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ABSTRACT 

The Binet formula for Pell sequence is viewed as a function of 

complex variable. In this paper the study of attracting and 

repelling fixed points of Pell sequence is presented with the 

complex dynamics resulting in the escape time images. A study 

of orbits of the Binet type formula is presented in the paper. 

Besides this, a new class of Mandelbrot sets is also studied for 

the Mann-iterates. 
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1. INTRODUCTION 

The Fibonacci sequence 1 2 3 4, , ,f f f f  is determined by the 

equations 0 10, 1f f and for 2,n 1 2n n nF a F b F . 

The first two terms of the sequence are equal to one while the 

subsequent terms are the sum of their two immediate 

predecessors. It follows as 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … The 

Fibonacci sequence is a great source for mathematical 

conjectures and has many remarkable properties. The Fibonacci 

sequence possesses various mathematical properties. The Binet 

formula provides a mechanism for the Fibonacci numbers to be 

viewed as a function of a complex variable. Various properties of 

Pell Number sequence has been studied by different researchers, 

see for instance [5], [7] and [8]-[10]. In this paper we have 

studied the complex dynamics of Pell Number Sequence, its 

fixed points and their attracting or repelling behavior. Further, 

the behavior of iteration of the function in the complex plane is 

also studied in the paper. The purpose of the paper is to 

investigate complex dynamics of Pell sequence. We have also 

applied Mann-iteration for studying the dynamics of Pell 

function. Perhaps the Mandelbrot set is the most popular object 

in the fractal theory and has been the subject of intense research 

right from its advent. Our study reveals some beautiful escape 

time fractals images for the modified Fibonacci sequence i.e. Pell 

sequence.  

 

2. Preliminaries    

Definition 2.1: Generalized Fibonacci sequence: Let a 

and b be any real numbers. Define sequence nF  as, 

2 1n n nF a F b F . Such a sequence is described as 

Generalized Fibonacci sequence. For a = b = 1, the sequence 

gives the Fibonacci sequence.  

Definition 2.2: Pell Number Sequence: In real plane 

coordinates system, for any fixed a and b, denoted by R(a, b), we 

have the set of all real sequences. In R(a, b), we have two 

distinguished elements 0 and 1. A general case of R(1, 1) is the 

Fibonacci sequence.  Generally, we denote it by ,F a b . A 

very interesting sequence is generated for R(2, 1), the sequence 

is obtained is known as Pell sequence see [9]. The sequence is 

given as P = 0, 1, 2, 5, 12, 29, 70, …, particularly denoted for 

any n, that gives a solution to Pell’s equation
2 2 1x dy , 

where 
2 1d k . For, further details about the Pell and Pell-

Lucas numbers one may refer to Bicknell [2] and Melham [11]. 

 

Definition 2.3: Binet Formula: An alternative way of 

representing Fibonacci sequences is the famous Binet formula, 

which was first discovered by Euler and later on modified by 

Binet in 1843. 

                             

1 5 1 5

2 2

5

n n

nF ,  

for every n = 1, 2, 3, 4, … 

This gives nF  explicitly for every positive integer n, 

without referring to the earlier terms.  

Hence, this formula is given in terms of three irrational 

numbers: 

        
1 5 1 5

,
2 2

a b  and 5c  

 

Definition 2.4: Binet Type Formula: If, we take R(2, 1), 

the Pell sequences are generated, for which the roots of the 

equation 
2 2 1t t  are (1 2)  .Hence we have the 

following formulas: 

Formula 1: The Binet type formula for Pell-Fibonacci sequence 

evolves as follows:         

(1 2) (1 2)

2 2

n n

nF  
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where (1 2)a , (1 2)b  and 2 2c . 

Formula 2: The Binet type formula for Pell-Lucas sequence 

evolves as follows: 

(1 2) (1 2)n n

nL  

where (1 2)a  and (1 2)b . 

 

Definition 2.5: Mann-Iteration: Let 0z  be any 

arbitrary element of C. Construct a sequence 
nz of points of C 

in the following manner: n n 1 n 1z  s. (z ) (1 ). zf s  , n 

= 1,2,3...where the parameters lies in the closed interval [0,1] 

and C is the complex plane. 

 

3. Fixed Points:  

     The fixed points of ( )F z are those values of z, for 

which ( )F z z while we are applying Formula 1. For this 

purpose we will observe several values of z and 

calculated ( )F z : 

 

Table 1: Calculation of F(z) of Pell- Fibonacci for different 

values of z 

z -5 -4 -3 -2 -1 0 1 2 3 4 5 

F(z) 29 -12 5 -2 1 0 1 2 5 12 29 

 
           So, we noticed that -2, 0, 1 and 2 acted as fixed points 

for Pell-Fibonacci sequence. We also observe that as the values 

of F(z) changes from negative to positive between -4 and -3, so 

there happens to be another fixed point but as definition of F(z) 

involves exponential with negative  base, so we will obtain 

complex values of F(z) at intermediate values. So, there happens 

to be many complex fixed points. 

           On other hand, while we are having comparative study for 

Pell-Lucas sequence, so, we will apply Formula 2 for finding out 

values of z and calculated ( )L z as follows: 

 

Table 2: Calculation of L(z) of Pell- Lucas for different 

values of z 

z -5 -4 -3 -2 -1 0 1 2 3 4 5 

F(z) -82 34 -14 6 -2 2 2 6 14 34 82 

 
           Here we notice that there is no existence of any fixed 

point for Pell-Lucas sequence in real axis. But since the value of 

changes from negative to positive between -1 and 0, -3 and -2, -5 

and -4 and so on, such that there happens to be infinitely many 

fixed point for this function ( )L z  on the negative axis but the 

nature of fixed points is purely complex in nature.  

 

4. Plotting of the points:  

       

 (i) Graph of Pell-Fibonacci function   

Fig 1: The graph of fixed points of F(z) and z as shown in 

Table 1 

 
Fig 2: The fixed points of F(z) and z of Table 1, represented 

by arrows 

 

The figure above shows that for ( )F z z , the points -2, 0, 1 

and 2 are the zeroes or the fixed points for Pell-Fibonacci 

function and for this it appears that there are no other real fixed 

points. We can determine the situation off the real axis by 

looking a dynamics of ( )F z z . Fig (7) shows that a plot 

where -0.91 ≤ Re(z), Im(z) ≤ -1.07. The lowest points are black 

colored while the higher points represent hues running from red 

to magenta. Besides this, we observe the large black region in 

the upper right quadrant and some other black regions around the 

centre, which suggests that there is the existence of infinitely 

many fixed points in complex plane.  

 

Derivatives of the function F(z): 
The table below shows the derivatives of the function F(z) and 

its magnitude for the fixed points observed in the Table 1. 

         

Table 3. The derivatives at fixed points for various values of z 

for Table 1. 

z  ( )F z  | ( ) |F z  

(-2, 0) -0.049017702 + 1.986122869 i 1.992162363 

(0, 0) 2.108531764 - 1.482027395 i 2.77294956 

(1, 0) 0.8226790299 + 0.1183769165 i 0.8311521405 

(2, 0) 1.986122869 – 0.04901717002 i 3.96871088 
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We observe that the magnitude of derivative at z = (1, 0) is less 

than 1, which shows the existence of attracting fixed point, while 

the magnitude of derivative at z = (-2, 0), (0, 0) and    (2, 0) are 

greater than 1, so they represent the repelling points. The set of 

points that do not diverge to infinity are the filled Julia sets. 

When the Julia set is nontrivial, there happens a view that such 

sets with an escape time shows how quickly points outside the 

Julia set get large.  

(ii) Graph of Pell- Lucas function: 
 

Fig 3: The graph of fixed points of L(z) and z as shown in 

Table 2. 

          
In this graph, we observe that none of the fixed points are lying 

in the real axis. So, the complex dynamics of Pell-Lucas as 

shown in Figure (9) represents no darker or black colored region 

as the fixed points, although the calculations done in the Table 2 

proves the existence of the fixed points but they are hence purely 

complex or imaginary. Thus, the Pell-Lucas dynamics shows less 

multicolored regions 

 

5. Iterations of Pell- Fibonacci function F(z) at 

different points: 
 Table 4. Orbit of F(z) for (z0=0.8226790299 + 0.1183769165i) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.8192 21 0.9988 

2 0.8753 22 0.9994 

3 0.9739 23 1 

4 1.0536 24 1.0003 

5 1.0717 25 1.0004 

6 1.0547 26 1.0003 

7 1.028 27 1.0001 

8 1.0036 28 1 

9 0.9877 29 0.9999 

10 0.9821 30 0.9999 

11 0.9848 31 0.9999 

12 0.992 32 1 

13 0.9993 33 1 

14 1.0039 34 1 

15 1.0053 35 1 

16 1.0042 36 1 

17 1.0021 37 1 

18 1.0001 38 1 

19 0.9989 39 1 

20 0.9985 40 1 

Fig.  4:  Orbit of F(z) at z0 = 0.8226790299 + 0.1183769165i 

 
Here we observe that the value converges to a fixed point after 

32 iterations 

 

Fig. 5: Orbit of F(z) at z0 = -0.049017702 + 1.986122869i 

Here we observe that the value escapes to infinity after a few 

iterations 

 

Table 5:  Orbit of F(z) for z0=-0.049017702 + 1.986122869i. 

Number of 

Iteration i |F(z)| 

1 3.39E-01 

2 2.59E-01 

3 2.64E-01 

4 3.42E-01 

5 6.03E-01 

6 2.07E+00 

7 2.18E+02 

8 3.96E+43 

 

Table 6: Orbit of F(z) for z0=-0.1 + -0.4i 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 1.06 16 1.00 

2 1.63 17 1.00 

3 1.45 18 1.00 

4 1.29 19 1.00 

5 1.16 20 1.00 

6 1.04 21 1.00 

7 0.96 22 1.00 

8 0.92 23 1.00 

9 0.91 24 1.00 

10 0.94 25 1.00 

11 0.99 26 1.00 

12 1.02 27 1.00 
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13 1.03 28 1.00 

14 1.03 29 1.00 

15 1.01 30 1.00 

Fig. 6: Orbit of F(z) at z0 = (-0.1 +  -0.4i) 

 

 

6. Complex dynamics: 

(i) Dynamics of Pell- Fibonacci function F(z): 

            The dynamics of the orbit of F(z) at different points given 

in the Table 1 is shown in the Figures 4, 5 and 6. It is clear from 

the Fig 4 and the table attached that the orbit at F(z) at  z0 = 

0.8226790299 + 0.1183769165i is an attracting Fixed point, 

whereas  the orbit at   z0 = (-0.049017702, 1.986122869i) is the 

escaping points, see Fig. 5 and the table attached. Further, the 

orbit of (-0.1, -0.4i) leads to the fixed point i.e. (1, 0), see Fig. 6 

and table attached. We apply the algorithm mentioned below to 

F(z) of Pell-Fibonacci with N = 100 and M = 4.0 . Fig. 7 shows 

the escape time where the red color region corresponds to rapid 

escape and the other hues, running from magenta corresponds to 

slow escape. There is a remarkable black region right at the 

centre in Fig 8 and many other smaller black regions in Fig 7. 

There are also the circular constructions of black regions. 

 

    (ii) Dynamics of Pell- Lucas function L(z): 

            The Pell-Lucas dynamics is studied for different points 

as given in Table 2. Here no fixed point is evaluated for the 

function L(z) . We applied the escape time algorithm mentioned 

below to function L(z) of Pell-Lucas with N = 100 and M = 4.0 . 

Fig. 9 here shows the escape time fractal where the red color 

region corresponds to rapid escape and the other hues, running 

from magenta to yellow corresponds to slow escape. But, we do 

not observe the existence of any black colored region in this 

fractal image and hence no fixed point. 

Escape time Algorithm: 

It refers to some region in complex plane and typical color 

is used to indicate the number of iterations before iterate gets 

large [13]. Escape time algorithm are employed to visualize the 

dynamics corresponding to the Julia sets and Mandelbrot sets. 

       The algorithm corresponding to F(z) or L(z), to create the 

escape time criteria is as follows:  

 Select a maximum iteration bound N, and a sense of 

unbounded M. 

For all pixels (j, k) corresponding to the points z in a 

rectangular portion of the complex plane, do the following: 

 start 

 let i = 0 

 While z < M and i < N do 

     z = f (z) 

      i = i+1 

             end while 

 If i = N, mark the pixel (j, k) black, 

otherwise, mark the pixel a hue that 

corresponds to i. 

 end  

 
Fig. 7:  Escape time Fractal of Pell- Fibonacci Sequence           

F(z) for -0.91 ≤ Re(z), Im(z) ≤  -1.07 

 
Fig. 8: Zoom of the Fig 7 that indicates the fixed point for 

Pell Sequence F(z). 

 

Fig. 9:  Escape time Fractal of Pell- Lucas Sequence L(z) 

 

 

8.  Dynamics of Pell-Fibonacci and Pell-Lucas 

using Mann iterates: 
(i)  Dynamics of Pell-Fibonacci function F(z): Using Mann-

iterates, we find a change in the dynamics of Pell-Fibonacci 

function. Initially, we divide our Mandelbrot images into two 
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groups, first when s = 1 (the special case) and second when 0 < s 

< 1 (the general case). 

 

Case I: (s = 1, special case):  The result of this special case is 

the usual Mandelbrot set which we obtained in Fig. 7, using 

above  mentioned escape time algorithm with N= 100 and M= 

4.0. 

Case II: (0 < s < 1, general case):  Here we get different 

Mandelbrot images for distinct values of s, We vary the values of 

s from 0.1 to 0.8 and observe the variance in the Mandelbrot 

images and the fixed points. 

 

Table 7: Table of Mann-Iterates of Pell-Fibonacci function 

F(z) 

         x -4 -3 -2 -1 0 1 2 3 4 

At 

s = 

0.1  

y1 -1.2 0.5 0.2 0.1 0 0.1 0.2 0.5 1.2 

At 

s = 

0.3 

y2 -3.6 1.5 -0.6 0.3 0 0.3 0.6 1.5 3.6 

At 

s = 

0.5   

y3 -6 2.5 -1 0.5 0 0.5 1 2.5 6 

At 

s = 

0.8 

y4 -9.6 4 -1.6 0.8 0 0.8 1.6 4 9.6 

At 

s = 

1 

y5 -12 5 -2 1 0 1 2 5 12 

 

The above table of Pell-Fibonacci function for Mann-Iterates 

shows that as the value of s varies from 0.1 to 1, the number of 

fixed points increases and their distinctness is observed. We 

observe more fixed points as we approach closer to 1, while as 

we move towards 0, we have greater escape region corresponding 

to fixed point 0. The black colored region grows larger and larger 

as one approach nearby 0. This is clearly observed after viewing 

figures 10, 11, 12 and 13 respectively. Thus, Mann-iterates gives 

us a wide range of escape time fractals of Pell-Fibonacci varying 

for different values of s. 

Escape time Algorithm:  The escape time algorithm is 

employed to visualize the dynamics corresponding to the Julia 

sets and Mandelbrot sets [13]. Here we used the above 

mentioned algorithm for Pell-Fibonacci function with N = 100 

and M = 4.0, for different values of s. 

 

Fig. 10: Escape time fractal for Mann iterate s =0.1 

 

Fig. 11: Escape time fractal for Mann iterate s =0.3 

 
 

Fig. 12:   Escape time fractal for Mann iterate s =0.5 

 
 

Fig. 13: Escape time fractal for Mann iterate s =0.8 

 
 
(ii)  Dynamics of Pell-Lucas function L(z): Using Mann-

iterates, we find a major change in the dynamics of Pell-Lucas 

function. Here also, we divide our Mandelbrot images into two 

groups.  

 

Case I: (s = 1, special case):  The result of this special case is 

the usual Mandelbrot set which we obtained in Fig. 9, using 

above  mentioned escape time algorithm with N= 100 and M= 

4.0. 

 

Case II: (0 < s < 1, general case):  Here we get different 

Mandelbrot images for distinct values of s, We vary the values of 

s from 0.1 to 0.8 and observe the variance in the Mandelbrot 

images and the fixed points. 

 

Escape time Algorithm:  Here we used the algorithm mentioned 

previously for special case of Pell- Lucas function with N = 100 

and M = 4.0, for different values of s. As a result we get different 

fractal images corresponding to Pell- Lucas function. 
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Table 8: Table of Mann-Iterates of Pell- Lucas function L(z). 

         x -3 -2 -1 0 1 2 3 

At s 

=0.01 

y1 -0.14 0.06 -0.02 0 0.02 0.06 0.14 

At s = 

0.1 

y2 -1.40 0.6 -0.20 0.20 0.20 0.6 1.40 

At s = 

0.3 

y3 -4.20 1.80 -0.60 0.60 0.60 1.80 4.20 

At s = 

0.4 

y4 
-5.6 2.4 -0.8 0.8 0.8 2.4 5.6 

At s = 

0.5 

y5 -7.00 3.00 -1.00 1.00 1.00 3.00 7.00 

At s = 

0.6 

y6 
-8.4 3.6 -1.2 1.2 1.2 3.6 8.4 

At s = 

0.8 

y7 -11.2 4.8 -1.6 1.6 1.6 4.8 11.2 

At s = 

1.0 

y8 -14 6.00 -2 2 2 6 14 

          

From the Table 8, it is observed that we have the existence of 

fixed points ranging from s = 0.01 to s = 0.6.  When we approach 

towards mid-values i.e. at s = 0.6, s =0.5, s =0.4 and        s =0.3, 

we find more number of fixed points. The black colored region 

grows larger and larger as one approach nearby 0. This is clearly 

observed after viewing figures 14, 15, 16, 17, 18 and 19. Earlier 

we do not get any fixed point for Pell-Lucas function but Mann-

iterates gave us a wide range of beautiful Pell-Lucas dynamics 

ranging from s = 0.1 to s = 0.8.  

 

Fig. 14: Escape time fractal for Mann iterate s =0.01 

 
 

Fig. 15: Escape time fractal for Mann iterate s =0.1 

 
Fig. 16: Escape time fractal for Mann iterate s =0.3 

                              

Fig. 17: Escape time fractal for Mann iterate s =0.4 

                       
 

Fig. 18: Escape time fractal for Mann iterate s =0.5         

                          
 

Fig. 19: Escape time fractal for Mann iterate s =0.6 

 

 

9. Conclusion: 
In our study, the complex dynamics of Pell-Fibonacci and Pell-

Lucas numbers have been investigated using Binet type formula. 

In Pell-Fibonacci fractal, we find that there are integer fixed 

points which are associated with a large basin of attraction. 

Besides these, there are also some additional complex fixed 

points and the escape time images show that the Pell-Fibonacci 

numbers possesses a rich complex dynamics. Whereas, a 

comparative study on Pell-Lucas fractal image shows that there is 

no existence of any fixed point for Pell- Lucas function. We also 

applied Mann-iterates to investigate a new dynamics of both 

functions. Pell-Fibonacci showed its rich dynamics for Mann-

iterates rendering different Mandelbrot images at different 

values. On the other hand Pell-Lucas function shows a major 

change in its dynamics by showing the existence of its fixed 

points at different Mann-iterates values, thereby verifying its 

richness of complex dynamics. 
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