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ABSTRACT 
This paper presents a fast multi-rate structure of Daubechies 

polyphase decimator which is required in the development of 

telecommunications systems and real time processing. It is an 

optimized approach which offers an increased efficiency in both 

size and speed, aspects that are well suited to reconfigurable 

architecture task heretofore implementation in FPGA platform 

which offers the potential of designing high performance systems 

at low cost. Hence, in order to evaluate the features of this method 

and to check the proposed extension of the basic Daubechies 

wavelet with four coefficients, a computer simulation was 

performed. It always simple and quick testing of the algorithm 

behavior of the proposed method for a wide class of signal 

processing. The Matlab/Simulink package and Modelsim were 

chosen as the programming environments for computer 

simulations. 
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1. INTRODUCTION 
Digital signal processing algorithms are increasingly employed in 

modern wireless communications and multimedia consumer 

electronics, such as cellular telephone and digital cameras. 

Traditionally, such algorithms are  implemented using  

programmable DSP chips for low-rate applications [1], or VLSI 

application specific integrated circuits (ASICs) for higher rates 

[2]. However, advancements in Filed Programmable Gate Arrays 

(FPGAs) provide a new vital option for the efficient  

implementation of DSP algorithms [3]. Thus, the need to grow 

fast filtering methods. Indeed, making it imperative that we often 

think to adjust the sampling rate according to the signal of 

interest. Systems with different sampling rates are referred to as 

multirate systems [4]. Polyphase is a methode of doing sampling 

rate conversion that leads to very efficient implementation. But 

more that, it leads to very general viewpoints that are useful in 

building decimator or interpolator filter. So, in this paper we focus 

our attention upon the polyphase structure of the Daubechies filter 

which has gained the reputation of being a very effective signal 

analysis tool for many practical applications. In fact, after A/D 

conversion, the signal data can be found in small frequency band 

(typically, lowpass or bandpass), then it is reasonable and logic to 

perform a filtering operation followed by an appropriate sample 

rate reduction. A narrow filter followed by a downsampler is 

frequently referred to as a decimator [4]. The filtering, 

downsampling, and the effect on the spectrum is depicted in 

Figure 1. We can reduce the sampling rate up to the limit called 

the "Nyquist rate" which says that the sampling rate must be 

higher than the bandwidth of the signal, in order to avoid aliasing. 

So, for a bandpass signal, the frequency band of interest must fall 

within an integer band. If fs is the sampling rate, and M is the 

desired downsampling factor, then the band of interest must fall 

between.  
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Figure 1.  Decimation effect of the signal x(n)  →→→→  X(ωωωω) 

2. NOBLE IDENDITY 
When manipulating signal flow graphs of multirate systems it is 

sometimes very suited and useful to rearrange the filter and 

decimator/interpolator, as illustrated in figure 2. This is the so-

called “Noble” relation. For the downsampler, it follows: 

( ) ( ) ( )( )↓ = ↓M H z H z M
M

  (1)
 

 

Figure 2. Equivalent multirate systems for M=2 (Noble 

relation) 

This means that the decimator is done first, we can reduce the 

filter length H(zM) by factor of M. 

u(n) can be expressed as:
( ) ( ) ( )u n H z X z= 2

 and the 

downsampling expression of the output signal can be written as :  
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which involves that  the obtained signal can be downsampled first: 
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            (2) 

It follows that the polyphase form of the filter representation using 

first Nobel identity looks as  depicted in Figure 3. 

Figure 3: The first Noble identity representation of the 

polyphase structure with M=2. 

3. POPLYPHASE DECONPOSITION  
Polyphase decomposition is very useful when we need to 

implement architecture of decimator and or interpolator filter 

design. To illustrate this, consider the polyphase decomposition of 

an FIR decimation filter. If we add downsampling by a factor of 

M to the filter structure, we find that we only need to compute the 

output sequence y(n) at time instances  

( ) ( )y nM y M= ↓
  

It follows that we do not need to compute the ordinary product 

convolution   

( ) ( ) ( )y n h i x n i
i

N

= −
=

−

∑
0

1

  (3) 

But it is therefore reasonable to split the input signal first into M 

separate sequences according to:        

( ) ( ) ( ) ( ){ } [ ]x n x i x M i x M i i Mi = + + = −, , ,2 0 1K K
(4) 

And also to split the filter h(n) into M sequences : 

( ) ( ) ( ) ( ){ } [ ]h n h i h M i h M i i Mi = + + = −, , ,2 0 1K K
(5) 

It follows from these that the filtered and decimate sequence was 

denoted by: 

( ) ( ) ( ) ( ) ( )y M x n h n x n h ni
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Figure 4: Polyphase realization of a decimator filter 

Figure 4 shows a decimator filter topology using polyphase 

decomposition. Such a decimator is M times faster than the usual 

FIR filter followed by a downsampler. The filters hi(n) are called 

polyphase filters, because they all have the same magnitude 

transfer function, but they are separated by a sample delay, which 

introduces a phase offset. 

4. DAUBECHIES DECIMATOR FILTER  
Consider a Daubechies length-4 filter as shown in figure 3 with 

H(z) and M=2 

( ) ( ) ( ) ( ) ( )[ ]H Z Z Z Z= + + + + − + −− − −1 3 3 3 3 3 1 3
1

4 2

1 2 3

(7) 

( )H Z Z Z Z= + + −− − −0 48301 08365 0 2241 012941 2 3. . . .
 

So, the mathematical model describing the Daubechies decimator 

filter can be represented by the following evolution matrix under 

(assuming of   M = 2).  

                                                                                                      

(8) 

 

 

 

Quantizing the filter at a precision of 8 bits results in the 

following model:  
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and it follows that  

( ) ( )H Z Z H Z Z Zeven odd= +
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(10) 

 
Figure 5: Decimator timing diagram.  

Our goal is to be more pronounced in all stages of the 

implementation task of such filter decimator, so we strive properly 

to dissect each part of this design. By carefully designing the 

coefficients, the structure allows to obtain a very high 

performance and relatively easily implementable of the filter 

decimator. Obviously the first process is modeled by the FSM 

chart, which includes the control flow and the splitting of the 

input stream at the sampling rate into even and odd samples. The 

second task includes the Reduced Adder Graph (RAG) multiplier 

and hosts the two filters in a transposed structure.  

The multiplication operation by 124 gain required effectively 

means data shifting with five bits towards the Most Significant Bit 

(MSB) followed by subtracting operation between the obtained 

data and the input stream (x_even) as in Figure 6.  In order to take 

care of the negative numbers in two’s complement arithmetic, the 

Least Significant Bit (LSB) has been propagated to the next five 

bits. At last the output data has been shifted by four bits. The 

output is given in 17 bits without   any loss of precision. Actually 

17 bits is enough to provide the full accuracy. However, 17 bits 

sizing have been chosen for the consistency with the other 

multiplier by the factor of 0 … 255. 

The multiplication by the 57 factor requires a subtraction 

operation between the eight shifted version of the input and the 

original version of it. The second step is the addition of the data 

obtained previously and that of the original one as depicted in 

Figure 7.  For such a case 17-bits are required to provide the 

output at the full accuracy. 

 

 

Figure 6: The fixed-point 17 bits 124 gain structure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: the fixed-point 17 bits 57 gain structure  
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The 17-bit implementation of the 33 gain structure has been 

illustrated in figure 8. So no loss precision happens here as the 

format of the data is such that the possibility of a carry bit set does 

not influence the performance structure.  

Figure 8: The fixed-point 17 bits 33 gain structure 

In the same manner the implementation of 214 gain shown in 

figure 9, can be achieved by adding the 2 shifted version of the 

previous structure of 33 gain to the original one, and the obtained 

result is added to the 8 shifted x_odd sample  before it undergo a 

two left  shift  operation to form finally the desired gain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The fixed-point 17 bits 214 gain structure 

 The result of multiplication by 124 coefficient is being added to 

the delayed output sample of the 57 gain. Thus, the second way 

constituting in the subtraction between the sample having 

undergone a multiplication by 214 coefficient and the weighted 

sample using 33 coefficient after it has been delayed. 

{ d=temp;temp=x_in;}

{ x_out = d;}

 
Figure 10: The fixed-point 17-bits delayer block Simulink 

implementation 

The decimator filter will accept 8-bits inputs and will output also 

an 8-bits samples. The arrangement for this decimator is shown in 

figure 11, and here, the internal word length increases by the 

arithmetic operations, finally the length of decimator output will 

be limited to eight bits. The multiplication in this example is 

undertaken using a digital multiplier. So, the design here is purely 

combinational logic which includes the divider with 256 to 

perform the output decimator.  

 

Figure 11: The fixed point 8-bits right shifter structure 

Simulink implementation 

 

Figure 12 : The fixed point Daubechies decimator filter 

Simulink implementation. 
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5. IMPLEMENTATION   
The various blocks used in this application are materialized by 

using the language of hardware description VHDL. Making it 

possible to implementing it on a reconfigurable platform (Altera 

or Xilinx type). 

Indeed, before implementing our application we used ModelSim 

to write and execute test-benches to validate the correct operation 

of each component separately, and consequently to make the 

analysis and comparison with the results obtained in the 

Matlab/Simulink environment. ¶This stage consists in generating 

signals with the Matlab language which will be used thereafter in 

Modelsim.  

The vhdl code designed for the example Daubechies decimator 

filter has been subject to synthesis in code through logic 

synthesizer, included in the Foundation Software. in the 

appropriates devices of  FPGA.  

6. RESULTS AND DISCUSSIONS  
The implementation was elaborate following has subjective 

study.One was interested in the number of logic elements 

necessary for the implementation of the filter. It happened to be 

190 of 10570 which represents 2% for a device Altera Stratix 

EP1S10B672C6 [5] and 112 of 2352 4% for a device Xilinx 

Spartan II [6] 

To implement our approach we recommended to generate a signal 

characterized by a harmonic component of three separate 

sequences that each one having its own frequency shown in figure 

13.  

Figure 13. The original signal using Matlab/Similink 

Figure 14 shows the result of analyzing and synthesizing with 

MATLAB/SIMULINK of the original signal using filter 

decimator previously described. Figure 15 illustrates the result of 
doing the same filtering operation using the Modelsim 

environment. The results of simulation show a best conformity 

between Matlab/simulink and Modelsim environment. 

Figure 14. The result of  simulation with Matlab/Similink  

We easily observe a significant attenuation concerning the high 

frequency component due to the operation of the filtering imposed 

by the structure of this decimator filter   

  

 

Figure 15. The result of simulation with ModelSim of  

Daubechies decimator VHDL filter implementation 

7. CONCLUSION   
In this paper, a design approach was implemented to realize a low 

power Daubechies decimator filter. The structure of this 

decimator has advantages in high speed operations such as digital 

RF/RI signal processing and the performance in term of power 

consumption and gate count were also compared. So, in order to 

achieve low power consumption, the operating clock frequency 

and hardware reduction concept were implemented. The important 

applications discussed here include the digital sequence 

decimation of eight-bit unsigned component of three frequencies. 

The fixed point Matlab/Simulink is used to perform a 

confrontation between simulation and hardware implementation 

task.    
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