
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

34

Software Reliability Growth Model with Gompertz TEF and

Optimal Release Time Determination by Improving the Test

Efficiency

 Shaik. Mohammad Rafi Shaheda Akthar

Assoc.Professor Department of computer science Assoc.professor Dept of computer science
 Sri Mittapalli Institute of Technology for Women Sri Mittapalli College of engineering

ABSTRACT
Software reliability growth models were used since long time to
access the quality of the software which was developed. Past few
decades several papers describes reliability growth phenomenon. As
the time progress, the number of errors detection and correction also
increases. A Large effort is required in testing to increases the rate of

detection and correction of error to increase the reliability of the
software. Generally a Testing-effort is better described by number of
persons involved; number of test cases used and calendar time. When
the software is lagging by schedule time then there is need of
automated testing tools to cop up with lagging. Use of automated tools
can increase the testing efficiency to a greater extent. This paper we
proposed a software reliability growth model which incorporates the
Gompertz testing-effort function and an analysis is made on optimal

release. Experiments are performed on two real datasets. Parameters
are estimated. The results show our model is better fit than other.

KEYWORDS:
 Delayed S-shaped models, imperfect debugging model, non
homogeneous Poisson process, Software reliability growth model, and
testing-effort.

ACRONYM

NHPP : Non Homogeneous Poisson Process
SRGM : Software Reliability Growth Model
MVF : Mean Value Function
MLE : Maximum Likelihood Estimation
TEF : Testing Effort Function
LOC : Lines of Code

MSE : Mean Square fitting Error

NOTATIONS
m (t) : expected mean number of faults detected in time (0,t]
λ (t) : failure intensity for m(t)
n (t) : fault content function
md (t) : Cumulative number of faults detected up to t.
mr (t) : Cumulative number of faults isolated up to t.
W (t) : Cumulative testing effort consumption at time t.

W*(t) : W (t)-W (0)
A : expected number of initial faults
r (t) : failure detection rate function
r : constant fault detection rate function.
r1 : constant fault detection rate in the Delayed S-shaped model
with Gompertz TEF
r2 : constant fault isolated rate in the Delayed S-shaped model
with Gompertz TEF

1. INTRODUCTION
Software is ruling this world past few years. Communication, business
and any other area where there is need of software. Every customer
needs a more efficient and error free software. Generally software is

developed by humans, so there is change that error may propagate
through it. Reliability is considered to be one of the primary important

factors for software industry. Many papers are presented in this

context. Reliability of software defined as the probability that the
software will work before it struck with an error in the given
conditional environment. Several authors described the behavior of
the software reliability in terms of different failure rates. Describing
the complete software resting in terms of mathematical equations are
called reliability growth model. People like Goel and Okumato,
Yamada and Musa proposed different reliability growth models [1, 21,
22, 23]. During the software testing the failure rate shows different

characteristic and cannot be predicted its behavior. The software
reliability growth models describe the behavior of software testing
process. During the development of software many resources were
consumed. The consumption curve of testing resource over the testing
period [17] can be thought of as a testing effort curve. The test effort
[11, 12, 22, 23] can be described by the man power spent during the
test phase, number of CPU hours and the number of executed test
cases and so on. In several papers describes the effect of [3, 7, 8, 11,

12, 19, 22, 23] testing effort in the software reliability growth model.
Generally software testing effort can be described by Rayleigh,
Weibull, exponential and logistic curve [8, 11, 12, 22, 23]. Testing is
conducted either manually or incorporating the automated tools [8, 9].
Manual testing is a time consuming process, but development of the
software time bound process. As the time progress more and more
resources are being consumed. Manual testing can leads to delay in
the progress of testing. By incorporating the new automated testing

into testing can improve the performance by certain extent [8, 9].
These automated testing tools work efficiently, by tracking the more
and more errors but it; increases the cost of adopting new automated
tool.
 The rest of the paper is organized as section 2 describes the testing-
effort function. Section 3 proposed new reliability growth models
based on Gompertz TEF. Section 4 describes the model evaluation
criterion. 5 model performance analysis. Section 6 Optimal release
policy based on reliability and cost. Section 7 Numerical examples.

And section 8 conclusions.

2. TESTING-EFFORT FUNCTIONS
In general software testing effort can be defined as the amount of
effort spends during the software testing. Testing-effort can be

described by following curves. Plenty of curves are proposed in
literature to express the testing-effort [3, 5, 7, 14, 22, 23]
a) Exponential curve[22]:
Cumulative testing effort can described in (0,t]:

 (1)

Current testing-effort

 (2)

Where α is the total amount of testing expenditure and β is the
consumption rate of the testing-effort

b) Rayleigh Curve [22, 23]: Cumulative testing-effort is described in
(0, t]: Rayleigh curve is used by Yamada (1989) to describe the testing
effort. Rayleigh curve increases to the maximum peak and decreases

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

35

gradually [Huang 2007].The Rayleigh distribution is a Weibull one
with the shape factor set to two.
 Cumulative testing-effort

 (3)

 Current testing-effort

 (4)

β is a scale parameter represents the consumption rate of the testing-
effort.
c) Weibull Curve [22, 23]: Cumulative testing-effort is described in
(0, t]: Weibull curve is very flexible curve to model software testing-
effort in (0,t](Yamada 1986) : Weibull curve is flexible curve to
model the reliability of the given system. Based on its nature it can
take variety of forms based on the shape parameter. When m=2 its

shows the Rayleigh curve and m=1 it describes the property of
exponential curve.
Cumulative testing-effort

 (5)

Current testing-effort

 (6)

Where m is a shape parameter and β is a scale parameter

d) Logistic Curve [5, 7, 12]: Cumulative testing-effort is described in
(0, t] (Huang 2002): logistic curve has been used as the growth curve.
It is an S shaped curve, describing the first decreasing and then
increasing phenomenon. The shape of the logistic distribution is
similar to normal distribution.
Cumulative testing-effort

 (7)

Current testing-effort

 (8)

e) Log-Logistic curve [3] :

The log-logistic distribution is the probability distribution of a random
variable whose logarithm has a logistic distribution. It is similar in
shape to the log-normal distribution but has heavier tails.
Cumulative testing-effort

 (9)

Current testing-effort

 (10)

 W (t) cumulative testing-effort function and w (t) is current testing-
effort function in (0,t]
„α‟ is total testing effort expenditure ,λ > 0 scale parameter and β >0
shape parameter.
f) Gompertz Curve: generally the testing-effort consumption is slow at
the beginning of the test phase; all the members of the testing team

should be familiar with the testing process and its internal details. One
all the team members are familiar with testing consumption of testing
effort increases. This unusual nature gives the testing-effort to derive
the S shaped. Gompertz Curve has been used for many years for
fitting to statistical data [4, 20].
The Gompertz Cumulative Testing-effort in (0, t] is given by

 (11)

Current testing-effort in time (0, t] is

The current testing-effort reaches its maximum value at

c
t

)ln(
max

 (12)

3.SOFTWARE RELIABILITY GROWTH

MODEL AND TESTING EFFORT

FUNCTIONS
3.1) SRGM WITH GOMPERTZ TESTING-EFFORT

FUNCTION
The following assumptions are made for software reliability growth
modeling [2, 5, 7, 8, 12, 19, 22, 23]
The fault removal process follows the Non-Homogeneous Poisson

process (NHPP)
The software system is subjected to failure at random time caused by
fault remaining in the system.

(i) The mean time number of faults detected in the time
interval (t, t+Δt) by the current test effort is proportional for the mean
number of remaining faults in the system. The proportionality is
constant over the time.

(ii) Consumption curve of testing effort is modeled by a Gompertz TEF.

(iii) Each time a failure occurs, the fault that caused it
is immediately removed and no new faults are introduced.
We can describe the mathematical expression of a testing-effort based
on following

 (13)

Now the equation 13 has been solved under boundary conditions

m(0)=0 and r(t)= r (0< r <1).

 (14)
Substituting W (t) from eq. (11), we get

 (15)

In general failure intensity function is given by

 (16)

Now failure intensity for proposed model is given by

 (17)

 And (18)

The number of faults remaining in the system is

a-m(t)= (19)
the number of faults remains in the systems after infinite amount of

time is given by

 (20)

3.2. YAMADA DELAYED S-SHAPED MODEL WITH

GOMPERTZ TESTING-EFFORT FUNCTION
The delayed „S‟ shaped model originally proposed by Yamada [25]
and it is different from NHPP by considering that software testing not
only of error detection but error isolation. And the cumulative errors
detected follow the S-shaped curve. This behavior is indeed initial
phases testers are familiar with type of errors and residual faults
become more difficult to uncover [6, 16, 17].
From the above steps 3 (A) described we will get a relationship

between m(t) and w(t). For extended Yamada S-shaped software

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

36

reliability model. The extended S-shaped model [Yamada 1983] is
modeled by [11, 25]

 (21)

And

 (22)

We assume r2≠r1 solving 2 and 3 boundary conditions md(t)=0 , we

have

 And

 (23)

At this stage we assume r2≈ r1≈r, then using „L‟ Hospitals rule the

Delayed S-shaped model with TEF is given by

 (24)

The failure intensity function for Delayed S- shaped model
with TEF is given by

 (25)

4) EVALUATION CRITERIA

4.1) THE GOODNESS OF FIT TECHNIQUE FOR

RELIABILITY GROWTH MODEL
Here we used MSE [11, 18, 21] which gives real measure of the
difference between actual and predicted values. The MSE defined as

 (26)

A smaller MSE indicate a smaller fitting error and better performance.

a) Coefficient of multiple determinations (R2) [18] which measures

the percentage of total variation about mean accounted for the fitted

model and tells us how well a curve fits the data. It is frequently

employed to compare model and access which model provides the

best fit to the data. The best model is that which proves higher R2.

That is closer to 1.

b) The predictive Validity Criterion

 The capability of the model to predict failure behavior from present &

past failure behavior is called predictive validity. This approach,

which was proposed by (J.Dmusa 1987], can be represented by

computing RE for a data set

q

qm
RE

tq
))((

 (27)

c) In order to check the performance of the Gompertz testing-effort and

make a comparisons criteria for our SSE criteria: SSE can be

calculated as: [18]

 (28)

 Where yi is total number of failures observed at a time ti according to
the actual data and m(ti) is the estimated cumulative number of

failures at a time ti for i=1,2,…..,n.
4.2) EVALUATION OF EFFORT FUNCTION [11]

 (29)

 (30)

 (31)

 (32)

5) MODEL PERFORMANCE ANALYSIS
5.1) DS1: the first set of actual data is from the study by
Ohba(1984)[16].the system is PL/1 data base application software ,
consisting of approximately 1,317,000lines of code .During nineteen
weeks of experiments, 47.65 CPU hours were consumed and about
328 software errors are removed. Fitting the model to the actual data
means by estimating the model parameter from actual failure data.
Here we used the LSE (non-linear least square estimation) to estimate

the parameters [13]. Calculations are given in appendix A All
parameters of other distribution are estimated through MLE. The
unknown parameters of Gompertz TEF are α=70.55(CPU hours),
β=3.304, c=0.1109 and the curve reaches its maximum value at
tmax=10.77 weeks. Correspondingly the estimated parameters of
Logistic TEF are N=54.84(CPU hours), A=13.03 and b=0.2263/week
and Rayleigh TEF N=49.32 and b=0.00684/week. Fig.1 plots the
comparison between observed failure data and the data estimated by

Gompertz TEF, Logistic TEF and Rayleigh TEF. The PE, Bias,
Variation, MRE and RMS-PE for Gompertz, Logistic and Rayleigh
are listed in Table I. From the TABLE I we can see that Gompertz
TEF has lower PE, Bias, Variation, MRE and RMS-PE than Logistic
and Rayleigh TEF. We can say that our proposed model fits better
than the other one. In the table II we have listed estimated values of
SRGM with different testing-efforts. We also give the values of SSE,
R2, and MSE. We observed that our proposed model has smallest

MSE and SSE value when compared with other models. The 95%
confidence limits for the all models are given in the Table III. All the
calculations can found in the appendix. Fig .3 shows the RE curves for
the different selected models.

TABLE I
COMPARISION RESULT FOR DIFFERENT TEF
APPLIED TO DS1

TEF Bias Variation MRE RMS-PE

Gompertz -0.0348 1.0198 0.009619 1.019

Logistic -0.098262 1.306677 0.022246 1.302977

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

37

Rayleigh 0.830337 2.169314 0.052676 2.004112

FIG 1. OBSERVED/ESTIMATED GOMPERTZ, LOGISTIC AND

 RAYLEIGH TEF FOR DS1.

FIG 2. CUMULATIVE ERRORS FOR SRGM WITH GOMPERTZ FOR DS1

Table II

ESTIMATED PARAMETER VALUES AND MODEL COMPARISION FOR

DS1

Models a r SSE R2 MSE

SRGM with Gompertz TEF 437.3 0.03251 1980 0.9899 116.42

Delayed S shaped model with

Gompertz TEF

330.9 0.1138 8754 09554 514.83

SRGM with Logistic TEF 395.6 0.04164 2167 0.989 127.46

Delayed S shaped model with

Logistic TEF

319.3 0.1339 11060 0.9436 650.25

SRGM with Rayleigh TEF 459.1 0.02734 5100 0.974 299.98

Delayed S shaped model with

Rayleigh TEF

333.2 0.1004 15170 0.9226 892.2

G-O model 760.5 0.03227 2656 0.9865 156.2

Yamada Delayed S shaped model 374.1 0.1977 3205 0.9837 188.51

Table III

95% CONFIDENCE LIMIT FOR DIFFERENT SELECTED MODELS

(DS1)

Models a r

Lower Upper Lower Upper

SRGM with Gompertz TEF 385.1 489.5 0.02585 0.03917

SRGM with Logistic TEF 358 433.2 0.03399 0.04928

SRGM with Rayleigh TEF 348.6 569.6 0.01651 0.03817

Yamada Delayed S shaped Model with

Gompertz TEF

300.8 361 0.09423 0.1334

Yamada Delayed S shaped Model with

Logistic TEF

291 347.5 0.1088 0.1589

Yamada Delayed S shaped Model with

Rayleigh TEF

288.7 377.7 0.07507 0.1258

G-O model 465.4 1056 0.01646 0.04808

Yamada Delayed S shaped model 343.7 404.4 0.1748 0.2205

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

38

FIG.3 RE CURVES OF SELECTED MODELS COMPARED WITH ACTUAL FAILURE DATA (DS1)

5.2) DS2 [2]: the dataset used here presented by wood from a
subset of products for four separate software releases at Tandem

computer company. Wood Reported that the specific products &
releases are not identified and the test data has been suitably
transformed in order to avoid confidentiality issue. Here we use
release 1 for illustrations. Over the course of 20 weeks, 10000 CPU
hours are consumed and 100 software faults are removed. Similarly
the least square estimates [13] of the parameters for Gompertz TEF
in the case of DS2 are α=11090(CPU hours), β=3.446,c=0.1663
and the curve reaches its maximum value at tmax=7.44 weeks.

Correspondingly the estimated parameters of Logistic TEF are
N=9974(CPU hours), A=13.22 and b=0.2881/week and Rayleigh
TEFN=9669 and b=0.009472/week. The computed Bias, Variation,
MRE , and RMS-PE for Gompertz TEF, Logistic TEF and
Rayleigh TEF are listed in the table IV ,fig 5 graphically illustrate
the comparisons between the observed failure

FIG 4. OBSERVED/ESTIMATED GOMPERTZ, LOGISTIC AND

 RAYLEIGH TEF FOR DS2.

data, and the data estimated by the Gompertz TEF, Logistic
TEF and Rayleigh TEF. From the figure 5 we can observe the

Gompertz curve covers the maximum points like other TEFs.
Now from the table V we can conclude our TEF better fit than
other. Their 95% confidence bounds are given in the table VI.
From the above we can see that SRGM with Gompertz TEF
have less MSE than other models

Table IV
COMPARISION RESULT FOR DIFFERENT TEF APPLIE
D TO DS2

TEF Bias Variation MRE RMS-PE

Gompertz -1.284 104.7 0.020 104.3

Logistic -19.345 198.44 0.026 197.5

Rayleigh 121.61 322 0.055 298.23

FIG 5. CUMULATIVE AND RESIDUAL ERROR FOR SRGM WITH

 GOMPERTZ TEF FOR DS2

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

39

Table V

ESTIMATED PARAMETER VALUES AND MODEL COMPARISION FOR DS2

Models a r SSE R2 MSE

SRGM with Gompertz TEF 122.4 0.0001841 376.1 0.9769 20.89

Delayed S shaped model with Gompertz TEF 100.3 0.0005645 1314 0.9192 72.98

SRGM with Logistic TEF 112.3 0.0002399 433.1 0.9734 24.06

Delayed S shaped model with Logistic TEF 96.88 0.0006853 1577 0.903 87.61

SRGM with Rayleigh TEF 120.9 0.0001791 792.5 0.9513 44.03

Delayed S shaped model with Rayleigh TEF 99.4 0.0005434 1930 0.8813 107.1

Table VI

95% CONFIDENCE LIMIT FOR DIFFERENT SELECTED MODELS (DS2)

Models a r

Lower Upper Lower Upper

SRGM with Gompertz TEF 107.6 137.3 0.0001395 0.0002286

SRGM with Logistic TEF 101.4 123.1 0.000186 0.0002938

SRGM with Rayleigh TEF 98.4 143 0.0001122 0.0002461

Yamada Delayed S shaped Model with Gompertz TEF 92.68 107.8 0.0004685 0.0006604

Yamada Delayed S shaped Model with Logistic TEF 88.64 105.1 0.0005346 0.0008359

Yamada Delayed S shaped Model with Rayleigh TEF 88.24 110.6 0.0003991 0.0006877

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

40

FIG.6 RE CURVES OF SELECTED MODELS COMPARED WITH ACTUAL FAILURE DATA (DS2)

6) OPTIMAL SOFTWARE RELEASE

POLICY
6.1) OPTIMAL RELEASE POLICY BASED ON COST
One of the major challenges for software industry is to know, how
much of test should be conducted, what is its reliability and when
the software has be released into the market [15, 26]. The total
cost of the software is summation of cost of correcting the errors
before and after the release of the software. C1 cost of correcting an
error during the testing, C2 cost of correcting an during operation
and C3 cost of testing per unit testing expenditure (C2 > C1)

(33)

C1(T) is the total cost of the testing.
Differentiate the eq.() with respect to T then the optimize the
solution to get the required solution

 (34)

From above equation ,

and

The minimum value of C1(T) is found by observing the two cases

 at T=0.

1) if =a.r ≤ then for 0<

T<TLC. It can be obtained that >0 for 0 <T < TLC and the

minimum value of C(T) can found at T=0.

2) if =a.r > > =a.r.e-rα , there can be

found a finite and unique real number

(35)

6.2) RELEASE TIME BASED ON RELIABILITY
Generally software release problem associated with the reliability
of a software system. Here in this first we discuss the optimal time
based on reliability criterion. If we know software has reached its
maximum reliability for a particular time. By that we can decide
right time for the software to be delivered out. Goel and Okumoto

[1] first dealed with the release problem considering the software
cost-benefit. The conditional reliability function after the last
failure occurs at time t is obtained by

 R (t+Δt/t) =exp (-[m (t+ Δt/t)-m (t)])

 (36)

 Taking the logarithm on both sides of the above equation and
rearrange the above equation we obtain

 (37)

 Thus
 (38)

 Another way of defining the reliability based on another model the

ratio of cumulative number of error detected and initial number of

errors at a given time is given by [8. 9]

R (T) =m (T)/a (39)

 We can the above equation and get the unique T1 which satisfying

the above equation R (T1) =R0.

6.3) SOFTWARE RELEASE TIME BASED ON COST

AND EFFICIENCY
Automated testing tools are useful in facilitating speedup the
testing process [8, 9, 10]. Complexity of software can increase the
time to test the software, it is often seen the allotted time for testing

of software can exceed its required schedule time. When the
situation like that arises, we adopt a new automated testing tool to
increase the efficiency of the system. The new adopted automated
testing tools not only speedup the testing process; it increases the
efficiency of the testing by certain extent. The total cost of the
testing will increase by adopting the new automated testing tools. P
is described as fractions of extra errors found during the software
testing phase.

The overall cost of software is rearranged to

(40)

From above C0(T) is cost of adopting the new automated testing
tools into testing phase. P is defined as the number of addition
faults that has to be detected during the [8, 9, 10] testing. As the P
value increases it increases the total cost of the software. C0(T) cost

may not be constant during the testing, it all depends on the nature
of the testing tool used in the testing. The cost of C0(T) is increase
with testing time. In order to minimize the cost C2(T) the
following relation holds between C2(T) and C1(T).
C1 (T) - C2 (T) ≥ 0 (41)
From eq.(33) and eq.(39) to satisfy the above equation

 (42)

From the above equation
C0(T)≤ P × m(T) ×(C2-C1)[8, 9] (43)
There are several possibilities of C0(T) which satisfies the cost of
adopting the automated testing tools during the testing phase[8,9].

a) C0(T) is constant: in this the cost of the automated testing
tools remains constant, due to engaging same type of tool in
different instant of time in testing.
b) C0(T) is proportional to test expenditure : in this an
additional automated cost is added by introducing different

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

41

automated tools like fixing patches, upgrading, and maintenance
support into testing.
c) C0(T) is exponentially related to the test expenditure: for
a large data base and certain complex software they need some
extra sophisticated automated tools. By introducing these tools in
different time interval during the testing phase, increases the cost

of testing. A large tools require large cost, by that it increases the
total cost. As the testing is progress the cost of adopting the new
testing tool increases exponentially.
Theorem 1: Assume C0(T) =C0 (constant), C0 > 0, C1 > 0, C2 > 0,
C3 > 0, and C2 > C1; then we have

I) ,

and

there exist a unique solution

 then

the optimal release time T*=T0.

II) If <

C3 then the optimal release time T*=Ts.

III) If

> C3 then the optimal release time T*=TLC.

Proof: taking the derivative to the equation (39) and substituting

the testing effort into the equation we get the equation

(44)

 ≤ C3

then Ts < T < TLC therefore software release time T*=Ts.

 , then Ts < T < TLC there exist unique optimal release time T*=TLC.

Theorem 2: Assume ,C01 > 0,

C0 > 0, C1 > 0, C2 > 0, C3 > 0, and C2 > C1; then we have
Case1)

 , and

 there exist unique solution

satisfying

optimal release time T*=T0.
Case2) if

 , then

T*=Ts.
Case3) if

 then T*=TLC.

Theorem 3: Assume , C01

> 0, C0 > 0, C1 > 0, C2 > 0, C3 > 0, and C2 > C1; then we have

I) if

, and

There exists unique solution satisfying the equation

Then the optimal release time T*=T0.

II) If <

C3 then the optimal release time T*=Ts.
III)if

Then there exist unique solution T*=TLC.

7) NUMERICAL EXAMPLES
7.1) TOTAL COST AND RELIABILITY WITHOUT

EFFICIENCY
For the dataset one from its calculated parameters α=70.55(CPU
hours), β=3.304, c=0.1109, a=437.3 and r=0.03251 ,C1=10$,
C2=40$, C3=100$ and TLC=100 from the equation (35) the cost and
reliability of the software are
From above table it observed that optimal software release time is
around T*=19.18 at total cost of 10251.

7.2) COST AND RELIABILITY BASED ON

EFFICIENCY
For the dataset one from its calculated parameters α=70.55(CPU
hours), β=3.304, c=0.1109, Assume C01=1000$, C0=10$, C1=10$,
C2=40$, C3=100$, TLC=100, k=1, Ts=19.

 Table VII

Cost and Reliability without efficiency

Time(T) Reliability R(T) Total Cost Time(T) Reliability R(T) Total Cost

10 0.1297 11425 18 0.4508 10257

11 0.1548 11123 19 0.4984 10249

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

42

12 0.1856 10875 20 0.5441 10255

13 0.2217 10677 21 0.5875 10273

14 0.2625 10524 22 0.6281 10298

15 0.3070 10411 23 0.6656 10329

16 0.3540 10333 24 0.7001 10364

17 0.4024 10283 25 0.7315 10400

Table VIII

Cost and Reliability with efficiency based on the cost

Function

P Time T* Cost C(T*) Reliability R(T*) P Time T Cost C(T*) Reliability R(T*)

0.01 19.01 11381 0.7733 0.10 19.1 10475 0.8438

0.02 19.02 11281 0.7811 0.11 19.11 10375 0.8517

0.03 19.03 11180 0.7890 0.12 19.12 10274 0.8595

0.04 19.04 11080 0.7968 0.13 19.13 10173 0.8674

0.05 19.05 10979 0.8046 0.14 19.14 10072 0.8752

0.06 19.06 10878 0.8124 0.15 19.15 9971 0.8831

0.07 19.07 10778 0.8203 0.16 19.16 9870 0.8909

0.08 19.08 10677 0.8281 0.17 19.17 9769 0.8988

0.09 19..09 10576 0.8360 0.18 19.18 9667 0.9067

It is observed that the from eq.(33) optimal time T*=19.18 and the
cost C1(T*)=10251 ; whereas from the eq.(40) the cost of the
software is 9667 at P=0.18 and T*=19.18 and its reliability has
been increased from 0.51 to 0.9067. From this we can conclude
that C1(T) > C2(T).
From above table we observed that as the value of P increases the
optimal time increases and total cost decreases. Increases in P

means we will find more and more errors during the testing. It also
describes the efficiency of the software testing.

8. CONCLUSION
In this paper an analysis is made on software reliability growth

model with Gompertz TEF. Our model fairly fit to the data, but
Gompertz Curve is little optimistic in nature. It reaches to its peak
value very quickly. If we neglect this phenomenon this model gives
the realistic value in software. It is also seen that proposed
Gompertz TEF in SRGM can fit for any kind of software failure
data. By incorporating both TEF and test efficiency we can reduce
the total testing cost and increase in the reliability.

Appendix -A

 (45)

 (46)

 (47)

 (48)

(49)

(50)

Above equation approaches to infinity so we apply the L‟ Hospitals
Rule by letting

 (51)

 (52)

 (53)

 (54)

And (55)

Appendix -B

Using the estimated parameters α, β, and c above, we estimate the
reliability growth parameters a and r in (14). Suppose that the data
on the cumulative number of detected errors yk in a given time
interval (0, tk] (k = 1, 2,..., n) are observed. Then, the joint
probability mass function, i.e. the likelihood function for the
observed data, is given by

(56)

From eq :14

(57)

 (58)

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.11, October 2010

43

 (59)

REFERENCES
[1] A.L. Goel and K. Okumoto, A time dependent error

detection rate model for a large scale software system, Proc.
3rd USA-Japan Computer Conference, pp. 3540, San
Francisco, CA (1978).

[2] A.Wood, Predicting software reliability, IEEE computers 11
(1996) 69–77.

[3] Bokhari, M.U. and Ahmad, N. (2006), “Analysis of a software
reliability growth models: the case of log-logistic test-effort
function”, in Proceedings of the 17th International Conference

on Modelling and Simulation (MS‟2006), Montreal, Canada,
pp. 540-545.

[4] Charles P. Winsor “the Gompertz Curve As Growth curve”
proceedings of National Academy of Sciences, January 15,
1932.

[5] C.-Y. Huang, S.-Y. Kuo, J.Y. Chen, Analysis of a software
reliability growth model with logistic testing effort function
proceeding of Eighth International Symposium on Software
Reliability Engineering, 1997, pp. 378–388.

[6] Goel, A.L., "Software reliability models: Assumptions,
limitations, and applicability", IEEE Transactions on Software
Engineering SE-11 (1985) 1411-1423.

[7] Huang, C.Y. and Kuo, S.Y. (2002), “Analysis of
incorporating logistic testing-effort function into software

reliability modeling”, IEEE Transactions on Reliability, Vol.
51 No. 3, pp. 261-70.

[8] Huang, C.Y., Lyu M.R “Optimal Release time for Software
systems Considering Cost, Testing-effort and Test efficiency”
IEEE Transaction on reliability VOL 54 No , December 2005.

[9] Huang, C.Y., Kuo, S.Y. and Lyu, M.R. (1999), “Optimal
software release policy based on cost, reliability and testing
efficiency”, in Proceedings of the 23rd IEEE Annual
International

[10] Huang, C.Y., Kuo, S.Y. and Lyu, M.R. (2000), “Effort-index
based software reliability growth models and performance
assessment”, in Proceedings of the 24th IEEE Annual

International Computer Software and Applications
Conference (COMPSAC‟2000), pp. 454-9.

[11] Huang, Lyu and Kuo “An Assesment of testing effort
dependent software reliability Growth model”. IEEE
transactions on Reliability Vol 56, No: 2, June 2007

[12] Huang and S. Y. Kuo, “Analysis and assessment of
incorporating logistic testing effort function into software
reliability modeling,” IEEE Trans. Reliability, vol. 51, no. 3,
pp. 261–270, Sept. 2002.

 [13] Jong –Wuu Wu ,WenLiang Hung Chih Hui Tsai
“Estimation of parameter of the Gompertz distribution using the
least square method” 2003 Elsevier.

[14] Kapur, P.K. and Younes, S. (1994), “Modeling an imperfect

debugging phenomenon with testing effort”, in Proceedings of
5th International Symposium on Software Reliability
Engineering (ISSRE‟1994), pp. 178-83.

[15] K. Pillai and V. S. Sukumaran Nair, “A model for software
development effort and cost estimation,” IEEE Trans. Software
Engineering, vol. 23, no. 8, August 1997.

[16] M. Ohba, Software reliability analysis models, IBM J. Res. Dev.
28 (1984) 428–443.

[17] M.R. Lyu, Handbook of Software Reliability Engineering,
Mcgraw Hill, 1996.

[18] Pham, H. (2000), Software Reliability, Springer-
Verlag,NewYork,NY.

[19] Quadri, S.M.K., Ahmad, N., Peer, M.A. and Kumar, M. (2006),
“Nonhomogeneous Poisson process software reliability growth
model with generalized exponential testing effort function”,
RAU Journal of Research, Vol. 16 Nos 1-2, pp. 159-63.

[20] R.D. Berger “comparision of the Gompertz and Logistic
Equations to Describe plant Disease progress” Ecology and
Epidemiology 13 Aug 1980.

[21] Xie, M. (1991), Software Reliability Modeling, World Scientific
Publication, Singapore.

[22] Yamada, H. Ohtera and R. Narihisa, "Software Reliability
Growth Models with Testing-Effort," IEEE Trans. Reliability,
Vol. R-35, pp. 19-23 (1986).

[23] Yamada, H. Ohtera, Software reliability growth model for testing
effort control, Eur. J. Oper. Res. 46 (1990) 343–349.

[24] Yarnada, S.Osalci, "Software reliability growth modeling:
models and applications", IEEE Trans. Software Engineering,
vol.l I, no.12, p.1431-1437, December 1985.

[25] Yamada, S., Ohba, M., Osaki, S., 1983. S-shaped reliability
growth modeling for software error detection. IEEE Trans.
Reliab. 12, 475–484.

[26] Yamada, S. and Osaki, S. (1985b), “Cost-reliability optimal

release policies for software systems”, IEEE Transactions on
Reliability, Vol. R-34 No. 5, pp. 422-4.

