
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

7

FPGA Implementation of Daubeshies Polyphase-
Decimator filter

Abdelhakim SAHOUR
Dept. sciences and technology,

University of Khenchela
Route de Constantine BP:1252, El Houria, 40004

Khenchela, Algeria

Mohamed Benouaret
Dept. of Electronic, University of Annaba

Université Badji Mokhtar -Annaba- B.P.12, Annaba,
23000 Algeria.

ABSTRACT
This paper presents a fast multi-rate structure of Daubechies

polyphase decimator which is required in the development of

telecommunications systems and real time processing. It is an

optimized approach which offers an increased efficiency in both

size and speed, aspects that are well suited to reconfigurable

architecture task heretofore implementation in FPGA platform

which offers the potential of designing high performance systems

at low cost. Hence, in order to evaluate the features of this method

and to check the proposed extension of the basic Daubechies

wavelet with four coefficients, a computer simulation was

performed. It always simple and quick testing of the algorithm

behavior of the proposed method for a wide class of signal

processing. The Matlab/Simulink package and Modelsim were

chosen as the programming environments for computer

simulations.

Keywords
Daubechies wavelet, Filter Decimator, Multirate system, Altera

FPGA. Xilinx FPGA, Modelsim, Matlab/simulink.

1. INTRODUCTION
Digital signal processing algorithms are increasingly employed in

modern wireless communications and multimedia consumer

electronics, such as cellular telephone and digital cameras.

Traditionally, such algorithms are implemented using

programmable DSP chips for low-rate applications [1], or VLSI

application specific integrated circuits (ASICs) for higher rates

[2]. However, advancements in Filed Programmable Gate Arrays

(FPGAs) provide a new vital option for the efficient

implementation of DSP algorithms [3]. Thus, the need to grow

fast filtering methods. Indeed, making it imperative that we often

think to adjust the sampling rate according to the signal of

interest. Systems with different sampling rates are referred to as

multirate systems [4]. Polyphase is a methode of doing sampling

rate conversion that leads to very efficient implementation. But

more that, it leads to very general viewpoints that are useful in

building decimator or interpolator filter. So, in this paper we focus

our attention upon the polyphase structure of the Daubechies filter

which has gained the reputation of being a very effective signal

analysis tool for many practical applications. In fact, after A/D

conversion, the signal data can be found in small frequency band

(typically, lowpass or bandpass), then it is reasonable and logic to

perform a filtering operation followed by an appropriate sample

rate reduction. A narrow filter followed by a downsampler is

frequently referred to as a decimator [4]. The filtering,

downsampling, and the effect on the spectrum is depicted in

Figure 1. We can reduce the sampling rate up to the limit called

the "Nyquist rate" which says that the sampling rate must be

higher than the bandwidth of the signal, in order to avoid aliasing.

So, for a bandpass signal, the frequency band of interest must fall

within an integer band. If fs is the sampling rate, and M is the

desired downsampling factor, then the band of interest must fall

between.

()k
f

M
f k

f

M
k Ns s

2
1

2
< < + ∈

Figure 1. Decimation effect of the signal x(n) →→→→ X(ωωωω)

2. NOBLE IDENDITY
When manipulating signal flow graphs of multirate systems it is

sometimes very suited and useful to rearrange the filter and

decimator/interpolator, as illustrated in figure 2. This is the so-

called “Noble” relation. For the downsampler, it follows:

() () ()()↓ = ↓M H z H z M
M

 (1)

Figure 2. Equivalent multirate systems for M=2 (Noble

relation)

This means that the decimator is done first, we can reduce the

filter length H(zM) by factor of M.

u(n) can be expressed as:
() () ()u n H z X z= 2

 and the

downsampling expression of the output signal can be written as :

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

8

()y z U z U z= 



 + −










1

2

1
2

1
2

which involves that the obtained signal can be downsampled first:

() ()y z H z X z X z= 



 + −










1

2

1
2

1
2

 (2)

It follows that the polyphase form of the filter representation using

first Nobel identity looks as depicted in Figure 3.

Figure 3: The first Noble identity representation of the

polyphase structure with M=2.

3. POPLYPHASE DECONPOSITION
Polyphase decomposition is very useful when we need to

implement architecture of decimator and or interpolator filter

design. To illustrate this, consider the polyphase decomposition of

an FIR decimation filter. If we add downsampling by a factor of

M to the filter structure, we find that we only need to compute the

output sequence y(n) at time instances

() ()y nM y M= ↓

It follows that we do not need to compute the ordinary product

convolution

() () ()y n h i x n i
i

N

= −
=

−

∑
0

1

 (3)

But it is therefore reasonable to split the input signal first into M

separate sequences according to:

() () () (){ } []x n x i x M i x M i i Mi = + + = −, , ,2 0 1K K
(4)

And also to split the filter h(n) into M sequences :

() () () (){ } []h n h i h M i h M i i Mi = + + = −, , ,2 0 1K K
(5)

It follows from these that the filtered and decimate sequence was

denoted by:

() () () () ()y M x n h n x n h ni

i

M

M i↓ = ∗ + − ∗
=

−

−∑0 0

1

1

1

 (6)

Figure 4: Polyphase realization of a decimator filter

Figure 4 shows a decimator filter topology using polyphase

decomposition. Such a decimator is M times faster than the usual

FIR filter followed by a downsampler. The filters hi(n) are called

polyphase filters, because they all have the same magnitude

transfer function, but they are separated by a sample delay, which

introduces a phase offset.

4. DAUBECHIES DECIMATOR FILTER
Consider a Daubechies length-4 filter as shown in figure 3 with

H(z) and M=2

() () () () ()[]H Z Z Z Z= + + + + − + −− − −1 3 3 3 3 3 1 3
1

4 2

1 2 3

(7)

()H Z Z Z Z= + + −− − −0 48301 08365 0 2241 012941 2 3. . . .

So, the mathematical model describing the Daubechies decimator

filter can be represented by the following evolution matrix under

(assuming of M = 2).

(8)

Quantizing the filter at a precision of 8 bits results in the

following model:

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

9

() ()

() () ()

() ()

H Z
Z Z Z

H Z H Z H Z

Z Z Z

H Z H Z

=
+ + −

= +

= +




+ −





− − −

− − −

124 214 57 33

256

124

256

57

256

214

256

33

256

1 2 3

0

2

1

2

2 1 2

0
2

1
2

1 2444 3444 1 2444 3444

 (9)

and it follows that

() ()H Z Z H Z Z Zeven odd= +





= −





− − −124

256

57

256

214

256

33

256

1 1 1

(10)

Figure 5: Decimator timing diagram.

Our goal is to be more pronounced in all stages of the

implementation task of such filter decimator, so we strive properly

to dissect each part of this design. By carefully designing the

coefficients, the structure allows to obtain a very high

performance and relatively easily implementable of the filter

decimator. Obviously the first process is modeled by the FSM

chart, which includes the control flow and the splitting of the

input stream at the sampling rate into even and odd samples. The

second task includes the Reduced Adder Graph (RAG) multiplier

and hosts the two filters in a transposed structure.

The multiplication operation by 124 gain required effectively

means data shifting with five bits towards the Most Significant Bit

(MSB) followed by subtracting operation between the obtained

data and the input stream (x_even) as in Figure 6. In order to take

care of the negative numbers in two’s complement arithmetic, the

Least Significant Bit (LSB) has been propagated to the next five

bits. At last the output data has been shifted by four bits. The

output is given in 17 bits without any loss of precision. Actually

17 bits is enough to provide the full accuracy. However, 17 bits

sizing have been chosen for the consistency with the other

multiplier by the factor of 0 … 255.

The multiplication by the 57 factor requires a subtraction

operation between the eight shifted version of the input and the

original version of it. The second step is the addition of the data

obtained previously and that of the original one as depicted in

Figure 7. For such a case 17-bits are required to provide the

output at the full accuracy.

Figure 6: The fixed-point 17 bits 124 gain structure

Figure 7: the fixed-point 17 bits 57 gain structure

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

10

The 17-bit implementation of the 33 gain structure has been

illustrated in figure 8. So no loss precision happens here as the

format of the data is such that the possibility of a carry bit set does

not influence the performance structure.

Figure 8: The fixed-point 17 bits 33 gain structure

In the same manner the implementation of 214 gain shown in

figure 9, can be achieved by adding the 2 shifted version of the

previous structure of 33 gain to the original one, and the obtained

result is added to the 8 shifted x_odd sample before it undergo a

two left shift operation to form finally the desired gain

Figure 9: The fixed-point 17 bits 214 gain structure

 The result of multiplication by 124 coefficient is being added to

the delayed output sample of the 57 gain. Thus, the second way

constituting in the subtraction between the sample having

undergone a multiplication by 214 coefficient and the weighted

sample using 33 coefficient after it has been delayed.

{ d=temp;temp=x_in;}

{ x_out = d;}

Figure 10: The fixed-point 17-bits delayer block Simulink

implementation

The decimator filter will accept 8-bits inputs and will output also

an 8-bits samples. The arrangement for this decimator is shown in

figure 11, and here, the internal word length increases by the

arithmetic operations, finally the length of decimator output will

be limited to eight bits. The multiplication in this example is

undertaken using a digital multiplier. So, the design here is purely

combinational logic which includes the divider with 256 to

perform the output decimator.

Figure 11: The fixed point 8-bits right shifter structure

Simulink implementation

Figure 12 : The fixed point Daubechies decimator filter

Simulink implementation.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.10, October 2010

11

5. IMPLEMENTATION
The various blocks used in this application are materialized by

using the language of hardware description VHDL. Making it

possible to implementing it on a reconfigurable platform (Altera

or Xilinx type).

Indeed, before implementing our application we used ModelSim

to write and execute test-benches to validate the correct operation

of each component separately, and consequently to make the

analysis and comparison with the results obtained in the

Matlab/Simulink environment. ¶This stage consists in generating

signals with the Matlab language which will be used thereafter in

Modelsim.

The vhdl code designed for the example Daubechies decimator

filter has been subject to synthesis in code through logic

synthesizer, included in the Foundation Software. in the

appropriates devices of FPGA.

6. RESULTS AND DISCUSSIONS
The implementation was elaborate following has subjective

study.One was interested in the number of logic elements

necessary for the implementation of the filter. It happened to be

190 of 10570 which represents 2% for a device Altera Stratix

EP1S10B672C6 [5] and 112 of 2352 4% for a device Xilinx

Spartan II [6]

To implement our approach we recommended to generate a signal

characterized by a harmonic component of three separate

sequences that each one having its own frequency shown in figure

13.

Figure 13. The original signal using Matlab/Similink

Figure 14 shows the result of analyzing and synthesizing with

MATLAB/SIMULINK of the original signal using filter

decimator previously described. Figure 15 illustrates the result of
doing the same filtering operation using the Modelsim

environment. The results of simulation show a best conformity

between Matlab/simulink and Modelsim environment.

Figure 14. The result of simulation with Matlab/Similink

We easily observe a significant attenuation concerning the high

frequency component due to the operation of the filtering imposed

by the structure of this decimator filter

Figure 15. The result of simulation with ModelSim of

Daubechies decimator VHDL filter implementation

7. CONCLUSION
In this paper, a design approach was implemented to realize a low

power Daubechies decimator filter. The structure of this

decimator has advantages in high speed operations such as digital

RF/RI signal processing and the performance in term of power

consumption and gate count were also compared. So, in order to

achieve low power consumption, the operating clock frequency

and hardware reduction concept were implemented. The important

applications discussed here include the digital sequence

decimation of eight-bit unsigned component of three frequencies.

The fixed point Matlab/Simulink is used to perform a

confrontation between simulation and hardware implementation

task.

8. REFERENCES
[1] Texas Corporation, www.ti.com

[2] M. Smith, 1997 Application-specific integrated circuits.

USA: Addison Wesley Longman,.

[3] R. Seals and G. Whapshott, 1997 Programmable Logic:

PLDs and FPGAs. UK: Macmillan,

[4] Uwe Meyer-Baese., Digital Signal Processing with Field

Programmable Gate Arrays, Third Edition, ISBN 978-3-540-

72612-8 Springer Berlin Heidelberg NewYork.

[5] http://www.altera.com/products/devices/stratix-

fpgas/stratix/stratix/stx-index.jsp

[6] http://www.xilinx.com/support/documentation/spartan-

ii.htm

