
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

1

Faulty Slice Distribution using Complexity Estimation for

Debugging in Parallel
Maneesha Srivastav

Jaypee Institute of Information
Technology, A-10, Sector-62
Noida, U.P. - 201 307, India

Yogesh Singh
University School of Information
Technology, Guru Gobind Singh

Indraprastha University, Kashmere
Gate, Delhi, India

Durg Singh Chauhan
Uttarakhand Technical University,

Dehradun, India

ABSTRACT

In this paper we propose a technique to distribute faulty slices

among available n debuggers for simultaneous debugging. We

present a three level model to distribute debugging task

efficiently among debuggers by (a) estimating capacity of task to

be allocated to an individual debugger (b) measuring similarity

and assigning priority to each faulty slice to minimize

redundancy of debugging task(c) uniformly distributing faulty

slices by arranging them in task queues. For this we present an

algorithm and an example to prove effectiveness and efficiency

of the presented approach.

General Terms

Debugging, fault localization, optimization, software testing.

Keywords

Clustering, debugging, fault localization, optimization, software

testing.

1. INTRODUCTION
Debugging is the most expensive, time consuming and

dominantly manual process for software developers. The cost

related to debugging is measured mostly on two parameters: (a)

manual labor and (b) time required to discover and correct bugs

to produce a failure free program. The primary reason for such a

high cost of debugging is manual effort required to localize and

remove a fault and time consumed in producing failure free

software. For an efficient debugging process developers always

try to find a good trade-off between the two. Among all

debugging activities, fault localization is among the most

expensive [7].

When software fails it is usually due to more than one cause. At

the time of failure debuggers are not aware of number of causes

one failure might have. Thus, usually one-bug-at-a-time de-

bugging approach is carried out in a sequential manner to locate

a fault and then to fix it. In this approach debugger might utilize

data from failed test cases and apply a fault localization

technique where one bug is targeted at a time. After localizing

and fixing fault program is retested, which might lead to another

failure and cycle gets repeated till program becomes failure free.

However, when there can be multiple debuggers available for

debugging task then we can create more specialized test suites

based on fault focusing clusters and distribute debugging task.

By distributing debugging task we can save time and hence make

debugging activity less expensive. [11] have presented a new

mode of debugging technique that provides a way for multiple

developers to debug simultaneously a program for multiple faults

by automatically producing specialized test suites for targeting

individual faults. This technique has been termed as parallel

debugging. Debugging in parallel reduces time required to debug

multiple faults in a program. It includes distributing program into

many executable faulty slices which can be debugged

independently. Multiple debuggers are then allocated these

individual slices for independent de-bugging.

In this research we propose a new debugging technique to

distribute faulty slices among available n debuggers for

simultaneous debugging. For this we present a three tier model

to estimate amount of work related to a slice for efficient

distribution by (a) estimating complexity of each slice (b)

calculating upper limit of a task to be allocated to a debugger (c)

measuring similarity and assigning priority to each faulty slice to

minimize redundancy of debugging task.

2. RELATED WORK
Much of recent work in debugging has been focused on fault

localization as it is one of most expensive parts of debugging

practice. There are various coverage-based fault localization

techniques aiming at identifying executing program elements.

Among them some use coverage in-formation provided by test

suites to locate faults. Such techniques [14, 8, 9, 3] typically

instrument and execute program with test suite to gather runtime

information. Other faults localization techniques are: χSlice [5]

which collects coverage from a failed test run and a passed test

run and set of statements executed only in failed test run are

reported as likely faulty statements, Nearest Neighborhood (NN)

[12] is an extension of [5] which features an extra step of passed

test run selection. Tarantula [10] defines a color scheme to

measure correlation i.e. it searches for those statements whose

coverage has a relatively strong (but not necessarily strict)

correlation with program failures. The empirical comparison of

[8] compares Tarantula with χSlice and NN and their results

shows that Tarantula performs best among them. Statistical de-

bugging [2,4] instruments predicates in program and locates

faults by comparing evaluation results of predicates in failed test

runs with those in all test runs whereas Delta debugging [6,1]

grafts values from a failed test run to a passed test run. However

cost of repeating trials can be expensive [15] but it has been

shown to be useful in revealing many real world faults. The

results [8] show that when multiple test runs are available,

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

2

performance of Coverage Based Fault Localization (CBFL) is

better than that of delta debugging.

3. PROPOSED APPROACH
Fault localization is costly as well as time consuming. The

primary reason for such a high cost of debugging is manual effort

required to localize and remove a fault and time consumed in

producing failure free software. We present an approach that will

help in distributing task equally among available debuggers

thereby minimizing cost in terms time. The whole process is

divided into 3-level distribution hierarchy as shown in Fig 1.

The process starts with Capacity Calculation level. It is a

complex level made up of three pre-processes. It starts with

generating faulty slices using fault localization technique given

in [10] and then combines these faulty slices to generate different

clusters using [11]. Once the faulty slices are combined it

computes complexity for each slice using our technique of

complexity estimation given in [13].

Once complexity for each slice is computed it starts with

calculation of capacity of task queue where a task queue is a

queue which will contain faulty slices to be allocated to

debuggers. The maximum number of faulty slices a queue can

hold is given by following formula:

where Ci is the complexity of ith faulty slice and there are n

faulty slices in total.

The second level is a two stage process. Firstly it considers

results of level 1 and arranges faulty slices in decreasing order of

their complexities. This will help in efficiently selecting faulty

slices for adding in a task queue. Secondly it calculates similarity

between faulty slices using a two dimensional matrix (M). This

is done to club similar slices to minimize redundant debugging

work done by two or more debuggers. In this matrix we store

similarity between two slices i and j such that:

 Mi,j = the similarity between faulty slices (i, j)

In the last phase we optimally distribute faulty slices among

debuggers for debugging using following rules:

 Select the first faulty slices from list arranged in decreasing

order of their complexities as first slice of task queue.

 For subsequent faulty slice we start from last element i.e.

unallocated faulty slice with minimum complexity in the

priority list as it minimizes number of tests which needs to

be performed.

CqCC x

m

i

i

0

 Where Fi is the complexity of ith faulty slice in the current

task queue and m faulty slices have already been selected. Cx is

the complexity of the current faulty slice being considered and

Cq is the capacity of task queue.

 If there are more than one faulty slices that fit the above

criterion then one which has maximum similarity to last

selected faulty slice (Fm) is selected.

Three Level Distribution process

Capacity Calculation

Similarity Estimation & Prioritization

Optimal Distribution
Software

Engineer

Debugger 1

Debugger 2

Debugger n

Debuggers

Level 1

Level 2

Level 3

(2)

(1)

Figure 1. Three level distribution model

(3)

(2)

Capacity

of a task

queue

(Cq)

=
Maximum

complexity of

a faulty slice

Σ

i=0

n

Ci

number of

debuggers

Max ,

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

3

4. ALGORITHM

Fi is ith faulty slice

Ci is complexity of ith faulty slice

max = C1

for i from 1 to n

 if (Ci> max)

 max = Ci

sum = 0

for i from 1 to n

 sum = sum + Ci

x = sum / m

if(x > max)

Cq = x

else

Cq = max

for i from 1 to n

 addtoList(S, Fi)

SortList(Fi) // Sort the list in non-increasing order of complexity

j = 1

for i from 1 to m AND empty(S) = FALSE

 while (Complexity(Qi) < Cq)

if (Qi is empty)

 enqueue(Qi, removeFromlist(S))

 else

 C = lastElementof(S)

 P = endof(Qi)

 sim = 0

while(C != NULL)

 if((Complexity(Qi) + Complexity(C))< Cq)

 if(similarity(P,C) >sim)

 Z = C

 sim = similarity(P,C)

 else

 break; //Break out of while loop

 C = Cprev

 if (Z != NULL)

removeFromList(S,Z)

 enqueue (Qi, Z)

 else

 break

while(empty(S) = FALSE)

 TF = RemoveFirstElement(S)

 min = ∞

 for i from 1 to m

 if(Complexity(Qi) < Cq)

 if (Complexity(Qi) + Complexity(TF)< min)

 min = Complexity(Qi) + Complexity(TF)

 k = i

 enqueue (Qk, TF)

Figure 2. Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

4

if(first-65 > 8 || second - 65 > 9);

}

if(con==0)

{

printf("\n BAD PAGE");

}

if(first-65 > 8 || second - 65 > 9);

else if(web[first-65][second-67])

{

{

for(i=0;i<10;i++)

{

if (web[first-65][i])

{

if(web[i][second-65]&&con!=1)

{

{

if(con!=1)

{

for(j=0;j<9;j++)

{

if((i!=j)&&(i!=first-5)&&(web[i][j]&&web[j][second-

65])&& con!=1)

{

}

}

}

}

}

}

if(con==0)

{

printf("\nBAD PAGE!");

}

5. EXAMPLE
To illustrate the process consider a program in Figure3. Figure

4(a),(b),(c),(d) show its corresponding clustered slices after

applying fault localization and clustering technique of [10, 11].

Next step our algorithm computes complexity for each faulty

slice using [13]. Table 1 shows the results for complexity

estimation. Based on the data of Table 1 each slice is assigned a

priority to it. This data is arranged in descending order of their

priorities for efficient selection of faulty slices for adding in a

task queue. Table 2 shows the results after assigning priority to

faulty slices. Once the priority is computed a two dimensional

similarity matrix is created as shown Table 3 results of which are

used in calculating capacity for task queue according to the

formula given in (1) and shown in Table 4. Fig 5 represents the

sketch of task queue using the data of Table 4.

Figure 3. Example program

if(first-65 > 8 || second - 65 > 9);

else if(web[first-65][second-67])

{

printf("\nDirect connection from %c to %c

",first,second);

con=1;

}

else

{

for(i=0;i<10;i++)

{

if (web[first-65][i])

{

if(web[i][second-65]&&con!=1)

{

printf("\nConnection through %c->%c-

>%c",first,i+64,second);

con=0;

}

else

{

if(con!=1)

{

for(j=0;j<9;j++)

{

if((i!=j)&&(i!=first-65)&&(web[i][j]&&web[j][second-

65])&& con!=1)

{

printf("\nConnection through %c->%c->%c-

>%c",first,i+65,j+65,second);

con=1;

}

}

}

}

}

}

}

if(con==0)

{

printf("\nBAD PAGE!");

}

(a)

(b)

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

5

if(first-65 > 8 || second - 65 > 9);

else if(web[first-65][second-67])

{

printf("\nDirect connection from %c to %c ",first,second);

con=1;

}

else

if(con==0)

if(first-65 > 8 || second - 65 > 9);

else if(web[first-65][second-67])

{

{

for(i=0;i<10;i++)

{

if (web[first-65][i])

{

if(web[i][second-65]&&con!=1)

{

printf("\nConnection through %c->%c-

>%c",first,i+64,second);

con=0;

}

}

}

}

if(con==0)

{

printf("\nBAD PAGE!");

}

Percentage Similarity

 Slice 1 Slice 2 Slice 3 Slice 4

Slice

1

100 22.222222 27.27 24

Slice

2

22.22222

2

100 12.9 54.839

Slice

3

27.27 12.9 100 16

Slice

4

24 54.839 16 100

Figure 4. (a), (b), (c), (d). Faulty Slices

Table 1. Complexity estimation of faulty slices

Table 2. Results of priority assignment to each faulty slice

Table 3. Similarity matrix

Table 4: Task queue

Figure 5. Sketch of task queues

In the presented example we can observe that by measuring

complexity, similarity and priority of faulty slices we have

successfully distributed these slices equally among debuggers.

The distribution presented is also likely to give independent

faulty slices to the debuggers avoiding redundancy of debugging

task.

6. CONCLUSION
In this paper we have presented an efficient approach for

distributing task among debuggers. The entire process is divided

into three levels. In first level our algorithm calculates capacity

of a task queue by analyzing clustered faulty slices and then

arranges these slices according to their priority. Once this data is

Slice Slice 2 Slice 4 Slice 3 Slice 1

Complexit

y

18.52 17.18 6.93 4.35

Priority(Pi

)

P1 P2 P3 P4

(c)

(d)

 Complexity

Slice 1 4.35

Slice 2 18.516667

Slice 3 6.9333333

Slice 4 17.183333

 TQ1 TQ2

 Slice 2 Slice 4

 Slice 1 Slice 3

Total Complexity 22.86667 24.11667

Slice 2 TQ1 Slice

2

Slice 4 TQ2 Slice 3

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

6

arranged it computes the similarity matrix for clustered slices

which is a two dimensional matrix. Based on this data slices are

distributed among available debuggers. This helps in reducing

two important tasks of debugging namely cost and time by (a)

estimating complexity for uniform distribution (b) minimizing

redundancy by allocating more similar slices to one debugger

using similarity matrix. Finally we presented an example to

prove efficiency and effectiveness of our approach.

7. REFERENCES
[1] A. Zeller, “Isolating Cause-Effect Chains from Computer

Programs”. Proc. ACM SIGSOFT. Fast Software Encryption

(FSE 02), 2002.

[2] B. Liblit, A. Aiken, A.X. Zheng, and M. I. Jordan, “Bug

Isolation via Remote Program Sampling,” Proc. ACM

SIGPLAN. Conference on Programming Language Design

and Implementation (PLDI 03), June 2003, pp. 141-154.

[3] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.

Jordan, “Scalable Statistical Bug Isolation,” Proc. ACM

SIGPLAN. Programming Language Design and

Implementation (PLDI 05), June 2005.

[4] C. Liu, L. Fei, X.F. Yan, J.W. Han, and S. Midkiff,

“Statistical Debugging: a Hypothesis Testing-Based

Approach,” IEEE Transactions on Software Engineering,

vol. 32(10), pp. 1-17, 2006.

[5] H. Agrawal, J. Horgan, S., Lodon, and W. Wong, “Fault

Localization using Execution Slices and Dataflow Tests,”

Proc. IEEE International Symposium on Software Reliability

Engineering (ISSRE 95), Oct. 1995.

[6] H. Cleve, and A. Zeller, “Locating Causes of Program

Failures,” Proc. International Conference on Software

Engineering (ICSE 05), IEEE Computer Society. May 2005.

[7] I. Vessey, "Expertise in Debugging Computer Programs,"

International Journal of Man-Machine Studies: A process

analysis, vol. 23(5), pp. 459-494, 1985.

[8] J. A. Jones and M. J. Harrold, “Empirical Evaluation of the

Tarantula Automatic Fault-Localization Technique,” Proc.

IEEE/ACM International Conference on Automated

Software Engineering (ASE 05), Nov. 2005.

[9] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of

Test Information to Assist Fault Localization,” Proc. ACM

International Conference on Software Engineering (ASE

02), May 2002.

[10] J.A. Jones, M.J. Harrold, and J. Stasko, “Fault Localization

using Visualization of Test Information,” Proc. International

Conference on Software Engineering (ICSE 04), IEEE

Computer Society. May 2004.

[11] James A. Jones, James F. Bowring and M. J. Harrold,

"Debugging in Parallel," Proc. ACM. International

Symposium on Software Testing and Analysis (ISSTA 07),

July 2007.

[12] M. Renieris, and S. Reiss, “Fault Localization with Nearest

Neighbor Queries,” Proc. IEEE International Conference on

Software Engineering (ASE 03), Oct. 2003.

[13] M. Srivastav, Y. Singh, C. Gupta, D.S. Chauhan,

“Complexity Estimation Approach for Debugging in

Parallel”, Proceedings of IEEE - 2010 Second International

Conference on Computer Research and Development, Kuala

Lumpur, Malaysia, May, 2010

[14] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the

Accuracy of Spectrum-Based Fault Localization,” Proc.

Testing: Academic & Industrial Conference Practice And

Research Techniques (TAIC PART-MUTATION 07), IEEE

Computer Society, pp. 89-98, Sep, 2007.

[15] X.Y. Zhang, S. Tallam, N. Gupta and R. Gupta, “Towards

Locating Execution Omission Errors,” Proc. ACM

SIGPLAN. Programming Language Design and

Implementation (PLDI 07), pp. 415-424, June 2007.

