
International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

11

Algorithm for Generating Test Case for Prerequisite of
Software Requirement

Ravi Prakash Verma
Department of Computer Science &

Engineering
Integral University

Bal Gopal
Dean

Department of Computer Applications
Integral University

Md Rizwan Beg
HOD

Department of Computer Science &
Engineering

Integral University

ABSTRACT
Requirements play an important role in conformance of software
quality, which is verified and validated through software testing.
Requirements may have certain pre requisites which are to be

tested first in order to start formal testing process. In this paper we
present an approach to generate test case for testing software
requirement pre requisites for GUI. Our approach takes pre
requisites expressed in natural language and generates test cases
from it. It also generates test case to expose the relationship
between various components and elements present in prerequisites
of GUI based windows forms.

General Terms
Software Requirements, testing

Keywords
Software testing, requirement prerequisite, test case generation

1. INTRODUCTION
The software testing is one the most important activity in the
SDLC [8]. It authenticate whether the software being developed
solves the intended purpose or not [2]. “Software systems
continuously grow in scale and functionality” [1]. Software
testing confirms that software being developed as per
requirements [12]. At present test cases are written manually by
testers [3] [13]. This is most error prone area as important case

may be missed out by the tester [3]. Further earlier we find a
defect less is the cost of correcting it and we save time, effort and
money [4] [14]. But task of generating test case form the software
is not an easy task. Many different approaches to express software
requirement exist making it more complicated [15]. Out of many
approaches the expression of software requirement in English is
most popular due to prime reason of understandability by both
client and developer [16]. Therefore in this paper we choose to
work with the requirements expressed in natural language such as

English and we attempt to develop an algorithm to generate test
cases to verify the pre perquisite of a GUI requirement
(functional). In the GUI based software [9] [10], requirements are
implemented having GUI Interface. Where the pre-requisites are
whether we have the proper controls for taking user input and
associated labels and captions are appropriate, so that even a
novice user can operate.

2. PROBLEM DIAGNOSIS
A requirement may have many prerequisites and sub requirements

[9] [10] see figure 1. These are implemented using windows form.
The windows form interface accepts the user input directly into
many controls or objects. For example, consider the requirement

“The user should be able to go to the Home page.”[7], meaning
login page should appear where the user logins in and starts to
work on the software system.

Figure 1. The requirement division into pre-requisite and sub

requirement.

Universally the pre-requisite for the requirement implemented
though these GUI interfaces are as follows.

1. Software should be compatible with the Operating System.
2. Login page should appear.

Apart from this there are pre-requisites based on the intended
purpose of the requirement, which dictates the number of input to
be given by the user and depending upon them there could be
single or many controls or objects receiving them. For the above
we have pre-requisite like as follows.

3. UserId textbox should be available with appropriate label.
4. Password textbox should be available with appropriate label.
5. Submit button with appropriate caption should be available.
6. Cancel button with appropriate caption should be available.

For the pre-requisite involving compatibility, includes “hardware,
browser, network, peripherals, compatibility between versions of
same software like backward compatibility, software (in

connection with other), operating system and database” [5] [6].
Compatibility testing can be automated using automation tools or
can be performed manually and is a part of non-functional
software testing [6]. There compatibility of software is a complex
issues and is beyond the scope of this paper. However we could
well start with pre-requisite 2, where the tester can find that is
there any page or form that provides login facility to the user or
not. So the problem reduces to the simple search and one test case

http://www.buzzle.com/articles/web-browsers/

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

12

to search for login form is enough and for the rest of prerequisites
we purpose the following approach

3. APPROACH
In order to generate test cases for the pre-requisite involving
controls and objects (pre-requisite number 3, 4, 5 & 6) we make
few assumptions and use many data structure; these are defined

and explained as follows

3.1 Assumptions and primitive structure
We assume that as the requirement exhibits the atomicity
therefore pre- requisite for the requirement should also be
enforced. The pre-requirements should be expressed in simple
sentences. Every sentence is composed of words as follows

Sentence (Pre-requirement)i = Word1 + Word2 + Word3 + … +
Wordn

Which can be further simplified in terms of notation as follows

S (Pre-requirement)I = W1 + W2 + W3 + … + Wn

These are stored in a table (see table 1) in which unique number is
given to every sentence. This stored table will be hence forth
referred as structure S1 and individual elements can be accessed as
S1 [Row] [Column]. Every vector Si [Row] [Column] is = W1 +
W2 + W3 + … + Wn

Table 1. Structure S1 storing pre- requirements

Number Class of the Object

S1 W11 + W12 + W13 + … + W1n

S2 W21 + W22 + W23 + … + W2n

S3 W31 + W32 + W33+ … + W3n

… …

A GUI based interface is usually implemented in a high level
language (HLL). Each HLL has its own vocabulary which

consists of controls, objects, keywords etc. For example take the
case of the C sharp we have textbox, label, buttons etc. commonly
referred as object and each has its own set of method, properties
and events. We construct the table (see table 2) of available object
having unique number and class of object, hence forth will be
referred as structure S2 and individual elements can be accessed as
S2 [Row] [Column].

Table 2. Structure S2, showing object and its properties

SN Object Properties

1 Textbox …

2 Label Text

3 Button Caption/Text

… …

A set representing conditions between object and having values is
defined as follows

• Conditions = {IS, HAS, DOES NOT HAS, HAVE, DOES
NOT HAVE, SHOULD, SHOULD NOT, SHOULD BE
AVAILABLE, SHOULD NOT BE AVAILABLE, …}

The Condition set is enumerated as follows

Conditions = {C1, C2, C3, …, Cn}
Or
C = {C1, C2, C3, …, Cn}

Adpositions set representing association between two or more that
two object and having values like is defined as follows

• Adpositions = {WITH, OF, TO, IN, FOR, ON}

The Adpositions set is enumerated as follows
Adpositions = {A1, A2, A3, …, An}
Or
A = {A1, A2, A3, …, An}

These set have values and these are not limited to the
aforementioned values. The testing team can add or remove the
words in the set depending upon the dictionary, bibliography of
SRS or from the domain knowledge of testing. These sets should
be pre constructed before we start generating the test case to test
the preconditions.

Additionally we need a tabular structure which will store the
objects, conditions and association found in prerequisites
statements, this structure, hence forth will be referred as structure
S3 (see table 3) and individual elements can be accessed as S3

[Row] [Column]. This is defined as follows. The S3 tabular data
structure is initially initialized to null value.

Table 3. Structure S3 stores objects, conditions and association

SN Obj1 Obj2 Condition Adpositions

 … … … …

We also create a set in which will store the test case, initially this
element is empty. This set could be realized with the help of
simple arrays is defined as follows.
S4 = { Ø }
S4 = {distinct elements identified in preprocessing of retirement
prerequisites}

We also use an array whose data type is string to store prerequisite
statement into an array of string. Lastly we use a standard
combination function to generate all possible combination in
lexicographical order [11], which takes a set of distinct elements
and does not generate duplicates.

3.2 Proposed Algorithm

3.2.1. Algorithm for preprocessing
Preprocessing ()
{
 i = 0;
 foreach (sentence s in stucture S1)
 {
 j = 0;

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

13

 foreach (string word in s)
 {
 if (j == 0)
 {
 previous = word;

 j = j + 1;
 }
 else
 {
 if (S3[i].[1] == null)
 { S3[i].[1] = previous + objects(word); }
 else
 {

 if (S3[i].[2] == null)
 {
 if (objects(word) != null)
 { S3[i].[2] = objects(word); }
 else
 { S3[i].[2] = property(word); }
 }

 if (S3[i].[4] == null)
 { S3[i].[4]= adposition(word); }

 temp = temp + word;
 match[k] = condition(temp);
 if (match[k] != null)
 { k = k + 1; }
 temp = temp + " ";

 }
 }
 S3[i].[3] = finalCondition();
 i = i + 1;
 }
}

3.2.1.1. Function for object
string object (w)
 { foreach (object o in S2)
 { if (w = = o)
 { return (w) ;}

 }
 return (null);
}

3.2.1.2. Function for property
string property (w)
 { foreach (property p in S2)
 { if (w = = p)
 { return (w) ;}
 }
 return (null);
}

3.2.1.3. Function for adposition
string adposition (w)
 { foreach (adposition a in A)
 { if (w = = a)

 { return (w) ;}
 }
 return (null);
}

3.2.1.4. Function for condition
string condition (w)
 { foreach (condition c in C)
 { if (c = = a)
 { return (w) ;}
 }
 return (null);

}

3.2.1.5. Function for final condition
string finalCondition ()

{ for (j = 0; j ≤ count(); ++ j)
 { temp =j;
 length = match[j].length();
 for (k = j + 1; k ≤ count(); ++k)
 { if (length < match[k].length())
 { temp = k;
 length = match[k].length();
 }

 }
 }
 return (match[temp]);
}

3.2.1.6. Function for count
int count()
 { i = 0;
 foreach (string s in match)
 { i = i +1; }
 return (i);

 }

Now since we have the preprocessed data in the tabular data
structure we can precede with proposing algorithm to generate
test, which as follows.

3.2.2. Algorithm to generate the test cases
GenerateTestCase ()
{ // add elements
 for (i = 0; i ≤ numberOfRows(S3); ++ i)
 { S4 = S4 + add element (S3[i][1] · S3[i][3]);

 S4 = S4 + add element (S3[i][2] · S3[i][3]);
 }
 // generate combination of element
 S4 = S4 + Combination (numberOfElementsIn(S4),
numberOfElementsIn(S4));
 // considers the association between the elements
 for (i = 0; i ≤ numberOfRows(S3); ++ i)
 { for (j = 0; j ≤ numberOfRows(S3); ++ j)

 { if ((S3[i][1] is object && S3[j][3] is object) || (S3[i][1] is
object && S3[j][3] is associated property))
 { S4 = S4 + S3[i][1] · S3[j][4] · S3[j][3]); }
 }
}

4. ANALYSIS AND RESULT
We start the analysis of the algorithm by considering a pre-
requisite “UserId textbox should be available with appropriate
label”. We store the sentence in the tabular data structure S1word

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

14

by word. After initializing i, j, k to 0 and temp to null we take first
word of the sentence since the value of j = 0 we store this in
previous as this is the name of the object. After that we take the
next word, if it matches “if (S3[i][1] = = null)” there fore get
stored in S3. The next word “should” get matched in “if (S3[i][3] =

= null)” and gets the storage in match data structure mean while
temp variable also holds it value. If we take the next word “be”
then we find that it is concatenated in temp variable and same
happens for the word “available”. Next word in the sentence is
“with” which is from the Adpositions set and get a match in the
line “if (S3[i][4] = = null)”. The last word “label” gets the match
& storage in S4 at “if (S3[i][2] = = null)” and “{ S3[i][2] = = object
(w); }” respectively. The supporting functions used in the

algorithm are as follows “object (w)”, “property (w)”, “adposition
(w)” and “condition (w)”. The “object (w)”, “property (w)”
functions scan for object & property with the help of S2

respectively. The “adposition (w)” & “condition (w)” functions
scan for adpositions & conditions from the sentence with the help
of Adpositions & Conditions sets respectively. The function
“finalCondition ()” is used to differentiate between the two
different conditions such as “SHOULD” alone & “SHOULD BE

AVAILABLE” and chooses the final condition to used further on
the bases of length. The last function is the “count ()” function
which simple find the total number of stored strings in array
“match”. Finally we get the S3 as follows for the sentence just
processed. When we scan all the sentences we get the following
(see Table 4).

Table 4. Structure S3 after all sentence are scanned.

SN Object 1 Object 2 Condition Adposition

1 User ID
Textbox

Label Should be
available

With

2 Password
Textbox

Label Should be
available

With

3 Submit
Button

Caption Should be
available

With

4 Cancel
Button

Caption Should be
available

With

In order to further analyze we would replace text with symbols
and when we do this we get table 5.

a = UserID textbox
b = label (for UserID textbox)
c = Password textbox
d = label (for Password textbox)
e = Submit button
f = caption (for Submit button textbox)
g = Cancel button

h = caption (for Cancel button textbox)
i = should be available
j = with

When “GenerateTestCase ()” gets called it inserts the following
elements in the set

S4 = {a·i, b·j, c·i, d·j, e·i, f·j, g·i, h·j }

After generating combination of the above and adding the test
cases for different associations, we get

S4 = {(a·i, b·j, c·i, d·j, e·i, f·j, g·i, h·j) , (a·j·b), (a·j·d), (a·j·f), (a·j·h),
(c·j·b), (c·j·d), (c·j·f), (c·j·h), (e·j·b), (e·j·d), (e·j·f), (e·j·h), (g·j·b),
(g·j·d), (g·j·f), (g·j·h)}

Table 5. Structure S3 when text is replaced by symbols

SN Object 1 Object2 Condition Adposition

1 a b i j

2 c d i j

3 e f i j

4 g h i j

After eliminating fictitious association we get
S4 = {(a·i, b·i, c·i, d·i, e·i, f·i, g·i, h·i, a·j, b·j, c·j, d·j, e·j, f·j, g·j,
h·j), (a·j·b), (a·j·d), (c·j·b), (c·j·d), (e·j·f), (e·j·h), (g·j·f), (g·j·h)}
So a total of nine test cases were generated

| S4 | = 9

As we know that using combinations to generate test cases creates
enormous amount of test cases. It can be argued that pre-requisite
for GUI based user interface or windows form should have all
object before further testing can be proceeded. There fore testing
team will write test case which includes entire objects in the form
but they fail to write test case which explores the association

between controls used to design the form. With our algorithm, we
explore the possible association between them and test the
possibility of cross liking them accidentally, which is very
important and which is not possible manually as tester often
ignore to write test cases to check them. For example the
programmer can code a form, where a label “Password” is placed
in font of textbox expecting “User ID” and vice versa. Similarly it
can set caption of “Submit” button to “Cancel” and vice versa. In

this case there may be nothing wrong with the functionality of the
form.

5. CONCLUSION AND FUTURE WORK
We have given the same requirements to various authors and
asked them to write test cases for testing prerequisites

requirements for GUI, we found that that they always miss the test
case to explore the association between the different controls. This
is important as we could have cross linking of various controls
and resultant code may fail to meet the requirements. Our
algorithm, high lights the associations between the various object.
The algorithm gives the test case where we have to check whether
all necessary controls are present or not. A simple code or script
would check that all necessary controls present or not. To check

the cross linking or association between controls we have execute
the test cases generated by us. The method used gives and
impression that there could be enormous number of test cases,
which are necessary to execute in order to prove the correctness of
GUI. However they are actually less then that because let us
suppose that there are n different controls and minimum
association degree is 2 there fore we have to execute n/2 test cases
to prove the correct linkage between any two controls. If the

degree of association is higher the numbers of test cases to prove
the correct associations are even less i.e. n/degree of association.
However our method is based on assumptions like, it expects
requirements to be expressed using simple (atomic) sentences in
natural language such as English. The pre-requisites should not be
having more than two objects at a time or should only include one

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.9, September 2010

15

object with one property at a time. In future work we would try to
eliminate these assumptions and would try to work on compound
& complex sentences.

6. REFERENCES
[1] Kaschner, K., Lohmann, N., “Automatic Test Case

Generation for Interacting Services”. In Proc. of ICSOC

2008 Workshops. Volume 5472 of Lecture Notes in
Computer Science. (2009)

[2] Tony Hoare, “Towards the Verifying Compiler”, In The

United Nations University / International Institute for
Software Technology 10th Anniversary Colloquium: Formal
Methods at the Crossroads, from Panacea to Foundational
Support, Lisbon, March 18–21, 2002. Springer Verlag, 2002.

[3] Robert V. Binder, “Testing Object-Oriented Systems:

Models, Patterns, and Tools”, Addison Wesley Longman,
Inc., 2000.

[4] M. Jazayeri C. Ghezzi and D. Mandrioli, “Fundamentals of

Software Engineering”, Prentice Hall, Englewood Cli_s, NJ.,
1991

[5] Software Testing Glossary, http://www.aptest.com/glossary

.html

[6] Software Testing - Compatibility Testing, http://www.

buzzle.com/articles/software-testing-compatibility-testing
.html

[7] Software Testing Tutorial, http://www.buzzle.com/articles
 /software-testing-tutorial.html

[8] S. S. Riaz Ahamed, " Studying the feasibility and importance

of software testing: An Analysis", International Journal of
Engineering Science and Technology, Vol.1(3), 2009, 119-
128.

[9] A. Memon, M. Pollack, and M.L. Soffa, “Plan Generation for
GUI Testing”, Fifth International Conference on Artificial
Intelligence Planning and Scheduling, Brackenridge, Co,
April 14-19, 2000

[10] A. Memon, M. Pollack, and M.L. Soffa, “Automated Test
Oracles for GUIs”, Eighth International Symposium on the
Foundations of Software Engineering (FSE2000) , San
Diego, CA, Nov. 6-10, 2000.

[11] Dr. James McCaffrey, "Using Combinations to Improve

Your Software Test Case Generation",
http://msdn.microsoft.com/en-us/magazine/cc163957.aspx

[12] Glenford J. Myers, “The Art of Software Testing”, Second

Edition, John Wiley & Sons, Inc.

[13] B. Beizer “Software Testing Techniques”, Van Nostrand

Reinhold , 2nd edition, 1990.

[14] Gilb, Tom, “Principles of Software Engineering

Management”, Wokingham, England: Addison-Wesley,
1988.

[15] Stephen Withall, “Software Requirement Patterns”,

Microsoft Press

[16] Rizwan Beg, Qamar Abbas, Alok Joshi, "A Method to Deal

with the Type of Lexical Ambiguity in a Software

Requirement Specification Document," icetet, pp. 1212-
1215, 2008 First International Conference on Emerging
Trends in Engineering and Technology, 2008. DOI
Bookmark: http://doi.ieeecomputersociety.org/10.1109/
ICETET.2008.160

