
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

29

Digital Slate: Replacing the Paper Notepad

Kumar Anik
Student, IIIT Allahabad, B-Tech(IT)

703-BH3, Indian Institute of Information Technology
Allahabad, Deoghat Jhalwa , UP-211012

Abhishek Sharma
Student, IIIT Allahabad, B-Tech(IT)

719-BH3, Indian Institute of Information Technology
Allahabad, Deoghat Jhalwa , UP-211012

ABSTRACT
"Save paper, save trees" is a hot agenda in today's world. This

paper presents an ingenuous approach to achieve the motto, by

proposing a software-only design, through modeling a paper

notepad digitally. It describes the financial and social

significance of this model underlining its implementation. The

paper also briefs about the underlying hardware selected for the

design implementation. The hardware utilizes ARM processor

and is quite portable. Its known as Mini2440 FriendlyARM.

Throughout the paper, optimization (power, memory etc.) has

been primarily focused yielding to a recommendable solution.

Categories and Subject Descriptors
C.3 [Special Purpose and Application based Systems]: Real-

time and embedded systems.

General Terms
Management, Measurement, Performance, Design, Economics,

Experimentation, Human Factors.

Keywords
Digital Slate, power-efficient design, low power, embedded

device.

1. INTRODUCTION
As embedded systems, currently, are moving towards

versatility, their cost has increased by a substantial amount.

Though their current cost is lesser than their original inventive

cost due to the adaptations in the field of technology, yet

finding a cheap device dedicated to a specific task is a tough

job. The normal consumer electronics shall only comprise of

high-end ultra-versatile devices which are multi-solution

focused and hence cost greater as per the required usage. This

paper is dedicated to one such task specific scenario. Paper

notepads are a product which cover a wide range of paper

market including graph-pads, copies, books etc. The device

proposed further has in its design the core idea to “save trees”

by replacing the conventional “paper” notepads. For this

particular implementation a specific device namely MINI2440

Friendly ARM[6] has been considered, on which a minimalistic

environment similar to a paper notepad is generated. It has

been kept in mind all the way long from design to

implementation of the environment to be as less resource

consuming as possible, to facilitate scaling down of hardware

and thus making it cheaper. All the work proposed here is

based entirely on the software design rather than focusing on

internals of hardware structure.

1.1 Prior Work
For this desired result, current technologies offer a few options

1. A normal laptop or the latest coming up of the

netbooks, could double up for the purpose. So along with

their usual stuff, they would have been equipped with a

basic application which provides the usual note-making

facilities. Separate input devices can always be attached to

provide a interface similar to the common paper notepad.

But the problem would arise owing to its inherited

bulkiness, and to most of the paper notepad users, it wont

remain affordable.

2. High end mobile phones and PDAs can also provide

an alternative, but problems is more or less the same as

with laptops, namely their costs, and reduced battery life

owing to their other provisional services.

1.2 Paper Schema
This paper intends to describe the merging of various

appropriate technologies to replicate the environment of a paper

notepad. The appropriateness of these technologies is stated in

the terms of the design proposed. Furthermore, the paper

demonstrates a few techniques specific to the environment

which introduce further improvement in power-efficiency.

Section 2 describes some high level designs which may have

been speculated considering the common embedded software

technologies. Next it focuses on an implementation specific

design which serves “better” for the primary objective.

Section 3 presents the significance of such a device, with a

social and financial perspective.

Section 4 includes a brief procedure to realize the design.

Section 5 depicts a few experimental results supporting the

idea.,

2. DESIGN OVERVIEW
To achieve a digital environment that can act as a replica of a

paper notepad we need a hardware which can be of a

comparable physical size of a notepad and supports handwriting

as input and displays the same. So basically we are asking for a

touch screen and a board which has a decent processor so as to

compute all the necessary details of the environment. For this

we can choose any hand-held complying to our specifications.

After that we try to figure out what sorts of software design can

recreate the maximum possible genuine notepad environment

and yet consume the minimum available resources.

2.1 Obvious Designs
Using day-to-day software traditions and designs, to replicate a

notepad some ingenuous designs strike us right at the

beginning. While starting the development of an embedded

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

30

application misnomers like J2ME and symbian (for mobile

phones) are often encountered. For java development J2ME can

also be used. So for developing any embedded application, we

need an OS that supports embedded systems. There are quite a

many existing at present namely, WinCE, Angstrom, OPIE,

Qtopia, GPE and many more. Along with the OS, the respective

app design changes accordingly. Besides, since our objective of

a notepad environment requires a UI for interaction with user,

the chosen OS must naturally support GUI rendering.

So we first discuss more popularly used approaches in

embedded development.

1. Any embedded OS can be used with J2ME sitting

over it and so a nice Java MIDlet, which is our

notepad app, can be developed.

2. U

s

i

n

g

W

i

n

C

E

,

a

w

indow API based app. can be developed.

After taking these designs into consideration, we found that

there can be better approaches as in the case that we can go for

solutions without any middle layer (as java) between the app

and the OS, and/or we may also wish to make changes to the

kernel and so *nix based OS can prove to be much helpful[5].

In the former case performance can be increased by reducing

layers

betwee

n app

and

OS. As

to the

issue

on

changi

ng the

kernel

behavi

or we

might

wish to

change the kernel interrupt handling procedure, some

functionalities etc. Catering to these improvements we move

further to develop more designs.

Coming to FOSS [Free and Open Source Software] and non-

JAVA based development, it is easy to tell that all we need is a

linux distro which can run efficiently on the device. While in

the case of WinCE, development should be related to the OS

architecture, it's not the case when considering *nix. Since we

wish to develop an app which user can “see”, then what we

actually require is not the details of an OS but of the

windowing system for the OS. The app is supposed to

communicate to the windowing system for resource specific

details rather than direct communication with OS. It is here the

revelation took place that for embedded devices there exist two

possible windowing solutions for deploying GUI apps.

1. X11 – A widely used windowing system for *nix with

server capabilities of porting GUI remotely. Utilizes a

protocol stack to render GUI.

2. Qt Embedded Environment(QTE) – Deviates from

X11 in terms of server capabilities and GUI

rendering, since it doesn't support network UI porting

and renders directly to the frame buffer.

But again there “seems” to be one layer sitting in

between(although not the case as in Qt Embedded) the app and

the OS. But since everything is FOSS now and since there is no

need for a VM to be strictly sitting for development, we can

actually go for modifying the source of X11(not QTE) so as to

increase performance.

2.2 Proposed Design
After the consideration of the above designs a final derivation

is proposed, matching our requirements. We choose the QTE

based solution, where we do not keep any desktop environment

and make our app the sole GUI on the device. Since QTE is not

a layer of windowing system, the desktop in QTE based distros

is nothing more than a pluggable module. All other apps which

are displayed on the desktop are actually independent of it, and

could be run on the device even without it. Apart from this

Illustration 1: OS environment

Illustration 2: App Designs

Illustration 3: Final implementation

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

31

“load” removal, QTE has another advantage that it supports

SVG[13] graphics inherently. Since we are developing a slate

environment we only need a few shades of black (gray-scale) to

allow user to write/draw. It is proven that for less colors (our

requirements are even lesser) an SVG image takes up much

fraction of storage area eaten by raster graphics. Therefore with

these inherent properties of QTE we have actually finalized a

simple and yet efficient design.

2.3 Comparison
With the design finalized we need to sort out the advantages of

it over the others. Building up the significance right from the

bottom, we chose *nix as the heart of the device. Since these

OS'es are FOSS, implementation and requirement based

modification can be constructed on the kernel itself. Some

techniques discussed later in Section 4 can be implemented on

the kernel, and hence the need for *nix. Coming back to

previous designs most of them required a middle layer to

handle the application level params. Therefore utilizing QTE in

the design subtracts one extra layer process to keep running for

monitoring apps. With QTE's buffer draw mechanism,

application can directly ask the OS to give it the resources as

contrasted to the indirect middle layer approach. Developing in

QTE also provides two extra vantage points. First that QT itself

follow object-oriented approach(OOA) through c++ and

encourages the same in terms of application development.

Without getting into further details, it is to be stated that

implementation itself gets better using OOA. Second that QTE

is specifically designed for efficient code development when it

comes to less resource consumption. Direct Buffer Rendering is

a proof for that cause and SVG support is a by-product. SVG

unlike raster graphics can zoom upto 800 %(even more) and

occupies much lesser storage. Since SVG is a collection of xml

files, a simple “gz” compression can reduce its size to 20% of

original. Thus both memory and processing requirements are

minimized in the design.

3. SIGNIFICANCE

As described in Section 1, the DIGITAL SLATE focuses on

specialization rather than versatility. Specialization drives to

compactness of the model and less resource consumption in our

case. Both these factors indirectly impact the usage and

implementation of the device which in turn can act as a catalyst

for global and economical factors.

3.1 Global Impact
In U.S., on an average a person uses 700 pounds of paper

annually[9]. If only a single run of Sunday New York Times is

recycled 75000 trees could be saved[10]. The point to be stated

is that, we use paper a lot and environment is harmed as a

consequence. The device and the original idea were originated

in order to save the Green.

For further illustration, lets take a scenario of a school where

kids are supposed to maintain paper notebooks for note-making

etc. Now there are normally about 7-10 subjects in a year and

they might demand 1-2 or more notepads for each. So on

average a student will use at the minimum 10 copies. All

statistics are at the minimum(not average). Furthermore the

average number of students per school in the entire country,

using 10 notepads each, is 89599(as taken in year 1999-

2000)[11]. So per school, we have a consumption of 895990

notebooks and there are many schools in US as we know;

naturally, trees get squandered. Therefore a device which can

replace notepads providing similar usage will do the trick.

Although one may have gone for a “richer” multimedia

solution, but why go for that when the above stated device can

be much cheaper and robust. Thus the device can be as green

and pocket friendly as possible.

3.2 Financial Perspective
Average cost of a legal lined paper notepad is about 2$.

Referring to the above number of notepads used per school, we

have 895990*2 $ of money per school. Per head we have 20$ a

year on paper notepads. This 20$ sums up to 200$ in 10 years.

The device which we have specifically used in order to create a

notepad environment(MINI2440), costs lesser than 100$. It can

be used to replace all notebooks of different subject in one

shot(digital memory can store more than a paper). So if

maintained properly, Digital Slate can serve a person for entire

lifetime eliminating scope of paper consumption. In terms of

power usage Mini2440 consumes 5V and doesn't have any

batteries installed but that is achievable simply by using 4

NiMH rechargeable batteries. The design implementation,

discussed in the section 4, focuses on less power utilization as

that is also an impact factor to the cost incurred.

3.3 Specific to the device and app.
Until and unless we write on a notepad with a pencil, we can

safely assert that the copy is not dynamic in nature. Once

written always remains. In such a case managing two or more

subjects is difficult in a single paper notepad. Even with a

pencil, we might have to encounter a lot of erasing when it

comes to managing notes. A digitized version of the notepad

can actually make use of a filesystem where directories can

represent Subject/Topics and their contents user's manuscripts.

Apart from this a completely new feature of zooming becomes

accessible. This feature removes the restriction of a page limit

upto a certain point. Higher Data Storage is naturally an addon

to the digital counter part of a paper notepad. Mobility can be

guaranteed using customized batteries. Since the device,

specific to the implementation, has a touch screen, so the look

and feel of a paper copy is replicated closely and thus enables

users to adapt to the newer digital environments, quickly.

In terms of usage following advantages can be postulated:

While the size of a paper page may restrict a user to write/draw

abnormally from their original freehand(smaller or larger),

using the device zooming in and out capabilities they can

always stick to their comfortable selves.

Users may always reuse their notes by copy/paste”ing” a

portion or whole of them without having to re-write everything.

Additional features include that users can render their

handwriting to projectors thus enabling large no. of people to

see it.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

32

4. IMPLEMENTATION

METHODOLOGY
Now that the design and the device's significance has been

cemented, its high time to lay down the road to

implementation. As seen in Section 2, open source technologies

are much more flexible so an appropriate development and

deployment environment needs to be configured. Augmenting

to it some power efficient techniques need to be utilized. Apart

from deployment of the application, we also need to compare

the results of our implementation design with the obvious ones

and to establish software parameters for the application itself.

Through virtualization, testing of environments and

applications gets easy and hence its requirement. Finally all the

little details of the elicited application product need to be

pondered over.

4.1 The Open and Embedded Way :

OpenEmbedded
For the ease of implementing the design on the device, one can

use the method of cross-compiling source codes on a high-end

host machine, to create binaries of embedded apps. A hunt for

such a framework, revealed OpenEmbedded[2].

Openembedded offers an apt cross-compile environment which

allows developers to create apps for embedded systems. With

its portability, OpenEmbedded can cross-compile and generate

builds for various machines(mini2440 particularly in our case).

Openembedded has a pre-specified tree structure which has

configurations for many open source applications and

development environments. All one need to do in order to start

building is learn two things:(a) How to use a tool named

bitbake and (b) How to create recipes for OpenEmbedded.

Bitbake is a tool which, for given recipes, does particular jobs

like compiling, building or removing applications. It serves as

the basis of OpenEmbedded. Consider a scenario where we

wish to generate a jffs (Journalling Flash File System) image of

the desktop environment namely opie(Open Palmtop Integrated

Environment which is quite a popular embedded desktop

environment) for a device, say xyz, which is supported by

OpenEmbedded. Now a non OpenEmbedded approach would

be to download all sorts of dependencies sources for the opie as

well as its own source and cross compile everything which

precedes an image generation of the “built” material. One also

needs to be careful about device specific parameters while

cross compiling the sources. Now with OpenEmbedded support

all one has to do is this:

Table 1. Unix Command for “bitbake”ing an app.

localhost@localhost$ bitbake opie-image

 where all sorts of device specification is simply to be put in a

configuration file. Next is just wait and watch scenario, since

bitbake will resolve all the sources and their download urls,

shall fetch them, and finally compile and deploy them.

Therefore to use preexisting open softwares one doesn't have to

be too careful.

To add one's own source to be used by OpenEmbedded recipes

need to be created, which are nothing but “.bb” python files

having a particular syntax so as to be resolved by bitbake. Thus

for deploying the intended notepad application, the following

mandatories had to be considered:

1. Our application itself is the one and only GUI on the

device(for resource savvy issues).

2. A device specific Qt Embedded SDK for creating the

desired notepad app.

3. A deployable image of a file system (preferably jffs or

cramfs) which encapsulates merely the core requirements for

running the notepad app.

4. The above stated image recompiled for virtualization

purposes.

The first one at the list is to be hand-coded as will be described

in 4.4 and the remaining three are simple “bitbake”s.

4.2 Power Efficiency

In all embedded devices, power plays a major role, rather it

proves to be a constraint in developing all applications. The

reasons for that are quite obvious, mostly because they are

battery powered and the longer the same battery runs[4], the

better for the device. After all no body likes to keep their

mobile devices plugged in for charging. They ought to be

“mobile”. Limited space or weight to hold memory as well as

the processors also asks for better management of memory and

processing.

Now, since we zeroed on the device Mini2440, which works on

the ARM processor, and has a fixed hardware design, we are

limited to engage the implementation only to the software that

suits our design. Catering our development to this path, we can

go for what is so called “Green” Software Design. The software

in the device consists, broadly, of the following three parts. (I)

The Linux kernel, (ii) The Windowing system, and (iii) The

Notepad app. So, We shall look into a few techniques

available for possible optimization in all these parts.

4.2.1 The Linux Kernel

The major point about the proposed design is its simplicity. So

the additional features of the linux kernel, which are specific

for intensive applications, can be stripped off leaving those

which are necessary. For instance, Kernel is termed tick-less, if

its timer is reimplemented so that the scheduler doesn't wake

up the processor again and again. It augments the power-saving

capabilities for the systems with dedicated applications.

4.2.2 The Windowing System

The required dependencies for the windowing system QTE as

well as the notepad application are compiled using GCC, there

are a few techniques available for optimization so as to increase

the battery life.

(i) Many optimizations are provided by the cross compiling

toolchains, like CodeSourcery etc.

(ii) Compiler optimization achieved through -O switches can

enhance the speed as well as memory requirements.

mailto:localhost@localhost

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

33

(iii) GCC also allows direct assembly language codes to be

incorporated in between the C/C++ code, which can efficiently

be used to utilize processor-specific instructions.

Further, [7] talks about a low power front-end which uses a

block-aware instruction set, [8] discusses about an architecture-

level power optimization. Similarly, QTE can also be tuned for

optimum performance as described in [1] which include

altering

 Programming Style

 Static vs. Dynamic Linking

 Alternative Memory Allocation

 Bypassing the Backing Store

4.2.3 The Notepad app

The programming language used for development of the

notepad app is C++, so several measures can be taken to create

power-aware codes. For instance, the source code is optimized

as per the instructions given in [3] ,

 Modulo 2 division to be implemented on unsigned int;

owing to the fact that div16s requires the extra sign correction

as compared to div16u in ARM compilers

 Modulo operation is avoided, instead the conditional

statements are utilized, wherever possible.

 When several conditions are required, use of the grouped

conditions is preferred over separate if statements, as it

utilizes the ARM way of handling with conditions.

 All ARM instructions can be conditionalized. So to check

the range of a number x between xmin and xmax, the code is

written as

(x – xmin) < xmax

 A local copy of global variables is made, so as to allow the

compiler to use registers for them. For the same reason, the

variables passed as references are copied to a local variable,

and later the change is reflected back in the end.

 Use of int in place of short or char, as the compiler by

default uses 32 bits in each assignment.

 Function definitions to be put above their call.

 No of arguments to be limited to 4, so that the compiler

can use registers in stead of placing them on to the stack.

 In use of pointer chains, the references are reduced to

single level so as to avoid multiple memory lookups. For

example,

z1 = a → b → x;

z2 = a → b → y;

is replaced by

temp = a → b;

 z1 = temp → x;

 z2 = temp → y;

4.3 Virtualizing things up
We need to test and compare the notepad app with other

possible app builds. Now instead of serially testing each and

every environment by burning it on the device it is much better

to test them virtually. For this purpose we need a framework

which can emulate a genre of devices on a high-end host

machine. With a bit of searching it was revealed that

specifically for ARM emulation there are 3 widely used

emulators(opensource) around, namely → Softgun, Qemu and

Skyeye. Among these Qemu[12] is the arguably most versatile

and more rigorously maintained than its counterparts. Qemu

supports emulation of many machines including popular ones

like ARM, Atmel , Amiga etc. Our device mini2440 is ARM

based and also falls under the supported category. With this it

was decided to set up virtualization through Qemu. Setting up

Qemu was nothing more than a :

 Table 2. Unix Command for “bitbake”ing qemu.

localhost@localhost$ bitbake qemu

Now qemu needs the following parameters so as to start

emulation:

 machine name specifying the device for which emulation

needs to be done, if the device is supported than it's platform

(ARM etc.) is automatically decided; in our case it is

Mini2440 or versatile[ab/pb] (for a work around if Mini2440

fails)

 the file system image for the machine; we use ext2

(generated by bitbake as mentioned in 4.1) in our case since

jffs2 is not supported on Qemu.

 kernel image generated for the machine (zImage or uImage,

for instance), it is usually generated along with the above

stated image when “bitbake”ing.

 specifying what sorts of external devices need to be

emulated along with the machine like keyboard, touchscreen,

mouse etc; In our case, we require only the touch screen as the

only I/O device.

Illustration 4: Virtualizing Hardware

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

34

There are many other options supported by qemu like tftp-boot

and telnet monitoring but we shall stick to the fundamental

usage. For the testing purposes, we can generate images (as

described in section 4.1) and emulate them so as to compare

the performance of the notepad app on desktop and non-desktop

environments respectively.

4.4 The Final Application

 Qt provides a bunch of features that we can use for the

development of the simple notepad application. The following

classes are used for the same:

 QPluginLoader : A plugin is a dynamic library that

can be loaded at run-time to extend an application.

 QDirectPainterDirect: which enables access to the

underlying hardware in Qt for Embedded Linux

 QWSWindow which encapsulates a top-level window

in Qt for Embedded Linux

 QRasterPaintEngine, which enables hardware

acceleration of painting operations in Qt for Embedded Linux

 QSvgGenerator which provides a paint device that is

used to create SVG drawings and QSvgRenderer, which is

used to draw the contents of SVG files onto paint devices

5. EXPERIMENTAL RESULTS

Here we describe some of the stats relating to virtualization of

the device. In the image below there are two instances of the

virtual environment of a completed embedded system running.

The one on the L.H.S has a fully-blown desktop and GUI.

Another on the right has been stripped of its GUI. And we

display the results noted down both on the host as well as the

target systems below.

The magnified yellow areas are shown above. The following

data accounts for the scenario:The first bar(magnified from the

LHS of the desktop screenshot) displays the CPU consumption

of the target device when it is encompassed by a desktop(6.6%

CPU usage). As in the case of the second virtual instance of the

target device without the GUI, the CPU consumption drops

down to 0.7%. Therefore it's quite safe to state that a desktop

will definitely increase the processing requirements of the

notepad environment and similar the case with power

consumption. Therefore a complete stripped down version of

the notepad app should be developed.

 The third bar displays the memory and processing

requirements of the virtual environments on the host. The one

with the GUI is consuming about 19% of the CPU and is taking

up .3% more memory than the non GUI instance. The host

system has 2048 Mb of RAM and .3% accounts to 6 Mb usage.

On an embedded system these many Mbs can be utilized for

other creative purposes and hence the requirement of no GUI.

Apart from the design requirements, application specific

advantage is also experimented. We basically speak in terms of

storage restrictions and hence we now compare SVG with

raster graphics.

PNG Snapshot of letter 'a',

magnified to same level from original(800%), in SVG

and raster graphics respectively

The letter 'a' in the above snapshots clears out the advantage of

using SVG as the fundamental image format for the app.

Moreover the image shown below is formated in SVG and

raster graphics.

A sample Black & White image requires 837 bytes when stored

in SVG format with compression(SVGZ) and 13.1KB with

raster graphics rendering. Thus SVG can cater its utilization

effectively in the perspective of both the user and the system.

6. CONCLUSION & THE WAY AHEAD

This paper presented an idea to develop an eco-friendly

device. having a simple but rarely implemented design in its

core. We discussed about a candidate design that uses nothing

novel in terms of technology, yet yielding a potential product.

It has also been illustrated how different measures can be taken

to optimize the functionality of the device.

As the notepad app gets developed it paves a way for

encouraging scaling down of hardware. In the end we need a

device which is both efficient and “cheap”. The cost more or

less depends on the hardware and hence the need for scaling

down. With advancement in hardware the original designs may

be reused and solution can be even better and yet cheaper.

7. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify

templates they had developed, to our college for providing us

the platform to research, and to OpenEmbedded developers

who guided us through the alleys.

Illustration 5: Performance Results

Illustration 6:

Vector 'a'

Illustration 7:

Raster 'a'

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

35

8. Glossary

PDA – Personal Digital Assistant

netbook – small, lightweight and inexpensive laptop computers

suited for general computing and accessing web applications.

FriendlyARM – A category of devices which have an ARM

processor and are good replacements of PDAs.

WinCE – embedded windows OS.

QT – GUI framework for linux based systems.

Qtopia – OS developed by QT developers with QT as GUI.

app – shorthand for application.

MIDlet – java apps for mobile based systems.

Distro – family of OS that uses linux as kernel.

param – shorthand for parameters.

QTE – QT framework for embedded systems.

Virtualizing – using the virtual replacement of an embedded

device.

9. REFERENCES & CITATIONS
[1] Qt for Embedded Linux Performance Tuning, [as in March

2010] http://doc.trolltech.com/4.4/qt-embedded-

performance.html [as in Feb 2010]

[2] OpenEmbedded [as in Feb 2010]

http://wiki.OpenEmbedded.net/index.php/Main_Page

[3] Tajana Simunic, Luca Benini, Giovanni De Micheli, 1999.

Energy-efficient design of battery-powered embedded

systems. ACM Press, New York, NY, 212 – 217. DOI =

http://doi.acm.org/10.1145/313817.313928

[4] Daler Rakhmatov, Sarma Vrudhula, Deborah A. Wallach

2002. Battery lifetime prediction for energy-aware

computing. In Proceedings of the international symposium

on Low power electronics and design (Monterey,

California, USA, 2002). ACM Press, New York, NY, 154-

159. DOI= http://doi.acm.org/10.1145/566408.566449

[5] Qt vs Java http://turing.iimas.unam.mx/~elena/PDI-Lic/qt-

vs-java-whitepaper.pdf

[6] FriendlyARM http://www.friendlyarm.net

[7] Brown, L. D., Hua, H., and Gao, C. 2007. A low power

front-end for embedded processors using a block-aware

instruction set. In Proceedings of the 2007 international

conference on Compilers, architecture, and synthesis for

embedded systems (Salzburg, Austria, 2007). ACM Press,

New York, NY, 267 – 276. DOI=

http://doi.acm.org/10.1145/1289881.1289926

[8] David Brooks , Vivek Tiwari , Margaret Martonosi,

Wattch: a framework for architectural-level power analysis

and optimizations, Proceedings of the 27th annual

international symposium on Computer architecture, p.83-

94, June 2000, Vancouver, British Columbia,

Canada [DOI =

http://doi.acm.org/10.1145/339647.339657]

[9] Daily Green

http://www.thedailygreen.com/environmental-

news/latest/7447 [as in March 2010]

[10] Newspaper Recycling

http://www.uaacog.com/Newspaper_Recycling.htm [as in

Feb 2010]

[11] IES, NCES http://nces.ed.gov/pubs2001/overview/ [as in

March 2010]

[12] QEMU http://www.qemu.org [as in Feb 2010]

[13] Scalable Vector Graphics

http://www.w3.org/Graphics/SVG/ [as in Feb 2010]

http://doc.trolltech.com/4.4/qt-embedded-performance.html
http://doi.acm.org/10.1145/332040.332491
http://doi.acm.org/10.1145/332040.332491
http://doi.acm.org/10.1145/332040.332491
http://portal.acm.org/author_page.cfm?id=81100636269&coll=ACM&dl=ACM&trk=0&CFID=1337974&CFTOKEN=35545911
http://www.thedailygreen.com/environmental-news/latest/7447
http://www.uaacog.com/Newspaper_Recycling.htm
http://www.w3.org/Graphics/SVG/

