
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.12, October 2010

22

IDDP: Novel Development of an Intrusion Detection

System through Design Patterns

Rajshekhar M Patil
Research Scholar, CSE Dept.,

MGRU, Chennai-85,

Tamil Nadu, India,

Assistant Professor,

Information Science Department,

Atria Institute of Technology,
Bangalore-4, Karnataka, India.

Mamithar. R. Patil

Lecturer,

T I T, Bhopal,

Madhya Pradesh,

India.

Dr. K V. Ramakrishnan

Professor, Dept. of CSE,

CMRIT,

White Field,

Karanataka-78, India.

Dr. T.C.Manjunath

Ph.D. (IIT Bombay), Fellow IETE

PRINCIPAL,

Atria Inst. of Tech.,

Bangalore, Karnataka,

India

ABSTRACT

A novel method of design & development of an intrusion

development system through design patterns is presented in this

paper. Large scale use of computers and networking in various

day to day businesses and individual communication applications

has given rise to security issues. The process of monitoring the

events occurring in a computer network and analyzing them for

any sign of intrusion is known as IDS. Design pattern is a metric

that measures how much of an object oriented design can be

understood and represented as IDS. This paper presents a

quantifiable and observable definition of metric for IDS. The IDS

through design pattern is easier to implement compared to

techniques like IDDM and IDS through UNIX system calls. The

quantitative results shown in this paper projects the effectiveness

of the proposed method that can be widely used in security

systems.

General Terms

Knowledge Data Discovery 99, SNORT, Functional Points,

Pattern.

Keywords

IDS - Intrusion Detection System, FP-Functional Points, IDDM -

Intrusion Detection in Data Mining.

1. INTRODUCTION
Intrusion detection systems (IDS) were proposed to complement

prevention-based security measures. An intrusion is defined to be

a violation of the security policy of the system; intrusion

detection thus refers to the mechanisms that are developed to

detect violations of system security policy. Intrusion detection is

based on the assumption that intrusive activities are noticeably

different from normal system activities and thus detectable.

Intrusion detection is not introduced to replace prevention-based

techniques such as authentication and access control; instead, it

is intended to complement existing security measures and detect

actions that bypass the security monitoring and control

component of the system. Intrusion detection is therefore

considered as a second line of defense for computer and network

systems. Generally, an intrusion would cause loss of integrity,

confidentiality, denial of resources, or unauthorized use of

resources [30].The process of monitoring the events occurring in

a computer system or network and analyzing them for signs of

intrusion is known as Intrusion Detection. The known events are

called as functional points and should be carried on regularly.

Computer network systems are known to be vulnerable to

external attacks This has led us to carrying out the investigation

of the problem of detecting misuse of computer network [1].

Many researchers around the world have worked on the current

topic, viz., intrusion detection systems. The following

paragraphs gives a brief survey about the same.

The duty of securing networks is very difficult due to their size,

complexity, diversity and dynamic situation. The advantage of

securing networks being to enhance security applications such as

Intrusion Detection System (IDS), Intrusion Prevention System

(IPS), Adaptive Security Alliance (ASA), check points and

firewalls and further guide to the security implementers [19].

PGNIDS (Pattern-Graph based Network Intrusion Detection

System) generates the audit data that can estimate intrusion with

the packets collected from network. An existing IDS (Intrusion

Detection System), when it estimates an intrusion by reading all

the incoming packets in network, takes more time than the

proposed PGNIDS does. The PGNIDS not only classifies the

audit data into alert and log through ADGM (Audit Data

Generation Module) and stores them in the database, but also

estimates the intrusion by using pattern graph that classifies

IDPM (Intrusion Detection Pattern Module) and event type,

Therefore, it takes less time to collect packets and analyze them

than the existing IDS, and reacts about abnormal intrusion real

time. In addition, it is possible for this to detect the devious

intrusion detection by generating pattern graph [20], [26].

With the rapid growth of the internet, computer attacks are

increasing at a fast pace and can easily cause millions of dollar in

damage to an organization. Detection of these attacks is an

important issue of computer security. Intrusion Detection

Systems (IDS) technology is an effective approach in dealing

with the problems of network security. In general, the techniques

for Intrusion Detection (ID) fall into two major categories

depending on the modeling methods used: misuse detection and

anomaly detection. Misuse detection compares the usage patterns

for knowing the techniques of compromising computer security

[21], [26].

Although misuse detection is effective against known intrusion

types; it cannot detect new attacks that were not predefined.

Anomaly detection, on the other hand, approaches the problem

by attempting to find deviations from the established patterns of

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.12, October 2010

23

usage. Anomaly detection may be able to detect new attacks.

However, it may also cause a significant number of false alarms

because the normal behavior varies widely and obtaining

complete description of normal behavior is often difficult.

Architecturally, an intrusion detection system can be categorized

into three types host based IDS, network based IDS and hybrid

IDS [21], [22], [26].

A host based intrusion detection system uses the audit trails of

the operation system as a primary data source. A network based

intrusion detection system, on the other hand, uses network

traffic information as its main data source. Hybrid intrusion

detection system uses both methods [23]. However, most

available commercial IDS's use only misuse detection because

most developed anomaly detector still cannot overcome the

limitations (high false positive detection errors, the difficulty of

handling gradual misbehavior and expensive computation[24]).

This trend motivates many research efforts to build anomaly

detectors for the purpose of ID [25], [26].

In [27], Vokorokos & Balaz presented an intrusion detection

system which informs the system administrator about potential

intrusion incidence in a system. This designed architecture

employs statistical method of data evaluation, that allows

detection based on the knowledge of user activity deviation in the

computer system from learned profile representing standard user

behavior. Srilatha et.al. proposed a new method of feature

deduction and ensemble design of intrusion detection systems in

their paper in [30].

A brief review about the intrusion detection systems follows.

Firewalls and other simple boundary devices lack some degree of

intelligence when it comes to observing, recognizing, and

identifying attack signatures that may be present in the traffic

they monitor and the log files they collect. Without sounding

critical of such other systems‟ capabilities, this deficiency

explains why intrusion detection systems (often abbreviated IDS)

are becoming increasingly important in helping to maintain

proper network security. Whereas other boundary devices may

collect all the information necessary to detect (and often, to foil)

attacks that may be getting started or already underway, they

haven‟t been programmed to inspect for and detect the kinds of

traffic or network behavior patterns that match known attack

signatures or that suggest potential unrecognized attacks may be

incipient or in progress [28], [29].

In a nutshell, the simplest way to define an IDS might be to

describe it as a specialized tool that knows how to read and

interpret the contents of log files from routers, firewalls, servers,

and other network devices. Furthermore, an IDS often stores a

database of known attack signatures and can compare patterns of

activity, traffic, or behavior it sees in the logs it‟s monitoring

against those signatures to recognize when a close match

between a signature and current or recent behavior occurs. At

that point, the IDS can issue alarms or alerts, take various kinds

of automatic action ranging from shutting down Internet links or

specific servers to launching back-traces, and make other active

attempts to identify attackers and actively collect evidence of

their nefarious activities [28], [29].

By analogy, an IDS does for a network what an antivirus

software package does for files that enter a system: It inspects the

contents of network traffic to look for and deflect possible

attacks, just as an antivirus software package inspects the

contents of incoming files, e-mail attachments, active Web

content, and so forth to look for virus signatures (patterns that

match known malware) or for possible malicious actions

(patterns of behavior that are at least suspicious, if not downright

unacceptable) [28], [29].

To be more specific, intrusion detection means detecting

unauthorized use of or attacks on a system or network. An IDS is

designed and used to detect and then to deflect or deter (if

possible) such attacks or unauthorized use of systems, networks,

and related resources. Like firewalls, IDSs may be software-

based or may combine hardware and software (in the form of

preinstalled and preconfigured standalone IDS devices). Often,

IDS software runs on the same devices or servers where

firewalls, proxies, or other boundary services operate- an IDS not

running on the same device or server where the firewall or other

services are installed will monitor those devices closely and

carefully. Although such devices tend to operate at network

peripheries, IDS systems can detect and deal with insider attacks

as well as external attacks [28], [29].

1.1 Characterizing Intrusion Detection Systems

IDS systems vary according to a number of criteria. By

explaining those criteria, we can explain what kinds of IDSs

you‟re likely to encounter and how they do their jobs. First and

foremost, it‟s possible to distinguish IDSs on the basis of the

kinds of activities, traffic, transactions, or systems they monitor.

In this case, IDSs may be divided into network-based, host-

based, and application-based IDS types. IDSs that monitor

network backbones and look for attack signatures are called

network-based IDSs, whereas those that operate on hosts defend

and monitor the operating and file systems for signs of intrusion

and are called host-based IDSs. Some IDSs monitor only specific

applications and are called application-based IDSs. (This type of

treatment is usually reserved for important applications such as

database management systems, content management systems,

accounting systems, and so forth.) Read on to learn more about

these various types of IDS monitoring approaches [28], [29]:

1.1.1 Network-based IDS characteristics

Pros: Network-based IDSs can monitor an entire, large network

with only a few well-situated nodes or devices and impose little

overhead on a network. Network-based IDSs are mostly passive

devices that monitor ongoing network activity without adding

significant overhead or interfering with network operation. They

are easy to secure against attack and may even be undetectable to

attackers; they also require little effort to install and use on

existing networks.

Cons: Network-based IDSs may not be able to monitor and

analyze all traffic on large, busy networks and may therefore

overlook attacks launched during peak traffic periods. Network-

based IDSs may not be able to monitor switch-based (high-speed)

networks effectively, either. Typically, network-based IDSs

cannot analyze encrypted data, nor do they report whether or not

attempted attacks succeed or fail. Thus, network-based IDSs

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.12, October 2010

24

require a certain amount of active, manual involvement from

network administrators to gauge the effects of reported attacks

[28], [29].

1.1.2 Host-based IDS characteristics

Pros: Host-based IDS can analyze activities on the host it

monitors at a high level of detail; it can often determine which

processes and/or users are involved in malicious activities.

Though they may each focus on a single host, many host-based

IDS systems use an agent-console model where agents run on

(and monitor) individual hosts but report to a single centralized

console (so that a single console can configure, manage, and

consolidate data from numerous hosts). Host-based IDSs can

detect attacks undetectable to the network-based IDS and can

gauge attack effects quite accurately. Host-based IDSs can use

host-based encryption services to examine encrypted traffic, data,

storage, and activity. Host-based IDSs have no difficulties

operating on switch-based networks, either.

Cons: Data collection occurs on a per-host basis; writing to logs

or reporting activity requires network traffic and can decrease

network performance. Clever attackers who compromise a host

can also attack and disable host-based IDSs. Host-based IDSs can

be foiled by DoS attacks (since they may prevent any traffic from

reaching the host where they‟re running or prevent reporting on

such attacks to a console elsewhere on a network). Most

significantly, a host-based IDS does consume processing time,

storage, memory, and other resources on the hosts where such

systems operate [28], [29].

1.1.3 Application-based IDS characteristics

Pros: An application-based IDS concentrates on events occurring

within some specific application. They often detect attacks

through analysis of application log files and can usually identify

many types of attack or suspicious activity. Sometimes

application-based IDS can even track unauthorized activity from

individual users. They can also work with encrypted data, using

application-based encryption/decryption services.

Cons: Application-based IDSs are sometimes more vulnerable to

attack than the host-based IDS. They can also consume

significant application (and host) resources.

In practice, most commercial environments use some

combination of network- and host- and/or application-based IDS

systems to observe what‟s happening on the network while also

monitoring key hosts and applications more closely. IDSs may

also be distinguished by their differing approaches to event

analysis.

Some IDSs primarily use a technique called signature detection.

This resembles the way many antivirus programs use virus

signatures to recognize and block infected files, programs, or

active Web content from entering a computer system, except that

it uses a database of traffic or activity patterns related to known

attacks, called attack signatures.

Indeed, signature detection is the most widely used approach in

commercial IDS technology today. Another approach is called

anomaly detection. It uses rules or predefined concepts about

“normal” and “abnormal” system activity (called heuristics) to

distinguish anomalies from normal system behavior and to

monitor, report on, or block anomalies as they occur.

Some IDSs support limited types of anomaly detection; most

experts believe this kind of capability will become part of how

more IDSs operate in the future. Read on for more information

about these two kinds of event analysis techniques [28], [29] :

1.1.4 Signature-based IDS characteristics

Pros: A signature-based IDS examines ongoing traffic, activity,

transactions, or behavior for matches with known patterns of

events specific to known attacks. As with antivirus software, a

signature-based IDS requires access to a current database of

attack signatures and some way to actively compare and match

current behavior against a large collection of signatures. Except

when entirely new, uncataloged attacks occur, this technique

works extremely well.

Cons: Signature databases must be constantly updated, and IDSs

must be able to compare and match activities against large

collections of attack signatures. If signature definitions are too

specific, signature-based IDS may miss variations on known

attacks. (A common technique for creating new attacks is to

change existing, known attacks rather than to create entirely new

ones from scratch.) Signature-based IDSs can also impose

noticeable performance drags on systems when current behavior

matches multiple (or numerous) attack signatures, either in

whole or in part [28], [29].

1.1.5 Anomaly-based IDS characteristics

Pros: An anomaly-based IDS examines ongoing traffic, activity,

transactions, or behavior for anomalies on networks or systems

that may indicate attack. The underlying principle is the notion

that “attack behavior” differs enough from “normal user

behavior” that it can be detected by cataloging and identifying

the differences involved. By creating baselines of normal

behavior, anomaly-based IDS systems can observe when current

behavior deviates statistically from the norm. This capability

theoretically gives anomaly-based IDSs abilities to detect new

attacks that are neither known nor for which signatures have

been created.

Cons: Because normal behavior can change easily and readily,

anomaly-based IDS systems are prone to false positives where

attacks may be reported based on changes to the norm that are

“normal,” rather than representing real attacks. Their intensely

analytical behavior can also impose sometimes-heavy processing

overheads on systems where they‟re running. Furthermore,

anomaly-based systems take a while to create statistically

significant baselines (to separate normal behavior from

anomalies); they‟re relatively open to attack during this period.

Today, many antivirus packages include both signature-based

and anomaly-based detection characteristics, but only a few IDSs

incorporate both approaches. Most experts expect anomaly-based

detection to become more widespread in IDSs, but research and

programming breakthroughs will be necessary to deliver the kind

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.12, October 2010

25

of capability that anomaly-based detection should be, but is

currently not, able to deliver.

Finally, some IDSs are capable of responding to attacks when

they occur. This behavior is desirable from two points of view.

For one thing, a computer system can track behavior and activity

in near-real time and respond much more quickly and decisively

during early stages of an attack. Since automation helps hackers

mount attacks, it stands to reason that it should also help security

professionals fend them off as they occur. For another thing,

IDSs run 24/7, but network administrators may not be able to

respond as quickly during off hours as they can during peak

hours (even if the IDS can page them with an alarm that an

attack has begun). By automating a response to block incoming

traffic from one or more addresses from which an attack

originates, the IDS can halt an attack in process and block future

attacks from the same address [28], [29].

By implementing the following techniques, IDSs can fend off

expert and novice hackers alike. Although experts are more

difficult to block entirely, these techniques can slow them down

considerably:

 Breaking TCP connections by injecting reset packets into

attacker connections causes attacks to fall apart.

 Deploying automated packet filters to block routers or

firewalls from forwarding attack packets to servers or hosts

under attack stops most attacks cold-even DoS or DDoS

attacks. This works for attacker addresses and for protocols

or services under attack (by blocking traffic at different

layers of the ARPA networking model, so to speak).

 Deploying automated disconnects for routers, firewalls, or

servers can halt all activity when other measures fail to stop

attackers (as in extreme DDoS attack situations, where

filtering would only work effectively on the ISP side of an

Internet link, if not higher up the ISP chain, as close to

Internet backbones as possible).

 Actively pursuing reverse DNS lookups or other ways of

attempting to establish hacker identity is a technique used

by some IDSs, generating reports of malicious activity to all

ISPs in the routes used between the attacker and the

attackee. Because such responses may themselves raise

legal issues, experts recommend obtaining legal advice

before repaying hackers in kind [28], [29].

1.2 Definition of Metric
Our objective is to develop an overall framework for defending

against attacks and threats to computer system. IDS design

pattern metric is precise and explicit about what it is based on,

namely collaborations. There are patterns that can‟t be neatly

captured using collaborations.

The first point to be raised is some of these design patterns are

not in a design level but rather on an architecture or

programming level. Data generated from network tends to have

very high volume, dimensionality and heterogeneity. More

important is it does not seem sensible to mix (largely) orthogonal

design aspects into one metric. A better approach might be to

have a pattern density metric for each major type of aspect in a

given system. We can make progress towards automated

calculation of the metric design pattern density.

1.3 Intrusion pattern & collaborations
Here, in this section, we define the making of object

collaborations as the atomic unit of functionality with which to

measure the number of design pattern instances in a given frame

work. “IDS design pattern” is defined as a percentage of a frame

works functionality. that can be explained as design pattern

instances. For this we need a measure of functionality on the

level of granularity of design patterns so that we can measure and

represent that functionality.

1.4 ATOMICITY AND PATTERNS
Here, in this section, we focus on the atomicity of the classic

design pattern and we ignore aspects like simultaneous

existence. The variation of patterns can be explained in its

granularity (from architectural styles to intrusion programming

idioms) as well as in design and address.

Atomicity level is addressed by classic design pattern and its

class method level. It is a refined atomicity level in comparison

with pipes and filters [6]. It is finer atomicity to identify

similarity of statements and create a dissimilar one or take

suitable decision later on which is the responsibility of Intrusion

Prevention System. Specific purpose of a design pattern is

distributed across its objects and collaborations. Hence each

object is acting as an agent in a network system [11].

Responsibilities are distributed across object classes & are done

by configuring their instances for a specific purpose. The focus is

on the object collaboration rather than class structure. Flexibility

of the design is recalled through inheritance. However, all design

patterns are not about collaborations some are about how

architectural and structural design aspects of intrusion detection

system behavior can be connected. In the next section we explain

about such situations collaborations and its design.

Based on the work done by various researchers so far as

described earlier, there were lot of drawbacks & disadvantages in

the network security & in the intrusion detection systems such as

the network being prone to some of the deadly viruses & could

not detect when there is huge amount of data. Some of the

drawbacks of the above mentioned works were considered in our

work, rectified, improvised some of the concepts, developed &

proposed a new framework of network security with a

sophisticated intrusion detection system.

The paper is organized in the following sequence. Firstly, a brief

introduction about the research work was presented in the

previous paragraphs in the introductory section. Secondly, the

development of the JAVA frameworks is dealt with in the section

II. The section III deals with the design using advanced UML‟s.

Object communication & inheritance is briefly dealt with in

section IV. Section V deals with the detailed design of the IDS

design patterns. Case studies are dealt with in section VI. In

the section VII, future work is presented. Conclusions are

presented in the last section, i.e., in section VIII. This is

followed by the references & the author biographies.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.12, October 2010

26

2. JAVA FRAME WORK
Junit is a widely used unit testing frame work for Java. The

central abstraction in the frame is observed in various patterns.

Pictures of mature object design‟s show this same pattern

density. The star of the design has a rich set of relationships with

the supporting players [3].The mature frame works “exhibit a

high design pattern density”. This paper attempts to utilize

design pattern density so that we can track its value in the

evolution of a given frame work. The metric is applied to various

case studies which are then interpreted based on the results.

An enhanced definition of collaboration based design is used to

define a quantitative measure of functionality in a class model.

Object collaborations are used as atomic unit of functionality.

This makes it easy to assess the number of design patterns

instances. Thus the calculation of a framework„s design pattern

density becomes the percentage of collaboration instances. An

enhanced definition of collaboration based design can easily

cope with inheritance interfaces design pattern density is a

quantitative and measurable entity.

3. DESIGN USING ADVANCED UML
A detailed design using advanced UML technology is presented

in this section. It is related to the class responsibility

collaboration [CRC] but very much independent of IDS design.

Collaboration based design has made its way into UML [12].

Table 1: Data from the collaboration design view of the Junit

3.8.

Name of

collaboration

Total

collab

oratio

ns

Roles in

each

collaborat

ions

All methods

included in

each

collaboration

Pattern

name if

any else nil

Test Case 1 2 4 -

Test suit

Test creation

1 2 4 -

Test Run 1 2 1 command

Test case

Test Run

1 2 2 -

Test suite

Test Run

1 2 1 -

Test

Hierarchy

1 3 11 composite

Test Result 1 3 7 Collecting

parameter

Test Result

Controller

1 2 2 -

Test Result

Observer

1 2 5 Observer

Collecting

Test Run

1 2 4 Command

Test Run

Method

1 2 4 Template

Method

Assertions 1 2 34 -

Test Failure 1 2 4 -

Comparison

Failure

1 2 3 -

Compact

Method

1 2 4 Composed

Method

Total 16 40 94 7

This paper uses the Junit frame work as a running example [14].

Junit is a frame work for writing unit tests in Java. It is available

in source code form.

We focus on the Junit frame work classes only. The discussion in

this paper is based on our own method of Junit 3.8 using IDS

collaboration [11][12].

This paper also uses UML concept of interface to represent a role

and the UML concept of package to scope collaboration.

Compared with UML2.x as well as our work this is a simplified

metric definition. In design based collaboration objects play

important roles.

“A role is a type that defines the behavior of an object within

collaboration and collaboration is grouping of roles that defines

how objects behind these roles are allowed to interact.”

Table 1 explains the test result observed between two agents

from Junit 3.8. each agent defines how a test result object allows

for registration and un-registration of test listener objects

interpreted in an object. For this purpose test listener objects

provide call back methods that the test result objects can invoke.

It will happen only when test run starts, the time it ends failure

occurs. This process is an application of observer patterns;

similarly the other classes are defined. One more class test result

is shown in Table 2 and its roles and collaboration are shown in

Table 3. One can notice here using UML interfaces to represent a

role doesn‟t imply that on the code level any such interface

exists. Methods defined by roles are directly embedded in Junit

interface Table 2.

4. OBJECT COMMUNICATION AND

INHERITANCE
Communication and collaboration between objects is an

important aspect, dealt through inheritance. The inheritance

interface that super classes define as a contact between

subclasses is also important. Collaboration based IDS design

with the way to specify and using inheritance interfaces without

such enhancement is difficult to explain white box or gray box

functional points.

Like Junit explains key concept is object may play several roles

in class like observing, listening etc. We can explain intra object

communication with the same approach as inter object

communication. As an example of the above we use template

method in this pattern. Figure4 shows an application of the

template method using textual notations for communication and

collaboration.

5. IDS DESIGN PATTERN
We now provide here a quantitative and measurable definition of

IDS design pattern using pattern density. The IDS design pattern

density of an object oriented IDS is the percentage of its

collaboration between agents that are design pattern instances.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.12, October 2010

27

For example, as table 2 shows the core agent Junit frame work

classes are composed from 15 agent collaborations, of these 6 are

instances of design pattern. Hence as in table 3 the design

pattern of Junit 3.8, 6/15 or 48%. The „IDS metric design pattern

density‟ is simple precise complete and measurable, it is simple

and precise because only a basic collaboration is needed. It is

complete because of its enhanced collaboration based design

method. After evaluation of this metric it is found that agent

collaboration attacks detected is less than 0.5. It is apparent that

this method gives slightly different results than the method with

other metric. Still this is considered as most successful IDS

design pattern density.

Table 2 : Detection for Detecting Pattern Using metrics

Method Evaluation Metrics Detection

Rate

 Collaboration

Or Test 1

Test 2 Test 3

IDDM 3/3

(100%)

7/11

(63.6%)

2/3

(66.7%)

13/19

(68.4%)

SNORT

IDS

3/3

(100%)

10/11

(90.1%)

2/3

(66.7%)

16/19

(84.2%)

Table 3: Summary data from Junit 3.8 analysis

Junit 3.8 case study :

No of class interfaces

No of collaborations

No of pattern instances

No of roles in total

No of ratio roles

09

15

06

32

2.8

IDS design pattern 48 %

The interface architecture of core collaborations of IDS design

pattern if any one is interested in they can do it as

Public collaboration Test run {

Free role client {

------- }

Role template method {

Public void runb () throws throwable;

}

Role primitive method {

Protected void runtest() throws throwable;

Protected void setup () throws exception;

Protected void teardown () throws exception;

}

}

6. CASE STUDIES
In addition to Junit 3.8 design pattern we used the metric to

gather data from two other functional points.

1. The IDDM architecture based implementation of

distributed object[14].

2. The IDS system to design IDS design pattern using unix

system calls[15].

The IDDM and IDS design are the result of a major revision and

hence is not analyzed now but the major functional points are

analyzed and deduced for further utilization.

6.1 Case study data
Table 4 below shows summary data and the design pattern from

the two case studies excluding the Junit case study.

The two new case studies are assessed an interface architecture

level so the numbers given in table 4 are interface architecture

design pattern.

Table 4 : Summary data from two case studies

Case study [1] [2]

No of interfaces and

interface classes

No of collaborations

No of pattern instances

No of roles assigned

Ratio per class/interface

15

30

16

72

3.4

11

18

09

42

2.4

Design pattern density

(interface architecture)

56% 60%

[1] IDDM frame work.

[2] IDS design pattern frame work

Table 5 summarizes the pattern densities and assigns a maturity

level to each frame work. The maturity level is a simple integer

value 1-3, where 1 represents “new”, 2 shows “revised” and 3

shows “mature”

Table 5: the maturity level, pattern, roles per collaboration, and

data of the case studies.

Case

study

Maturity

level

(1- 3)

Design

pattern

density

No of roles

collaboration

Assessed on the interface architecture level

IDDM 02 58% 2.12

IDS for

unix system

calls

02 60% 2.10

Assured on the complete design

junit 2.8 45% 2.05

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.12, October 2010

28

7. FUTURE WORK
Several IDS design pattern schemes for designing network

intrusion patterns are proposed in this paper. which is applied to

various data sets. The work presented in this paper makes a lot

of assumptions that restrict the applicability of the metric.

Currently applying neural networks in intrusion detection may

also be used, which will give a robust approach to ensure

security in the network system. Further, neural networks are also

alternatives to other approaches in the area of intrusion detection.

8. CONCLUSION
This paper presents a unique metric for IDS design pattern.

Several IDS schemes designing and detecting network intrusions

are proposed. If an extension collaboration based design as the

instrument to calculate the metric value in a given frame work.

The paper makes IDS design metric more precise and also

measurable. To do so we show collaboration based design are not

only used to capture inter object collaboration, but also can be

extended to capture class inheritance interfaces. The metric is

applied to two case studies followed by discussion of their

assessment & further justified by using case studies.

REFERENCES

[1] Dorothy Denning “An intrusion detection model” IEEE

Trans. on software engineering, No. 2, pp. 272-280, Feb

1987.

[2] J M Bradshaw, “An introduction to software agents” in

software agents, Bradshaw J M (ED), Cambridge M A :

MIT press, 1997.

[3] Kent Beek and Erich Gamma Junit: A cook‟s tour

available from http:// Junit://Junit.source

.net/doc/cook‟stour/cookstour.html.

[4] Fayyad.U.Piatesky-Shapiro, G and Smyth . P.1996 The

KDD process of extracting useful knowledge from

volumes of data communication ACM 39,11, 27-34.

[5] Dirk Riechale et. al. “Design pattern validated”.

[6] Rajashekaran.S: efficient parallel hierarchical clustering

algorithms . IEEE Trans. in parallel and distributed

systems 16(6), 497-502 (2005).

[7] Dirk Rachele, Roger Bradman,Thomas Gross and matzel

“pattern density and role modeling of an object transport

service” ACM Computing surveys 32(Mar. 2000), No.

10.

[8] James O coplin Advanced C++ programming styles and

idioms.Addison Wesley, 1991.

[9] Helmer G. S K Wang “Host based IDS” lowa state

university International conference on applications”

Maths (Jul. 2002) 4 97 – 501.

[10] Erich Gamma, Richord helm, Ralph Johnson .Design

patterns: Elements of reusable object oriented software,

Addison Wesley – 1995.

[11] Paul Dokas ,Vipin kumar “network Intrusion

Detection",200 UNION STREET SE 192,CSE building

UOM,MINNEPOLIS, MN 55455 U S

[12] Dirk Rachele junit 3.8 documented using collaborations.

In S E notes, Vol. 33, No. 2, Art. 5, Mar. 2008, ACM

2008.

[13] SNORT Intrusion Detection System.www.snort.org.

[14] TCP TRACE software tool,www.tcptrace.org.

[15] P C Mahalanobis, on tests and measures of groups

Divergence ,IJNS of Bengal,1930.

[16] J Mc Hugh,1998 Lincoln laboratory IDS evaluation (A

critique),proceedings of the recent advances in intrusions

detection system 145 – 161, France 2000.

[17] Li X: Parallel algorithms for hierarchical clustering and

clustering validity. IEEE trans, pattern analysis and

machine intelligence,12,1088 – 1092(1990).

[18] R K Cunnigham ,R P Lippman , results of the 1999

darpa off line IDS ,RAID- 99 IN 1999.

[19] Iftikhar Ahmad, Azween B Abdulah and Abdullah S

Alghamdi, “Towards the Designing of a Robust Intrusion

Detection System through an Optimized Advancement of

Neural Networks”, Advances in Computer Science and

Information Technology, Lecture Notes in Computer

Science, Volume 6059, 2010, 597-602, DOI:

10.1007/978-3-642-13577-4_53.

[20] Byung-kwan Lee, Seung-hae Yang, Dong-Hyuck Kwon

and Dai-Youn Kim, “PGNIDS”, Computational Science

and Its Applications - ICCSA 2006, LNCS, 2006, Volume

3982 / 2006, pp. 38-47, DOI: 10.1007/11751595_5

[21] J., Muna. M. and Mehrotra M., "Intrusion Detection

System : A design perspective", 2rd Int.Conf. On Data

Management, IMT Ghaziabad, India. 2009.

[22] M. Panda, and M. Patra, “Building an efficient network

intrusion detection model using Self Organizing Maps",

proceeding of world academy of science, engineering and

technology,Vol. 38. 2009.

[23] M. Khattab Ali, W. Venus, and M. Suleiman Al Rababaa,

"The Affect of Fuzzification on Neural Networks Intrusion

Detection System", IEEE computer society.2009.

[24] B. Mykerjee, L. Heberlein T., and K. Levitt N., "Network

Intrusion Detection", IEEE Networks, Vol. 8, No.3,

PP.14-26. 1994.

[25] W. Jung K., "Integration Artificial Immune Algorithms

for Intrusion Detection", dissertation in University of

London, pp. 1-5.2002.

[26] Muna Mhammad T. Jawhar & Monica Mehrotra, “Design

Network Intrusion Detection System using hybrid Fuzzy-

Neural Network International” Journal of Computer

Science and Security, Int. J. of Comp. Sci. and Security,

Volume (4), Issue (3) pp. 285-294, 2010.

[27] Vokorokos, L. Balaz, A., “Host-based intrusion detection

system”, Technical University of KoÂice, 14th Int. Conf.

on Intelligent Engg. Systems (INES-2010), Las Palmas,

Spain, pp. 43 – 47, 5-7 May 2010.

[28] http://www.windowsecurity.com/articles/What_You_Nee

d_to_Know_About_Intrusion_Detection_Systems.html

[29] Robert J. Shimonski, “Security+ Study Guide and DVD

Training System”, Published: Nov 18, 2002, Updated: Jul

23, 2004.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.12, October 2010

29

[30] Srilatha Chebrolu, Ajith Abraham, Johnson P. Thomas,

ature deduction and ensemble design of intrusion

detection systems”, Journal of Computers & Security,

Volume 24, Issue 4, pp. 295-30, June 2005.

Mr. Rajashekar Patil, currently, is working as Assistant

Professor in the Department of Information Sciences & Engg.

Dept., Atria Institute of Technology, Bangalore, Karnataka,

India. He is also a research scholar in the prestigious Dr. MGR

Deemed University & simultaneously doing his research work &

progressing towards his Ph.D. in the computer science field. He

has also published a number of research papers in various

national & international journals & conferences. He has

conducted a number of seminars, workshops, conferences,

summer courses in various fields of computer science &

engineering. His research interests are Data Mining, Computer

Networks, Parallel computing, Java based programming,

Intrusion detection systems, etc.

