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ABSTRACT 

In this paper we propose a technique to distribute faulty slices 

among available n debuggers for simultaneous debugging. We 

present a three level model to distribute debugging task 

efficiently among debuggers by (a) estimating capacity of task to 

be allocated to an individual debugger (b) measuring similarity 

and assigning priority to each faulty slice to minimize 

redundancy of debugging task(c) uniformly distributing faulty 

slices by arranging them in task queues. For this we present an 

algorithm and an example to prove effectiveness and efficiency 

of the presented approach. 
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1. INTRODUCTION 
Debugging is the most expensive, time consuming and 

dominantly manual process for software developers. The cost 

related to debugging is measured mostly on two parameters: (a) 

manual labor and (b) time required to discover and correct bugs 

to produce a failure free program. The primary reason for such a 

high cost of debugging is manual effort required to localize and 

remove a fault and time consumed in producing failure free 

software. For an efficient debugging process developers always 

try to find a good trade-off between the two. Among all 

debugging activities, fault localization is among the most 

expensive [7]. 

When software fails it is usually due to more than one cause. At 

the time of failure debuggers are not aware of number of causes 

one failure might have. Thus, usually one-bug-at-a-time de-

bugging approach is carried out in a sequential manner to locate 

a fault and then to fix it. In this approach debugger might utilize 

data from failed test cases and apply a fault localization 

technique where one bug is targeted at a time. After localizing 

and fixing fault program is retested, which might lead to another 

failure and cycle gets repeated till program becomes failure free. 

However, when there can be multiple debuggers available for 

debugging task then we can create more specialized test suites 

based on fault focusing clusters and distribute debugging task. 

By distributing debugging task we can save time and hence make 

debugging activity less expensive. [11] have presented a new 

mode of debugging technique that provides a way for multiple 

developers to debug simultaneously a program for multiple faults 

by automatically producing specialized test suites for targeting 

individual faults. This technique has been termed as parallel 

debugging. Debugging in parallel reduces time required to debug 

multiple faults in a program. It includes distributing program into 

many executable faulty slices which can be debugged 

independently. Multiple debuggers are then allocated these 

individual slices for independent de-bugging. 

In this research we propose a new debugging technique to 

distribute faulty slices among available n debuggers for 

simultaneous debugging. For this we present a three tier model 

to estimate amount of work related to a slice for efficient 

distribution by (a) estimating complexity of each slice (b) 

calculating upper limit of a task to be allocated to a debugger (c) 

measuring similarity and assigning priority to each faulty slice to 

minimize redundancy of debugging task.  

 

2. RELATED WORK 
Much of recent work in debugging has been focused on fault 

localization as it is one of most expensive parts of debugging 

practice. There are various coverage-based fault localization 

techniques aiming at identifying executing program elements. 

Among them some use coverage in-formation provided by test 

suites to locate faults. Such techniques [14, 8, 9, 3] typically 

instrument and execute program with test suite to gather runtime 

information. Other faults localization techniques are: χSlice [5] 

which collects coverage from a failed test run and a passed test 

run and set of statements executed only in failed test run are 

reported as likely faulty statements, Nearest Neighborhood (NN) 

[12] is an extension of [5] which features an extra step of passed 

test run selection. Tarantula [10] defines a color scheme to 

measure correlation i.e. it searches for those statements whose 

coverage has a relatively strong (but not necessarily strict) 

correlation with program failures. The empirical comparison of 

[8] compares Tarantula with χSlice and NN and their results 

shows that Tarantula performs best among them. Statistical de-

bugging [2,4] instruments predicates in program and locates 

faults by comparing evaluation results of predicates in failed test 

runs with those in all test runs whereas Delta debugging [6,1] 

grafts values from a failed test run to a passed test run. However 

cost of repeating trials can be expensive [15] but it has been 

shown to be useful in revealing many real world faults. The 

results [8] show that when multiple test runs are available,  
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performance of Coverage Based Fault Localization (CBFL) is 

better than that of delta debugging. 

3. PROPOSED APPROACH 
Fault localization is costly as well as time consuming. The 

primary reason for such a high cost of debugging is manual effort 

required to localize and remove a fault and time consumed in 

producing failure free software. We present an approach that will 

help in distributing task equally among available debuggers 

thereby minimizing cost in terms time. The whole process is 

divided into 3-level distribution hierarchy as shown in Fig 1.  

The process starts with Capacity Calculation level. It is a 

complex level made up of three pre-processes. It starts with 

generating faulty slices using fault localization technique given 

in [10] and then combines these faulty slices to generate different 

clusters using [11]. Once the faulty slices are combined it 

computes complexity for each slice using our technique of 

complexity estimation given in [13].  

Once complexity for each slice is computed it starts with 

calculation of capacity of task queue where a task queue is a 

queue which will contain faulty slices to be allocated to 

debuggers. The maximum number of faulty slices a queue can 

hold is given by following formula: 

 

 

 

 

 

 

where Ci is the complexity of ith faulty slice and there are n 

faulty slices in total. 

 

 

 

 

The second level is a two stage process. Firstly it considers 

results of level 1 and arranges faulty slices in decreasing order of 

their complexities. This will help in efficiently selecting faulty 

slices for adding in a task queue. Secondly it calculates similarity 

between faulty slices using a two dimensional matrix (M). This 

is done to club similar slices to minimize redundant debugging 

work done by two or more debuggers.  In this matrix we store 

similarity between two slices i and j such that: 

   

  Mi,j  = the similarity between faulty slices (i, j) 

 

In the last phase we optimally distribute faulty slices among 

debuggers for debugging using following rules: 

 Select the first faulty slices from list arranged in decreasing 

order of their complexities as first slice of task queue. 

 For subsequent faulty slice we start from last element i.e. 

unallocated faulty slice with minimum complexity in the 

priority list as it minimizes number of tests which needs to 

be performed.                       

      

CqCC x

m

i

i

0  

       Where Fi is the complexity of ith faulty slice in the current 

task queue and m faulty slices have already been selected. Cx is 

the complexity of the current faulty slice being considered and 

Cq is the capacity of task queue. 

 If there are more than one faulty slices that fit the above 

criterion then one which has maximum similarity to last 

selected faulty slice (Fm ) is selected. 
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4. ALGORITHM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi is ith faulty slice 

Ci is complexity of ith faulty slice 

max = C1 

for i from 1 to n 

 if (Ci> max) 

  max = Ci 

sum = 0 

for i from 1 to n 

 sum = sum + Ci 

x = sum / m  

if(x > max) 

Cq = x 

else 

Cq = max 

for i from 1 to n 

 addtoList(S, Fi) 

SortList(Fi) // Sort the list in non-increasing order of complexity 

j = 1 

for i from 1 to m AND empty(S) = FALSE 

 while (Complexity(Qi) < Cq )  

if (Qi is empty) 

  enqueue(Qi, removeFromlist(S)) 

 else 

  C = lastElementof(S) 

  P = endof(Qi) 

  sim = 0 

while( C != NULL) 

 if( (Complexity(Qi) + Complexity(C))< Cq) 

  if(similarity(P,C) >sim) 

   Z = C 

   sim = similarity(P,C) 

 else 

  break; //Break out of while loop 

   C = Cprev 

  if ( Z != NULL ) 

removeFromList(S,Z) 

   enqueue (Qi, Z)  

  else 

   break 

while(empty(S) = FALSE) 

 TF = RemoveFirstElement(S) 

 min = ∞ 

 for i from 1 to m  

  if(Complexity(Qi ) < Cq ) 

   if (Complexity(Qi) + Complexity(TF)< min) 

    min = Complexity(Qi) + Complexity(TF) 

    k = i 

 enqueue (Qk, TF) 

Figure 2. Algorithm 
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if(first-65 > 8 || second - 65 >  9); 

} 

if(con==0) 

{ 

printf("\n BAD PAGE"); 

} 

 

if(first-65 > 8 || second - 65 >  9); 

else if(web[first-65][second-67]) 

{ 

{ 

for(i=0;i<10;i++) 

{ 

if (web[first-65][i]) 

{ 

if(web[i][second-65]&&con!=1) 

{ 

{ 

if(con!=1) 

{ 

for(j=0;j<9;j++) 

{ 

if((i!=j)&&(i!=first-5)&&(web[i][j]&&web[j][second- 

65])&& con!=1) 

{ 

}  

} 

} 

} 

} 

} 

if(con==0) 

{ 

printf("\nBAD PAGE!"); 

} 

 

5. EXAMPLE 
To illustrate the process consider a program in Figure3. Figure 

4(a),(b),(c),(d) show its corresponding clustered slices after 

applying fault localization and clustering technique of  [10, 11]. 

Next step our algorithm computes complexity for each faulty 

slice using [13]. Table 1 shows the results for complexity 

estimation. Based on the data of Table 1 each slice is assigned a 

priority to it. This data is arranged in descending order of their 

priorities for efficient selection of faulty slices for adding in a 

task queue. Table 2 shows the results after assigning priority to 

faulty slices. Once the priority is computed a two dimensional 

similarity matrix is created as shown Table 3 results of which are 

used in calculating capacity for task queue according to the 

formula given in (1) and shown in Table 4. Fig 5 represents the 

sketch of task queue using the data of Table 4. 

 

Figure 3. Example program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

if(first-65 > 8 || second - 65 >  9); 

else if(web[first-65][second-67]) 

{ 

printf("\nDirect connection from %c to %c 

",first,second); 

con=1; 

} 

else 

{ 

for(i=0;i<10;i++) 

{ 

if (web[first-65][i]) 

{ 

if(web[i][second-65]&&con!=1) 

{ 

printf("\nConnection through %c->%c-

>%c",first,i+64,second); 

con=0; 

} 

else 

{ 

if(con!=1) 

{ 

for(j=0;j<9;j++) 

{ 

if((i!=j)&&(i!=first-65)&&(web[i][j]&&web[j][second-

65])&& con!=1) 

{ 

printf("\nConnection through %c->%c->%c-

>%c",first,i+65,j+65,second); 

con=1; 

} 

} 

} 

} 

} 

} 

} 

if(con==0) 

{ 

printf("\nBAD PAGE!"); 

} 

(a) 

(b) 
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if(first-65 > 8 || second - 65 >  9); 

else if(web[first-65][second-67]) 

{ 

printf("\nDirect connection from %c to %c ",first,second); 

con=1; 

} 

else 

if(con==0) 

 

if(first-65 > 8 || second - 65 >  9); 

else if(web[first-65][second-67]) 

{ 

{ 

for(i=0;i<10;i++) 

{ 

if (web[first-65][i]) 

{ 

if(web[i][second-65]&&con!=1) 

{ 

printf("\nConnection through %c->%c- 

>%c",first,i+64,second); 

con=0; 

} 

 

} 

} 

} 

if(con==0) 

{ 

printf("\nBAD PAGE!"); 

} 

 

Percentage Similarity 

 Slice 1 Slice 2 Slice 3 Slice 4 

Slice 

1 

100 22.222222 27.27 24 

Slice 

2 

22.22222

2 

100 12.9 54.839 

Slice 

3 

27.27 12.9 100 16 

Slice 

4 

24 54.839 16 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a), (b), (c), (d). Faulty Slices 

 

Table 1. Complexity estimation of faulty slices 

Table 2. Results of priority assignment to each faulty slice 

 

 

 

 

 

 

Table 3. Similarity matrix 

Table 4: Task queue 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Sketch of task queues 

 

In the presented example we can observe that by measuring 

complexity, similarity and priority of faulty slices we have 

successfully distributed these slices equally among debuggers. 

The distribution presented is also likely to give independent 

faulty slices to the debuggers avoiding redundancy of debugging 

task. 

6. CONCLUSION 
In this paper we have presented an efficient approach for 

distributing task among debuggers. The entire process is divided 

into three levels. In first level our algorithm calculates capacity 

of a task queue by analyzing clustered faulty slices and then 

arranges these slices according to their priority. Once this data is 

Slice Slice 2 Slice 4 Slice 3 Slice 1 

Complexit

y 

18.52 17.18 6.93 4.35 

Priority(Pi

) 

P1 P2 P3 P4 

(c) 

(d) 

 Complexity 

Slice 1 4.35 

Slice 2 18.516667 

Slice 3 6.9333333 

Slice 4 17.183333 

 

  TQ1 TQ2 

  Slice 2 Slice 4 

  Slice 1 Slice 3 

Total Complexity 22.86667 24.11667 

 

Slice 2 TQ1 Slice 

2 

Slice 4 TQ2 Slice 3 
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arranged it computes the similarity matrix for clustered slices 

which is a two dimensional matrix. Based on this data slices are 

distributed among available debuggers. This helps in reducing 

two important tasks of debugging namely cost and time by (a) 

estimating complexity for uniform distribution (b) minimizing 

redundancy by allocating more similar slices to one debugger 

using similarity matrix. Finally we presented an example to 

prove efficiency and effectiveness of our approach. 
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