignore the outer circle‟s non adjacent quarter part from the 
unnecessary computation. 
 
 (e.g) 
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Figure 8 Availability of Neighbour Objects in the Circle‟s 
Portion. 
 
In the above diagram Inner Circle‟s I3 quarter portion has been 

considered for the neighbour computation.  The object present in 
the I3 quarter portion will have its neighbours in O4, O3, O2   and 
the Inner circle itself (I1, I2, I3 and I4), but not in O1 portion.  i.e.   
Maximum r distance is the valid distance for neighbour 
computation and I3‟s object require minimum r+1 distance to 
reach another object which is present in the O1 portion and this 
condition is not possible (Invalid condition has been shown in the 
diagram in red colour).  Similarly while processing the border 

objects present in the OuterRegion, only the adjacent quarter 
portion of inner region objects are enough for the computation to 
know whether it is density reachable to any of the objects present 
in the InnerRegionObjects. 
 
This is another optimization done in the new algorithm to speed 
up the computation as well as improve the accuracy of output.  In 
the FDBSCAN algorithm, chances of missing the core objects as 

well as border objects are applicable and in this new approach all 
the border objects have been covered.  Also it is proved that the 
core objects loss is very rare case and the new solution is better in 
most of the cases in the real time scenario. 

 

4.3 Algorithm  
 

1. Read D, Eps and MinObjs. 
2. Initialize all objects Cluster ID field as 

UNCLASSIFIED. 

3. For each UNCLASSIFIED object o  D 
4. Call LongRegionQuery function with D, Eps and o 

parameters to be obtain                 InnerRegionObjects 
and OuterRegionObjects.   

5. IF o is a core object Then 
6. Get the ClusterID for the new Cluster. 
7. Select four UNCLASSIFIED objects from the 

InnterRegionObjects‟ TopRight, RightBottom, 
BottomLeft and LeftTop Queues each for the further 
cluster expansion and push the selected objects to 

FourObjectsQueue. The selected objects should have 
the max distance from the center object o. 

8. Assign ClusterID to all the UNCLASSIFIED and 
NOISE type Objects present in the 
InnterRegionObjects. 

9. For each object T  FourObjectsQueue 

10. Call ShortRegionQuery function with 
InnerRegionObjects, OuterRegionObjects,         Eps and 
Object T to obtain the   ShortRegionObjects.  

11. Select four UNCLASSIFIED objects from the 
ShortRegionObjects‟ TopRight, RightBottom, 

BottomLeft and LeftTop Queues for the further cluster 
expansion. The selected Objects should have the max 
distance from the center object T. Push the selected 
objects to SeedQueue for the further processing.  

12. Assign ClusterID to all the UNCLASSIFIED and 

NOISE type Objects present in the ShortRegionObjects. 
13. End For 
14. Remove the clustered objects from the 

OuterRegionObjects and process the remaining 
(UNCLASSIFIED and NOISE type) Objects to know if 
any one of the InnerRegionObjects neighbour present in 
the UNCLASSIFIED and NOISE type 
OuterRegionObjects. i.e if any remaining objects 

present in the OuterRegionObjects is density reachable 
from the center object o‟s neighbour, assign ClusterID 
to the Object.  

15. Pop the objects s from SeedQueue, Repeat the steps 
from 4-14 and until the SeedQueue is Empty.  For all 
the above steps replace the object o with SeedQueue 
Object s wherever it is applicable. 

16. Else  

17. Mark o as NOISE 
18. End If 
19. End For 

 
This algorithm read the same input as like original DBSCAN and 
all the objects are initialized as UNCLASSIFIED in the 
beginning.  Afterwards all the UNCLASSIFIED objects are 
processed one by one.  So the algorithm starts with 
LongRegionQuery function call to obtain the Neighbour objects 
(InnerRegionobjects and OuterRegionObjects) and the cluster 

expansion will happen only if the current object is a core object, 
otherwise the current object will be market as NOISE.  During the 
cluster expansion, the new Cluster ID will get created and four 
UNCLASSIFIED objects are selected from the 
InnerRegionobjects‟ four queues each and these objects should 
have the maximum distance from the center object.  After 
assigning the Cluster ID to all the Objects present in the 
InnerRegionObjects queue, the selected four objects will be 

processed.  Here the four objects are the maximum count and if 
there is no UNCLASSIFIED object present in one or more 
specific queues, the selected objects count will be less than 4.  For 
processing these objects, ShortRegionQuery has been used and 
each ShorRegionQuery operation, maximum four seed objects 
will be selected which meets the above condition and pushed into 
seed queue for the further cluster expansion. The 
ShortRegionQuery takes the return array objects of 
LongRegionQuery function and will not process the whole Data 

set in the subsequent iteration. Thus the performance 
improvement has been guaranteed when the Eps value is 
reasonably insensitive.  The Cluster ID will be assigned to the 
ShortRegionQuery‟s output objects if the object is either 
UNCLASSIFIED or NOISE.  Now the remaining 
UNCLASSIFIED or NOISE type objects present in the 
OuterRegionObjects queue is processed and which uses the 
“Neighbour computation Ignore Case” computation approach to 

minimize the computation and speed up the performance.  After 
repeating these steps as mentioned in the algorithm and when the 
SeedQueue become empty, the current cluster expansion will stop 
and the control moves to process the next object 
UNCLASSIFIED type object using the parent for loop.  The 
whole clustering process will be over once the main loop visits 
the entire N objects present in the data set. 
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5. PERFORMANCE ANALYSIS 
The basic DBSCAN, Fast DBSCAN and proposed Optimized 

DBSCAM algorithms are implemented in Visual C++ (2008) on 
Windows Vista OS and tested using two dimensional Dataset. To 
know the real performance difference achieved in the new 
algorithm, we haven‟t used any additional data structures (like 
spatial tree) to improve the performance.   These algorithms are 
tested using two dimensional synthetic dataset and the 
performance results are shown below. 

 
Table 1 Running time of Algorithms in Seconds   
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  300 0.096 0 0.078 3 0.064 0 

500 0.274 0 0.185 11 0.128 1 

700 0.483 0 0.256 26 0.177 3 

1200 1.024 0 0.581 34 0.345 7 

2500 4.850 0 1.021 77 0.662 13 

 
Above table shows that the new algorithm‟s performance is better 
to the existing algorithms in terms of computation time and the 
new algorithm has small number of object loss than the Fast 
DBSCAN algorithm. 
 

6. CONCLUSION AND FUTURE WORK 
In this paper we have proposed ODBSCAN algorithm to improve 
the performance with less amount of object loss.  In this new 
algorithm FDBSCAN and MEDBSCAN algorithms approach has 
been used to improve the performance.  Also some new techniques 
have been introduced to minimize the distance computation during 
the RegionQuery function call.  Eventually the performance 
analysis and the output shows that the newly proposed ODBSCAN 
algorithm gives better output, at the same time with good 
performance.   

In this algorithm, all the border objects have been considered for 

the clustering process. But there are few possibilities to miss the 
core objects and which causes some loss of objects. Though the 
new algorithm gives better result than the previous FDBSCAN 
algorithm, this problem needs to be resolved in the further work to 
give the accurate result with same performance. 
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