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ABSTRACT 
Software reliability growth models were used since long time to 
access the quality of the software which was developed. Past few 
decades several papers describes reliability growth phenomenon. As 
the time progress, the number of errors detection and correction also 
increases. A Large effort is required in testing to increases the rate of 

detection and correction of error to increase the reliability of the 
software. Generally a Testing-effort is better described by number of 
persons involved; number of test cases used and calendar time. When 
the software is lagging by schedule time then there is need of 
automated testing tools to cop up with lagging. Use of automated tools 
can increase the testing efficiency to a greater extent. This paper we 
proposed a software reliability growth model which incorporates the 
Gompertz testing-effort function and an analysis is made on optimal 

release. Experiments are performed on two real datasets. Parameters 
are estimated. The results show our model is better fit than other. 
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ACRONYM 

NHPP   : Non Homogeneous Poisson Process 
SRGM  : Software Reliability Growth Model 
MVF  : Mean Value Function 
MLE  : Maximum Likelihood Estimation 
TEF  : Testing Effort Function 
LOC  : Lines of Code 

MSE  : Mean Square fitting Error 

 

NOTATIONS 
m (t) : expected mean number of faults detected in time (0,t] 
λ (t) : failure intensity for m(t) 
n (t) : fault content function 
md (t) : Cumulative number of faults detected up to t. 
mr (t) : Cumulative number of faults isolated up to t. 
W (t) : Cumulative testing effort consumption at time t. 

W*(t) : W (t)-W (0) 
A  : expected number of initial faults 
r (t) : failure detection rate function 
r : constant fault detection rate function. 
r1 : constant fault detection rate in the Delayed S-shaped model 
with Gompertz TEF 
r2 : constant fault isolated rate in the Delayed S-shaped model 
with Gompertz TEF 

 

1. INTRODUCTION  
Software is ruling this world past few years. Communication, business 
and any other area where there is need of software. Every customer 
needs a more efficient and error free software. Generally software is 

developed by humans, so there is change that error may propagate 
through it. Reliability is considered to be one of the primary important 

factors for software industry. Many papers are presented in this 

context. Reliability of software defined as the probability that the 
software will work before it struck with an error in the given 
conditional environment. Several authors described the behavior of 
the software reliability in terms of different failure rates. Describing 
the complete software resting in terms of mathematical equations are 
called reliability growth model. People like Goel and Okumato, 
Yamada and Musa proposed different reliability growth models [1, 21, 
22, 23]. During the software testing the failure rate shows different 

characteristic and cannot be predicted its behavior. The software 
reliability growth models describe the behavior of software testing 
process. During the development of software many resources were 
consumed. The consumption curve of testing resource over the testing 
period [17] can be thought of as a testing effort curve. The test effort 
[11, 12, 22, 23] can be described by the man power spent during the 
test phase, number of CPU hours and the number of executed test 
cases and so on. In several papers describes the effect of [3, 7, 8, 11, 

12, 19, 22, 23] testing effort in the software reliability growth model. 
Generally software testing effort can be described by Rayleigh, 
Weibull, exponential and logistic curve [8, 11, 12, 22, 23]. Testing is 
conducted either manually or incorporating the automated tools [8, 9]. 
Manual testing is a time consuming process, but development of the 
software time bound process. As the time progress more and more 
resources are being consumed. Manual testing can leads to delay in 
the progress of testing. By incorporating the new automated testing 

into testing can improve the performance by certain extent [8, 9]. 
These automated testing tools work efficiently, by tracking the more 
and more errors but it; increases the cost of adopting new automated 
tool.  
 The rest of the paper is organized as section 2 describes the testing-
effort function. Section 3 proposed new reliability growth models 
based on Gompertz TEF. Section 4 describes the model evaluation 
criterion. 5 model performance analysis. Section 6 Optimal release 
policy based on reliability and cost. Section 7 Numerical examples. 

And section 8 conclusions. 
 

2. TESTING-EFFORT FUNCTIONS 
In general software testing effort can be defined as the amount of 
effort spends during the software testing. Testing-effort can be 

described by following curves. Plenty of curves are proposed in 
literature to express the testing-effort [3, 5, 7, 14, 22, 23] 
a) Exponential curve[22]:  
Cumulative testing effort can described in (0,t]:  

                 (1) 

Current testing-effort       

    (2)  

Where α is the total amount of testing expenditure and β is the 
consumption rate of the testing-effort 

 
b)  Rayleigh Curve [22, 23]: Cumulative testing-effort is described in 
(0, t]: Rayleigh curve is used by Yamada (1989) to describe the testing 
effort. Rayleigh curve increases to the maximum peak and decreases 
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gradually [Huang 2007].The Rayleigh distribution is a Weibull one 
with the shape factor set to two. 
 Cumulative testing-effort   

    (3) 

 Current testing-effort   

    (4) 

β is a scale parameter represents the consumption rate of the testing-
effort. 
c) Weibull Curve [22, 23]: Cumulative testing-effort is described in 
(0, t]: Weibull curve is very flexible curve to model software testing-
effort in (0,t]( Yamada 1986) : Weibull curve is flexible curve to 
model the reliability of the given system. Based on its nature it can 
take variety of forms based on the shape parameter. When m=2 its 

shows the Rayleigh curve and m=1 it describes the property of 
exponential curve.   
Cumulative testing-effort  

    (5) 

Current testing-effort   

    (6) 

Where m is a shape parameter and β is a scale parameter 

d)  Logistic Curve [5, 7, 12]: Cumulative testing-effort is described in 
(0, t] (Huang 2002): logistic curve has been used as the growth curve. 
It is an S shaped curve, describing the first decreasing and then 
increasing phenomenon.  The shape of the logistic distribution is 
similar to normal distribution. 
Cumulative testing-effort  

    (7) 

Current testing-effort   

    (8) 

e)  Log-Logistic curve [3] : 

The log-logistic distribution is the probability distribution of a random 
variable whose logarithm has a logistic distribution. It is similar in 
shape to the log-normal distribution but has heavier tails. 
Cumulative testing-effort   

 

      (9) 

Current testing-effort   

   (10) 

   W (t) cumulative testing-effort function and w (t) is current testing-
effort function in (0,t] 
„α‟ is total testing effort expenditure ,λ > 0 scale parameter and β >0 
shape parameter. 
f) Gompertz Curve: generally the testing-effort consumption is slow at 
the beginning of the test phase; all the members of the testing team 

should be familiar with the testing process and its internal details. One 
all the team members are familiar with testing consumption of testing 
effort increases.  This unusual nature gives the testing-effort to derive 
the S shaped. Gompertz Curve has been used for many years for 
fitting to statistical data [4, 20].  
The Gompertz Cumulative Testing-effort in (0, t] is given by  

      

                   (11) 

Current testing-effort in time (0, t] is     

      

The current testing-effort reaches its maximum value at  

c
t

)ln(
max


                   (12) 

3.SOFTWARE RELIABILITY GROWTH 

MODEL AND TESTING EFFORT 

FUNCTIONS 
3.1) SRGM WITH GOMPERTZ TESTING-EFFORT 

FUNCTION 
The following assumptions are made for software reliability growth 
modeling [2, 5, 7, 8, 12, 19, 22, 23] 
The fault removal process follows the Non-Homogeneous Poisson 

process (NHPP) 
The software system is subjected to failure at random time caused by 
fault remaining in the system. 

(i) The mean time number of faults detected in the time 
interval (t, t+Δt) by the current test effort is proportional for the mean 
number of remaining faults in the system. The proportionality is 
constant over the time. 

(ii) Consumption curve of testing effort is modeled by a Gompertz TEF. 

(iii) Each time a failure occurs, the fault that caused it 
is immediately removed and no new faults are introduced. 
We can describe the mathematical expression of a testing-effort based 
on following 

        (13) 

Now the equation 13 has been solved under boundary conditions 

m(0)=0 and r(t)= r (0< r <1). 

      (14) 
Substituting W (t) from eq. (11), we get  

     (15) 

In general failure intensity function is given by  

      (16) 

Now failure intensity for proposed model is given by 

      (17) 

 And          (18) 

The number of faults remaining in the system is  

a-m(t)=           (19) 
the number of faults remains in the systems after infinite amount of 

time is given by  

             (20) 

3.2. YAMADA DELAYED S-SHAPED MODEL WITH 

GOMPERTZ TESTING-EFFORT FUNCTION 
The delayed „S‟ shaped model originally proposed by Yamada [25] 
and it is different from NHPP by considering that software testing not 
only of error detection but error isolation. And the cumulative errors 
detected follow the S-shaped curve. This behavior is indeed initial 
phases testers are familiar with type of errors and residual faults 
become more difficult to uncover [6, 16, 17]. 
From the above steps 3 (A) described we will get a relationship 

between m(t) and w(t). For extended Yamada S-shaped software 
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reliability model. The extended S-shaped model    [Yamada 1983] is 
modeled by [11, 25]    

            (21) 

And     

                        (22) 

We assume r2≠r1 solving 2 and 3 boundary conditions md(t)=0 , we 

have  

       And   

               

     (23) 

At this stage we assume r2≈ r1≈r, then using „L‟ Hospitals rule the 

Delayed S-shaped model with TEF is given by  

                 (24) 

The failure intensity function for Delayed S-    shaped  model 
with TEF is given by  

                (25) 

 

4) EVALUATION CRITERIA
 

4.1) THE GOODNESS OF FIT TECHNIQUE FOR 

RELIABILITY GROWTH MODEL 
Here we used MSE [11, 18, 21] which gives real measure of the 
difference between actual and predicted values. The MSE defined as 

                                        (26)

 

A smaller MSE indicate a smaller fitting error and better performance. 

a) Coefficient of multiple determinations (R2) [18] which measures 

the percentage of total variation about mean accounted for the fitted 

model and tells us how well a curve fits the data. It is frequently 

employed to compare model and access which model provides the 

best fit to the data. The best model is that which proves higher R2. 

That is closer to 1. 

b) The predictive Validity Criterion 

 The capability of the model to predict failure behavior from present & 

past failure behavior is called predictive validity. This approach, 

which was proposed by (J.Dmusa 1987], can be represented by 

computing RE for a data set 

  
q

qm
RE

tq
))(( 


     (27)

 

c) In order to check the performance of the Gompertz testing-effort and 

make a comparisons criteria for our SSE criteria: SSE can be 

calculated as: [18] 

     (28)

 

     Where yi is total number of failures observed at a time ti according to 
the actual data and m(ti) is the estimated cumulative number of 

failures at a time ti  for i=1,2,…..,n. 
4.2)  EVALUATION OF EFFORT FUNCTION [11] 
 

    (29)
 

 

                        (30) 

                              (31) 

  
 

 

                  (32)

 

 

5) MODEL PERFORMANCE ANALYSIS 
5.1) DS1: the first set of actual data is from the study by 
Ohba(1984)[16].the system is PL/1 data base application software , 
consisting of approximately 1,317,000lines of code .During nineteen 
weeks of experiments, 47.65 CPU hours were consumed and about 
328 software errors are removed. Fitting the model to the actual data 
means by estimating the model parameter from actual failure data. 
Here we used the LSE (non-linear least square estimation) to estimate 

the parameters [13]. Calculations are given in appendix A All 
parameters of other distribution are estimated through MLE. The 
unknown parameters of Gompertz TEF are α=70.55(CPU hours), 
β=3.304, c=0.1109 and the curve reaches its maximum value at 
tmax=10.77 weeks. Correspondingly the estimated parameters of 
Logistic TEF are N=54.84(CPU hours), A=13.03 and b=0.2263/week 
and Rayleigh TEF N=49.32 and b=0.00684/week. Fig.1 plots the 
comparison between observed failure data and the data estimated by 

Gompertz TEF, Logistic TEF and Rayleigh TEF. The PE, Bias, 
Variation, MRE and RMS-PE for Gompertz, Logistic and Rayleigh 
are listed in Table I. From the TABLE I we can see that Gompertz 
TEF has lower PE, Bias, Variation, MRE and RMS-PE than Logistic 
and Rayleigh TEF. We can say that our proposed model fits better 
than the other one. In the table II we have listed estimated values of 
SRGM with different testing-efforts. We also give the values of SSE, 
R2, and MSE. We observed that our proposed model has smallest 

MSE and SSE value when compared with other models. The 95% 
confidence limits for the all models are given in the Table III. All the 
calculations can found in the appendix. Fig .3 shows the RE curves for 
the different selected models. 

TABLE I 
COMPARISION RESULT FOR DIFFERENT TEF 
APPLIED TO DS1 

TEF Bias Variation MRE RMS-PE 

Gompertz -0.0348 1.0198 0.009619 1.019 

Logistic -0.098262 1.306677 0.022246 1.302977 
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Rayleigh 0.830337 2.169314 0.052676 2.004112 

 
FIG 1. OBSERVED/ESTIMATED GOMPERTZ, LOGISTIC AND 

 RAYLEIGH TEF FOR DS1.  

 
FIG 2. CUMULATIVE ERRORS FOR SRGM WITH GOMPERTZ FOR DS1 

Table II 

ESTIMATED PARAMETER VALUES AND MODEL COMPARISION FOR 

DS1 

Models a r SSE R2 MSE 

SRGM with Gompertz TEF 437.3 0.03251 1980 0.9899 116.42 

Delayed S shaped model with 

Gompertz TEF 

330.9 0.1138 8754 09554 514.83 

SRGM with Logistic TEF 395.6 0.04164 2167 0.989 127.46 

Delayed S shaped model with 

Logistic TEF 

319.3 0.1339 11060 0.9436 650.25 

SRGM with Rayleigh TEF 459.1 0.02734 5100 0.974 299.98 

Delayed S shaped model with 

Rayleigh TEF 

333.2 0.1004 15170 0.9226 892.2 

G-O model 760.5 0.03227 2656 0.9865 156.2 

Yamada Delayed S shaped model 374.1 0.1977 3205 0.9837 188.51 

 
 
 

Table III 

95% CONFIDENCE LIMIT FOR DIFFERENT SELECTED MODELS 

(DS1) 

Models a r 

Lower Upper Lower Upper 

SRGM with Gompertz TEF 385.1 489.5 0.02585 0.03917 

SRGM with Logistic TEF 358 433.2 0.03399 0.04928 

SRGM with Rayleigh TEF 348.6 569.6 0.01651 0.03817 

Yamada Delayed S shaped Model with 

Gompertz TEF 

300.8 361 0.09423 0.1334 

Yamada Delayed S shaped Model with 

Logistic TEF 

291 347.5 0.1088 0.1589 

Yamada Delayed S shaped Model with 

Rayleigh TEF 

288.7 377.7 0.07507 0.1258 

G-O model 465.4 1056 0.01646 0.04808 

Yamada Delayed S shaped model 343.7 404.4 0.1748 0.2205 
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FIG.3 RE CURVES OF SELECTED MODELS COMPARED WITH ACTUAL FAILURE DATA (DS1) 

 

 

5.2) DS2 [2]: the dataset used here presented by wood from a 
subset of products for four separate software releases at Tandem 

computer company. Wood Reported that the specific products & 
releases are not identified and the test data has been suitably 
transformed in order to avoid confidentiality issue. Here we use 
release 1 for illustrations. Over the course of 20 weeks, 10000 CPU 
hours are consumed and 100 software faults are removed. Similarly 
the least square estimates [13] of the parameters for Gompertz TEF 
in the case of DS2 are α=11090(CPU hours), β=3.446,c=0.1663 
and the curve reaches its maximum value at tmax=7.44 weeks. 

Correspondingly the estimated parameters of Logistic TEF are 
N=9974(CPU hours), A=13.22 and b=0.2881/week and Rayleigh 
TEFN=9669 and b=0.009472/week. The computed Bias, Variation, 
MRE , and RMS-PE for Gompertz TEF, Logistic TEF and 
Rayleigh TEF are listed in the table IV ,fig 5 graphically illustrate 
the comparisons between the observed failure 

 
FIG 4. OBSERVED/ESTIMATED GOMPERTZ, LOGISTIC AND 

 RAYLEIGH TEF FOR DS2. 

 

 

 
data, and the data estimated by the Gompertz TEF, Logistic 
TEF and Rayleigh TEF. From the figure 5 we can observe the 

Gompertz curve covers the maximum points like other TEFs. 
Now from the table V we can conclude our TEF better fit than 
other. Their 95% confidence bounds are given in the table VI. 
From the above we can see that SRGM with Gompertz TEF 
have less MSE than other models 

Table IV 
COMPARISION RESULT FOR DIFFERENT TEF APPLIE 
D TO DS2 

TEF Bias Variation MRE RMS-PE 

Gompertz -1.284 104.7 0.020 104.3 

Logistic -19.345 198.44 0.026 197.5 

Rayleigh 121.61 322 0.055 298.23 

 

 
FIG 5. CUMULATIVE AND RESIDUAL ERROR FOR SRGM WITH 

 GOMPERTZ TEF FOR DS2 
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Table V 

ESTIMATED PARAMETER VALUES AND MODEL COMPARISION FOR DS2 

Models a r SSE R2 MSE 

SRGM with Gompertz TEF 122.4 0.0001841 376.1 0.9769 20.89 

Delayed S shaped model with Gompertz TEF 100.3 0.0005645 1314 0.9192 72.98 

SRGM with Logistic TEF 112.3 0.0002399 433.1 0.9734 24.06 

Delayed S shaped model with Logistic TEF 96.88 0.0006853 1577 0.903 87.61 

SRGM with Rayleigh TEF 120.9 0.0001791 792.5 0.9513 44.03 

Delayed S shaped model with Rayleigh TEF 99.4 0.0005434 1930 0.8813 107.1 

 
Table VI 

95% CONFIDENCE LIMIT FOR DIFFERENT SELECTED MODELS (DS2) 

 
 

 

Models a r 

Lower Upper Lower Upper 

SRGM with Gompertz TEF 107.6 137.3 0.0001395 0.0002286 

SRGM with Logistic TEF 101.4 123.1 0.000186 0.0002938 

SRGM with Rayleigh TEF 98.4 143 0.0001122 0.0002461 

Yamada Delayed S shaped Model with Gompertz TEF 92.68 107.8 0.0004685 0.0006604 

Yamada Delayed S shaped Model with Logistic TEF 88.64 105.1 0.0005346 0.0008359 

Yamada Delayed S shaped Model with Rayleigh TEF 88.24 110.6 0.0003991 0.0006877 
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FIG.6 RE CURVES OF SELECTED MODELS COMPARED WITH ACTUAL FAILURE DATA (DS2) 

 

6) OPTIMAL SOFTWARE RELEASE 

POLICY  
6.1) OPTIMAL RELEASE POLICY BASED ON COST  
One of the major challenges for software industry is to know, how 
much of test should be conducted, what is its reliability and when 
the software has be released into the market [15, 26].  The total 
cost of the software is summation of cost of correcting the errors 
before and after the release of the software. C1 cost of correcting an 
error during the testing, C2 cost of correcting an during operation 
and C3 cost of testing per unit testing expenditure (C2 > C1) 

       

(33) 

C1(T) is the total cost of the testing. 
Differentiate the eq.() with respect to T then the optimize the 
solution to get the required solution 

     (34) 

From above equation  ,     

 

and  

The minimum value of C1(T) is found by observing the two cases 

 at T=0. 

1) if  =a.r ≤  then  for 0< 

T<TLC. It can be obtained that >0 for 0 <T < TLC and the 

minimum value of C(T) can found at T=0. 

2) if =a.r >  > =a.r.e-rα , there can be 

found a finite and unique real number  

    

(35) 

 

6.2) RELEASE TIME BASED ON RELIABILITY  
Generally software release problem associated with the reliability 
of a software system. Here in this first we discuss the optimal time 
based on reliability criterion. If we know software has reached its 
maximum reliability for a particular time. By that we can decide 
right time for the software to be delivered out. Goel and Okumoto 

[1] first dealed with the release problem considering the software 
cost-benefit. The conditional reliability function after the last 
failure occurs at time t is obtained by  

 R (t+Δt/t) =exp (-[m (t+ Δt/t)-m (t)]) 

  (36) 

 Taking the logarithm on both sides of the above equation and 
rearrange the above equation we obtain 

   (37) 

     Thus
 (38) 

 Another way of defining the reliability based on another model the 

ratio of cumulative number of error detected and initial number of 

errors at a given time is given by [8. 9] 

R (T) =m (T)/a                   (39) 

 We can the above equation and get the unique T1 which satisfying 

the above equation R (T1) =R0. 

6.3) SOFTWARE RELEASE TIME BASED ON COST 

AND EFFICIENCY 
Automated testing tools are useful in facilitating speedup the 
testing process [8, 9, 10]. Complexity of software can increase the 
time to test the software, it is often seen the allotted time for testing 

of software can exceed its required schedule time. When the 
situation like that arises, we adopt a new automated testing tool to 
increase the efficiency of the system. The new adopted automated 
testing tools not only speedup the testing process; it increases the 
efficiency of the testing by certain extent. The total cost of the 
testing will increase by adopting the new automated testing tools. P 
is described as fractions of extra errors found during the software 
testing phase. 

The overall cost of software is rearranged to  

    
(40) 

From above C0(T) is cost of adopting the new automated testing 
tools into testing phase. P is defined as the number of addition 
faults that has to be detected during the [8, 9, 10] testing. As the P 
value increases it increases the total cost of the software. C0(T) cost 

may not be constant during the testing, it all depends on the nature 
of the testing tool used in the testing. The cost of C0(T) is increase 
with testing time. In order to minimize the cost C2(T) the 
following relation holds between C2(T) and C1(T). 
C1 (T) - C2 (T) ≥ 0        (41) 
From eq.(33) and eq.(39) to satisfy the above equation  

     (42) 

From the above equation 
C0(T)≤ P × m(T) ×(C2-C1)[ 8, 9]      (43) 
There are several possibilities of C0(T) which satisfies the cost of 
adopting the automated testing tools during the testing phase[8,9]. 

a) C0(T) is constant: in this the cost of the automated testing 
tools remains constant, due to engaging same type of tool in 
different instant of time in testing.  
b) C0(T) is proportional to test expenditure : in this an 
additional automated cost is added by introducing different 
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automated tools like fixing patches, upgrading, and maintenance 
support into testing.  
c) C0(T) is exponentially related to the test expenditure: for 
a large data base and certain complex software they need some 
extra sophisticated automated tools. By introducing these tools in 
different time interval during the testing phase, increases the cost 

of testing. A large tools require large cost, by that it increases the 
total cost. As the testing is progress the cost of adopting the new 
testing tool increases exponentially. 
Theorem 1: Assume C0(T) =C0 (constant), C0 > 0, C1 > 0, C2 > 0, 
C3 > 0, and C2 > C1; then we have  

I)   , 

and   

there exist a unique solution 

 then 

the optimal release time T*=T0. 

II) If  < 

C3 then the optimal release time T*=Ts. 

III) If  

> C3 then the optimal release time T*=TLC. 
 
Proof: taking the derivative to the equation (39) and substituting 

the testing effort into the equation we get the equation 
 

  
(44) 

 ≤ C3  

then Ts < T < TLC  therefore software release time T*=Ts. 
    

 , then Ts < T < TLC there exist unique optimal release time T*=TLC. 

Theorem 2:  Assume   ,C01 > 0, 

C0 > 0, C1 > 0, C2 > 0, C3 > 0, and C2 > C1; then we have  
Case1) 

  , and 

 there exist unique solution 

  

satisfying 

 

optimal release time T*=T0. 
Case2) if    

 , then  

T*=Ts. 
Case3) if 

  then T*=TLC. 

Theorem 3: Assume  , C01 

> 0, C0 > 0, C1 > 0, C2 > 0, C3 > 0, and C2 > C1; then we have  

I)  if  

, and 

 

There exists unique solution satisfying the equation 
 

Then the optimal release time T*=T0. 

II)  If   <  

C3 then the optimal release time T*=Ts. 
III)if  

Then there exist unique solution T*=TLC. 

7) NUMERICAL EXAMPLES 
7.1) TOTAL COST AND RELIABILITY WITHOUT 

EFFICIENCY 
For the dataset one from its calculated parameters α=70.55(CPU 
hours), β=3.304, c=0.1109, a=437.3 and r=0.03251 ,C1=10$, 
C2=40$, C3=100$ and TLC=100 from the equation (35) the cost and 
reliability of the software are 
From above table it observed that optimal software release time is 
around T*=19.18 at total cost of 10251. 

7.2) COST AND RELIABILITY BASED ON 

EFFICIENCY 
For the dataset one from its calculated parameters α=70.55(CPU 
hours), β=3.304, c=0.1109, Assume C01=1000$, C0=10$, C1=10$, 
C2=40$, C3=100$, TLC=100, k=1, Ts=19. 

   

         Table VII 

Cost and Reliability without efficiency 

Time(T) Reliability R(T) Total Cost Time(T) Reliability R(T) Total Cost 

10 0.1297 11425 18 0.4508 10257 

11 0.1548 11123 19 0.4984 10249 
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12 0.1856 10875 20 0.5441 10255 

13 0.2217 10677 21 0.5875 10273 

14 0.2625 10524 22 0.6281 10298 

15 0.3070 10411 23 0.6656 10329 

16 0.3540 10333 24 0.7001 10364 

17 0.4024 10283 25 0.7315 10400 

 

   

Table VIII 

Cost and Reliability with efficiency based on the cost 

Function  

P Time T* Cost C(T*) Reliability R(T*) P Time T Cost C(T*) Reliability R(T*) 

0.01 19.01 11381 0.7733 0.10 19.1 10475 0.8438 

0.02 19.02 11281 0.7811 0.11 19.11 10375 0.8517 

0.03 19.03 11180 0.7890 0.12 19.12 10274 0.8595 

0.04 19.04 11080 0.7968 0.13 19.13 10173 0.8674 

0.05 19.05 10979 0.8046 0.14 19.14 10072 0.8752 

0.06 19.06 10878 0.8124 0.15 19.15 9971 0.8831 

0.07 19.07 10778 0.8203 0.16 19.16 9870 0.8909 

0.08 19.08 10677 0.8281 0.17 19.17 9769 0.8988 

0.09 19..09 10576 0.8360 0.18 19.18 9667 0.9067 

 
It is observed that the from eq.(33) optimal time T*=19.18 and the 
cost C1(T*)=10251 ; whereas from the eq.(40) the cost of the 
software is 9667 at P=0.18 and T*=19.18 and its reliability has 
been increased from 0.51 to 0.9067. From this we can conclude 
that C1(T) > C2(T). 
From above table we observed that as the value of P increases the 
optimal time increases and total cost decreases. Increases in P 

means we will find more and more errors during the testing. It also 
describes the efficiency of the software testing. 
 

8. CONCLUSION  
In this paper an analysis is made on software reliability growth 

model with Gompertz TEF. Our model fairly fit to the data, but 
Gompertz Curve is little optimistic in nature. It reaches to its peak 
value very quickly. If we neglect this phenomenon this model gives 
the realistic value in software. It is also seen that proposed 
Gompertz TEF in SRGM can fit for any kind of software failure 
data. By incorporating both TEF and test efficiency we can reduce 
the total testing cost and increase in the reliability. 

Appendix -A 
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Above equation approaches to infinity so we apply the L‟ Hospitals 
Rule by letting  

 (51) 
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And  (55) 

Appendix -B 

Using the estimated parameters α, β, and c above, we estimate the 
reliability growth parameters a and r in (14). Suppose that the data 
on the cumulative number of detected errors yk in a given time 
interval (0, tk] (k = 1, 2,..., n) are observed. Then, the joint 
probability mass function, i.e. the likelihood function for the 
observed data, is given by 

 

  

(56) 

From eq :14  
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