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ABSTRACT 

This paper proposes a novel efficient Non-Uniform Cache 

Architecture (NUCA) scheme for the Last-Level Cache (LLC) to 

reduce the average on-chip access latency and improve core 

isolation in Chip Multiprocessors (CMP). The architecture 

proposed is expected to  improve upon the various NUCA 

schemes proposed so far such as S-NUCA, D-NUCA and SP-

NUCA[9][10][5] in terms of average access latency without a 

significant reduction in the hit rate. The complete set of L2 banks 

is divided into various zones. Each core belongs to one particular 

zone which is the closest to it. Consequently, adjacent cores are 

grouped into the same zone. Each zone individually follows the 

SP-NUCA scheme [5] for maintaining core isolation and sharing 

common blocks. However, blocks that need to be shared by cores 

which belong to different zones are replicated. This scheme is 

much more scalable than the SP-NUCA scheme and bounds the 

maximum on-chip access latency to a lower value as the number 

of cores increases. 

This paper merely details the proposed scheme. The claims made 

regarding the benefits of the scheme shall be substantiated 

through simulations and a detailed comparative study in the 

future. The intended simulation methodology and architectural 

framework to be used in this regard have also been mentioned. 
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1.INTRODUCTION 
Present sub-micron integrated circuit technologies have fueled 

microprocessor performance growth. Each new process 

technology increases the integration density thus allows for 

higher clock rates and also offers new opportunities for micro-

architectural innovation. Both of these are required to maintain 

microprocessor performance growth. Micro-architectural 

innovations employed by recent microprocessors include multiple 

instruction issue, dynamic scheduling, speculative execution, 

instruction level parallelism and non-blocking caches. In the past, 

we have seen the trend towards CPUs with wider instruction 

issue and support for larger amounts of speculative execution but 

due to fundamental circuit limitations and limited amounts of 

instruction level parallelism, the superscalar execution model 

provides diminishing returns in performance for increasing issue 

width. Faced with this situation, building further a more complex 

wide issue superscalar processor was not at all the efficient use 

of silicon resources and a better utilization of silicon area. So 

researchers came up with a new Novel architecture which was 

constructed from simpler processors then superscalar and 

multiple such processors are integrated on a single chip popularly 

known as chip multiprocessor or multi-core processor. 

Researchers faced two important challenges for next generation 

microprocessors are the slow main memory and the limited off-

chip bandwidth. Efficient management of the last level on-chip 

cache is therefore important in order to accommodate a larger 

number of cores in future multi-core architectures. Previous 

research has shown that a last-level multi-core cache can be 

organized as private partitions for each core or having all cores 

sharing the entire cache.  

 

Figure 1. Chip Multiprocessor 

Previous results show that the shared cache organization can be 

utilized more flexibly by sharing data between cores. However, it 

is slower than a private cache organization. In addition, private 

caches do not suffer from being polluted by accesses from other 

cores by which we mean that other cores displace blocks without 

contributing to a higher hit rate. Non-uniform cache architectures 

(NUCA) are a proposed hybrid private/shared cache organization 

that aims at combining the best of the two extreme organizations 

[1, 2, 3, 4, 6] by combining the low latency of small (private) 

caches with the capacity of a larger (shared) cache. Typically, 

frequently used data is moved to the shared cache portion that is 

closest to the requesting core (processor); hence it can be 

accessed faster. Recently, NUCA organizations have been 
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studied in the context of multi-core systems as a replacement for 

a private last-level cache organization [3, 4]. The cache is 

statically organized into private partitions but a partition attached 

to one core can also keep blocks requested by other cores. When 

a block is installed in a certain partition, a replaced block from 

that partition will be installed in a neighbor’s partition, picked by 

random. As a result, on a miss in one partition, all other 

partitions are first checked before accessing main memory. While 

this hybrid scheme provides fast access to most blocks, it can 

suffer from pollution because of the uncontrolled way by which 

partitions are shared among cores. 

This paper provides a novel NUCA design for multi-cores based 

on private partitioning zones in which the sizes of the core-local 

partitions that are shared are chosen adaptively to maximize the 

overall performance. We will show that our adaptive scheme 

outperforms the uncontrolled sharing of blocks in private zones 

with reduced latency.  

The rest of the paper is organized as follows: Related work is 

described in Section 2, Section 3 described the motivations for 

this work and section 4 provides proposed implementation 

details and explains the novel adaptive partitioning scheme 

SPR_NUCA with Architecture and Coherency protocol to 

improve performance limits of CMP. Section 5 provides 

Simulation methodology. Section 6 discusses the Benchmark 

Suite to be used and Section 7 concludes. 

2. RELATED WORK 
Kim et al. [4] introduced the concept of Non-Uniform Cache 

Architecture (NUCA). They observed that increasing wire delays 

would mean that cache access times were no longer constant. 

Instead, latency would become a linear- function of the line’s 

physical location within the cache. On the basis of this 

observation, they designed several NUCA architectures by 

partitioning the cache into multiple banks and using a switched 

network to connect these banks. Two main alternatives have been 

proposed: Static NUCA (S-NUCA) and Dynamic NUCA (D-

NUCA). Both designs organize the multiple banks into a two-

dimensional switched network. The difference between the two 

architectures is the Placement Policy they manage. While in S-

NUCA architecture, data are statically placed in one of the banks 

and always in the same bank, in D-NUCA architecture data can 

be promoted to be placed in closer and master banks. Although 

this promotion allows D-NUCA to potentially outperform S-

NUCA, the D-NUCA benefit is significantly diminished by the 

quality of the bank-searching algorithm within the cache. Two 

alternative bank replacement policies are proposed: zero-copy 

and one-copy. 

CMPs present additional challenges for on-chip cache 

management. First, a cache on a CMP requires multiple ports to 

provide appropriate bandwidth. Secondly, multiple threads mean 

multiple working sets, which compete for limited on-chip 

storage. Finally, sharing code and data interfere with block 

migration, since one processor’s low latency bank is other 

processor’s high latency bank. Beckmann and Wood [1] gathered 

the current proposals for managing wire delays and combined 

them with Chip Multiprocessors. They demonstrated that block 

migration is less effective for CMP because 40-60% of hits in 

commercial workloads were satisfied in the central banks. Block 

migration effectively reduced wire delays in uni-processor 

caches. However, to improve CMP performance, the capability of 

block migration relied on a smart search mechanism that was 

difficult to implement.Huh et al. [9] introduced the concept of the 

sharing degree in a NUCA bank. The sharing degree is the 

number of cores that share a specific bank, so a sharing degree of 

one signifies a private cache. Larger sharing degrees reduce the 

number of misses, thus optimizing the cache capacity usage. 

Unfortunately, smaller sharing degrees reduce hit latencies. An 

ideal design would capture the benefits of both reduced misses 

and reduced hit latencies. Although D-NUCA performance 

potential dramatically outperforms that of other mechanisms, the 

benefits currently offered by D-NUCA organization do not justify 

the complexity of the design. They also concluded that the 

simplest design– an S-NUCA organization with a small sharing 

degree–was probably the best. Muralimanohar and 

Balasubramonian [15] proposed a different approach in NUCA 

architectures. These authors proposed the use of two different 

physical wires to build NUCA architectures. One of these wires 

provided lower latency and the other higher provided bandwidth. 

They then proposed two different bank searching algorithms 

Chishti et al. [11] proposed an alternative to NUCA architecture 

named Non-uniform access with Replacement and Placement 

using Distance associativity (NuRAPID). This architecture is 

based on decoupling data and tag placement. NuRAPID stores 

tags in a bank close to the processor, optimizing tag searches. 

Whereas NUCA searches tag and data in parallel, NuRAPID and 

D-NUCA achieve similar results, although NuRAPID heavily 

outperforms DNUCA in power efficiency. The NuRAPID version 

for CMP is known as CMP-NuRAPID and was also proposed by 

Chishti et al. [2]. This proposal mitigates some of the effects 

described by Beckmann and Wood [1].Our work is inspired by 

earlier work on dynamic partitioning of the resources in shared 

caches among cores [3, 6, 7]. In the NUCA setting, the new issue 

becomes how to select the size of the shared partition which is 

not addressed in the earlier work. We combine and extend 

several existing mechanisms intended for solving problems in 

other contexts. The contribution of this paper is the unique 

combination and usage of these mechanisms and the novel 

architecture for the last-level cache. In our organization, hits to 

the private partitions are fast, while hits to neighboring partitions 

are slower.  

 

Figure 2. Relative Performance of the two schemes [7] 

The size of the private partition is dynamically controlled and 

balanced against the other cores. A NUCA proposed by Dybdahl 

[7] works better than the hybrid scheme based on CMPs with 

private caches given by Sohi [16] except in cases where cores are 

competing for cache resources. They provide comparable 
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performance for many applications that do not use the last level 

cache.  

3. MOTIVATIONS 
With the evolution of technology, the number of cores that can be 

incorporated onto a single chip is constantly on the rise. 

However, the growth in off-chip bandwidth is progressing at a 

much a slower pace. Consequently, the pressure on the on-chip 

memory hierarchy to satisfy as many memory requests as 

possible is mounting. This is especially true at the last-level 

cache (L2/L3) where there is a strong contention between the 

various cores. Hence, an optimal dynamic partitioning scheme is 

required which would dynamically partition the cache according 

to the activity level of each core such that there is an overall 

reduction in the miss rate. An additional problem that arises with 

the increase in the number of cores is a corresponding increase in 

the size and associativity of the last level cache. A high 

associativity would directly translate into an increased latency 

per cache access. A multi banked cache would be a better option 

in this regard in comparison to a monolithic high associativity 

cache.  

 

Figure 3. Multi-banked shared LLC 

Thus, frequently accessed blocks could be placed in those banks 

closest to the processors that use them. However, this could also 

lead to these blocks ping-ponging between banks. Thus, blocks 

which are actively used by two or more cores should be placed in 

an optimally positioned bank such that the average access latency 

for the concerned cores is minimized. This is the primary aim of 

Non-Uniform Cache Architecture (NUCA) schemes such as S-

NUCA, D-NUCA and SP-NUCA [10][11][4]. However, these 

schemes do not support the replication of shared blocks. Thus, 

scalability is limited in terms of the average access latency. For 

example, consider a system with 16 cores. Now, if two cores 

placed at two extreme ends in the cache layout were to share a 

block, optimally it would have to be placed in one of the centrally 

positioned banks. But it would still take a considerable number 

of cycles for each of those cores to access the block from the 

central bank. If, however, replication is allowed, the block could 

be replicated and each core could keep a copy in a bank close to 

it. This is what SPR-NUCA attempts to do. It is based on the SP-

NUCA scheme and improves its scalability by allowing the 

replication of blocks when necessary. It considers the distance 

between the cores sharing a particular block. If it exceeds a 

certain limit, then the block is replicated and each core keeps a 

copy in one of the banks closest to it. 

4. SPR_NUCA Architecture and Coherency 

Protocol 
In this section, we presented the details of the proposed SPR-

NUCA scheme for the Last-Level Cache (LLC). The LLC is 

organized in a multi-banked manner. The total set of banks is 

divided into various zones. Each zone comprises of a set of banks 

which are adjacent to each other. Similarly, each core also 

belongs to the zone closest to it. The number of cores that would 

comprise a zone has to be decided through simulations. However, 

four cores per zone seem to be an optimal option.  

 

Figure 4. Layout of Chip Multiprocessor 

 The blocks in the LLC can be grouped into three types: 

private, shared and replicated. Private blocks are those which are 

used only by a single core. They are hence placed in one of the 

banks closest to that particular core. Both shared as well as 

replicated blocks are frequently used by two or more cores. 

However, shared blocks are used by processors which belong to 

the same zone. Replicated blocks, on the other hand, are accessed 

by cores belonging to different zones, ie, cores which are farther 

apart. Each bank can hold blocks of any of these three types. It is 

to be noted that within a single zone, a block can have only one 

copy. Replicas, if present, can reside only in different zones. 

Remember that a replicated block simply means that the block 

has more than one copy in the entire LLC. However, with respect 

to a particular zone, it could be either in the private bank of one 

of the cores or in the shared bank of that zone. 

Since replication is also supported in SPR-NUCA, we 

intend to use a directory-based coherence protocol for keeping 

track of the zones which contain a copy of the block. The 

directory could either be a centralized or a distributed one. To 

reduce the directory width, the locations of the different copies of 

a block would be marked in terms of zones instead of individual 

banks. Once a request arrives at the LLC, a request is sent to the 

corresponding private bank of the requesting core as we. If this 

does not result in a hit, the request is forwarded to the remaining 

private banks in the zone as well as to the shared bank in which 

that block could reside in that particular zone. In case of a hit, 

there are two possibilities. If the block is found in the shared 

bank, the data is sent to the requestor. Else if it is found in one of 

the private banks, it is moved to the shared bank. In case of a 

miss, the directory entry of the requested block is searched. If it 

turns out that no zone contains the block, then it is an LLC miss 

and the request is forwarded to the main memory, following 

which, the block is brought into the private bank of the requestor. 

Else, the request is then forwarded to the nearest zone which 
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contains a copy of the block. Within that zone, the block is 

searched in all the private banks in which it can reside and also 

the corresponding shared bank in parallel. The block is then 

replicated into the private bank of the requestor. In addition to 

this, the bit corresponding to the requestor’s zone in the directory 

entry of the block is set to one. When a block arrives from 

memory, it is placed in one of the private banks of the requesting 

core depending on the address. The block remains there as long 

as no other core in its own zone requests it. Even if cores from 

other zones access the block it is merely replicated and not 

removed from the current bank. 

 

Figure 5. Search Algorithm 

 Hence, future accesses by the same core to the block would 

be faster. SPR-NUCA has a much better scalability than the other 

NUCA schemes such as S-NUCA, D-NUCA and SP-NUCA 

which do not support replication. In SP-NUCA [4], any block 

which is utilized by two or more cores is placed in a particular 

fixed shared bank. This does not cause a problem in terms of 

access latency if the number of cores is small (4 to 8). However, 

as the number of cores increases, the distance of each core to the 

bank farthest from it will keep increasing.  Hence, such a block 

could be placed in a bank which is quite far away from the cores 

accessing it. This is why SPR-NUCA divides the LLC into small-

sized zones. This ensures that a block frequently used by a 

particular core is not placed beyond a certain distance from the 

core. This limit remains the same as long as the size of the zone 

is a constant and does not change as the number of cores in the 

system increases, implying scalability.  

Consider a system with 2n banks per zone and 2p cores per 

zone. Thus each core has 2n-p private banks. Note that any of 

these 2n banks can hold shared/replicated blocks. To interleave 

the addresses across the chip, the bank number is mapped using 

the lower bits of the address. The interpretation of an address is 

done in the same manner as in SP-NUCA. As shown in the 

figure, the address is divided as follows: The lowest B bits are 

used to select the byte in the cache block. Then, we use the n-p 

bits to select the private bank or the n bits to select the shared 

bank in that zone depending on whether it is a private or a shared 

request. The next i bits, the index, are used to select the 

corresponding set in the bank and the rest of the address is the 

tag. It is important to note from the figure that the address 

remains the same for both private and shared blocks. However, 

they are interpreted differently as shown. The private tag is p bits 

bigger than the shared one, but as they are to be stored in the 

same tag array, it must have the size of the private tag, increasing 

slightly the required area of LLC banks by p bits per line. In 

order to differentiate between private and shared blocks, an extra 

private/shared bit is also to added to the block. This bit would be 

present in the cache requests as well. 

 

Figure 6. Address interpretation for private and shared requests 

Replacement policy: Merino et al.[4] proposed three different 

LRU replacement policies for the SP-NUCA scheme – “always 

steal”, “shadow-tag” based policy and a global LRU replacement 

policy – to partition each bank into shared and private portions in 

an optimal manner. However, simulation results showed that the 

global LRU policy gave the best overall performance. However, 

as pointed out by Kedzierski et al.[6], true LRU imposes 

extraordinary complexity and area overheads when implemented 

on high associativity caches. Thus, we intend to use a pseudo-

LRU policy such as the Not Recently Used (NRU) policy to 

attain an LRU-like behavior without much degradation in 

performance. 

5. SIMULATION METHODOLOGY 
For evaluating the performance of the CMP requires a way of 

simulating the environment in which we would expect these 

architectures to be used in real systems. We will use Virtutech 

Simics [9] full system functional simulator extended with Multi-

facet GEMS which is popularly used in the research community. 

The heart of GEMS is the Ruby memory simulator. The Ruby 
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Cycle is our basic metric of simulated time used in the Ruby 

module of the GEMS simulator. The Ruby module is the basic 

module for the memory system configuration and interconnection 

network design The Ruby cycles are the recommended 

performance metric in GEMS. The base line configuration to be 

used is given below 

 

Figure 7. Base line Configuration  

6. PARSEC BENCHMARK SUITE 
The Princeton Application Repository for Shared-Memory 

Computers (PARSEC) has been recently released [10]. This 

benchmark suite includes emerging applications and commercial 

programs that cover a wide area of working sets and allow 

current Chip Multiprocessor technologies to be studied more 

effectively. In this paper we will evaluate a subset of the 

PARSEC benchmark suite. We also consider the simlarge inputs 

of PARSEC benchmarks in our simulations. We will fill the 

cache by executing 100 million instructions and finally we collect 

the statistics for the following 500 million instructions  

7. CONCLUSIONS 
The current advanced submicron integrated circuit technologies 

require us to look for new ways for designing novel 

microprocessors architectures and non-uniform cache 

architectures to utilize large numbers of gates and mitigate the 

effects of high interconnect delays. In this paper, we have 

discussed a novel dynamic partitioning scheme known as 

Adaptive Block Pinning which attempts to partition the last-level 

shared cache in a judicious and optimal manner thereby 

increasing overall system performance. Future work could be 

directed at modifying this scheme to work for multi-banked 

caches. It could also aim at reducing the latency penalties by 

attempting to place each cache block nearest to the core that most 

frequently uses it. 
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