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ABSTRACT 

We introduce in this paper the dynamics for Ishikawa iteration 

procedure. The geometry of Relative Superior Mandelbrot sets 

are explored for Ishikawa iterates. 
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1. INTRODUCTION 

Complex graphics of nonlinear dynamical systems have been a 

subject of intense research nowadays. These graphics are 

generally obtained by “coloring” the escape speed of the seed 

points within the certain regions of the complex plane that give 

rise to the unbounded orbits. The complexity of the 

mathematical objects such as Julia sets and Mandelbrot sets, in 

spite of their deceitful simplicity of equations that generate them 

is truly overwhelming.  

Perhaps, the Mandelbrot set is the most popular object in the 

fractal theory. It is believed to be the most beautiful object not 

only in the real but also in the complex plane. This object was 

given by Benoit B. Mandelbrot in 1979 and has been the subject 

of intense research right from its advent. Mandelbrot set and its 

various extensions and variants have been extensively studied 

using Picard’s iterations.  

Recently M. Rani and V. Kumar[21] introduced the superior 

Mandelbrot sets using Mann iteration procedure. We introduce 

in this paper a new class of Mandelbrot sets named as Relative 

Superior Mandelbrot sets using Ishikawa iterations. Our study 

shows that Relative Superior Mandelbrot sets are exclusively 

elite and effectively different from other Mandelbrot sets 

existing in the present literature. 

 

2. PRELIMINARIES 

 Let{ : 1,2,3,4.........}nz n , denoted by { }nz  be a 

sequence of complex numbers. Then, we say n
n
Lim z  if 

for given M > 0, there exists N > 0, such that for all n > N, we 

must have | |nz M . Thus all the values of nz ,  lies outside a 

circle of radius M, for sufficiently large values of n.  

 Let 
1 2 1 0

0 1 2 1 0( ) ............... ; 0n n n

n nQ z a z a z a z a z a z a  

be a polynomial of degree n, where 2n .  The coefficients are 

allowed to be complex numbers. In other words, it follows 

that
2( )cQ z z c . 

 

Definition 2.1: Let X be a nonempty set and :f X X . For 

any point 0x X , the Picard’s orbit is defined as the set of 

iterates of a point 0x , that is; 

0 1( , ) { ; ( ), 1,2,3.....}n n nO f x x x f x n . 

                

 In functional dynamics, we have existence of two 

different types of points. Points that leave the interval after a 

finite number are in stable set of infinity. Points that never leave 

the interval after any number of iterations have bounded orbits. 

So, an orbit is bounded if there exists a positive real number, 

such that the modulus of every point in the orbit is less than this 

number. The collection of points that are bounded, i.e. there 

exists M, such that | ( ) |nQ z M , for all n, is called as a 

prisoner set while the collection of points that are in the stable 

set of infinity is called the  escape set. Hence, the boundary of 

the prisoner set is simultaneously the boundary of escape set and 

that is Mandelbrot set for Q. 

 

Definition 2.2: The Mandelbrot set M for the quadratic 
2( )cQ z z c  is defined as the collection of all c C for 

which the orbit of the point 0 is bounded, that is 

                        

{ :{ (0)}; 0,1, 2,...... }n

cM c C Q n is bounded  

 

An  equivalent formulation is 

{ :{ (0) }n

cM c C Q does not tend to as n  

We choose the initial point 0, as 0 is the only critical point 

of cQ . 
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3. ISHIKAWA ITERATION FOR RELATIVE 

SUPERIOR MANDELBROT SETS  
Let X be a subset of real or complex numbers 

and :f X X . For 0x X , we construct the 

sequences{ }nx and { }ny  in X in the following manner: 

0 0 0 0 0( ) (1 )y s f x s x  

1 1 1 1 1( ) (1 )y s f x s x  ... 

( ) (1 )n n n n ny s f x s x  

where 0 1ns and 
ns is convergent to non zero number 

and  

1 0 0 0 0( ) (1 )x s f y s x  

2 1 1 1 1( ) (1 )x s f y s x ... 

1 1 1 1( ) (1 )n n n n nx s f y s x  

where  0 1ns and 
ns is convergent to non zero 

number[12]. 

Definition 3.1: The sequences 
nx and 

ny constructed 

above is called Ishikawa sequences of iterations or relative 

superior sequences of iterates. We denote it 

by 0( , , , )n nRSO x s s t . 

Notice that 0( , , , )n nRSO x s s t  with ns =1 is 0( , , )nRSO x s t            

i.e. Mann’s orbit and if we place 1n ns s  then 

0( , , , )n nRSO x s s t  reduces to 0( , )O x t . 

             We remark that Ishikawa orbit 

0( , , , )n nRSO x s s t with 1/ 2ns  is Relative Superior 

orbit. 

Now we define Mandelbrot sets for function with respect to 

Ishikawa iterates. We call them as Relative Superior Mandelbrot 

sets  

Definition 3.2: Relative Superior Mandelbrot set RSM for the 

function of the form ( ) n

cQ z z c , where n = 1, 2, 3, 4… is 

defined as the collection of c C for which the orbit of 0 is 

bounded i.e. 

       { : (0) : 0,1, 2...}k

cRSM c C Q k is bounded. 

We now define escape criterions for these sets. 

 

3.1 Relative Superior Escape Criterions for Quadratics: 

 The following theorem gives us an escape Criterions 

for function 
2

cQ z c in respect to Ishikawa iteration 

procedure. 

 

Theorem 3.1: Let’s assume that | | | | 2 /z c s ; 

| | | | 2 /z c s , where 0 1s , 0 1s and c is a 

complex number. 

Define 1 (1 ) ( )cz s z sQ z  

            

1 1(1 ) ( )n n c nz s z sQ z


 

Where ( )cQ z can be a quadratic, cubic or biquadratic 

polynomial in terms of  s and n = 2,3,4,……., 

 then | |nz , as n . 

Proof: Let’s take     | ( ) | | (1 ) ( ) |c cQ z s z s Q z  ,  

where 
2( )cQ z z c  

2

2

| (1 ) |

| (1 ) | | |

s z s z s c

s z s z s c
 

| | (| (1 ) |) | |z s z s s z      ( | | | |z c ) 

| | (| | 1 ) | |z s z s s z  

| | (| | 1)z s z ………………………..... (1) 

Now since,   1(1 ) ( )n n cz s z sQ z  

So,    1| | | (1 ) ( ) |cz s z sQ z              on substituting (1) 

                 
| (1 ) | | (| | 1) |

| | | . | | | ||

s z s z s z

z sz s z s z s z
 

                 (| | | |) ( | | . | | | |)z sz s z s z s z  

                 
| | | | | | . | | | |

| | | | . | |

z sz s z s z s z

z s z s z
 

                 | |(1 | |)z ss z , since | | 2s z ,  

so, | | 2ss z , there exists 0 , such that 

| | 1 1ss z  

Consequently   1| | (1 ) | |z z  

                        
| | (1 ) | |n

nz z


 

Thus, the Ishikawa orbit of z, under the quadratic function tends 

to infinity. This completes the proof.  

 

Corollary 3.1: Suppose that | | 2 /c s ;| | 2 /c s .Then, 

the Relative Superior orbit of Ishikawa ( ,0, , )cRSO Q s s     

escapes to infinity.  

In the proof of the theorem, we used the facts that 

| | | |z c and | | 2 /z s as well as | | 2 /z s  . Hence, the 

following corollary is the refinement of the escape criterion 

discussed in the above theorem. 

 

Corollary 3.2(Escape Criterion): Suppose that 

| | max{| |,2 / ,2 / }z c s s , then | | (1 ) | |n

nz z and 

| |nz as n . 
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Corollary 3.3: Suppose that | | max{| |, 2 / , 2 / }kz c s s , 

for some 0k .Then, 1| | (1 ) | |n

k kz z  and 

| |nz as n . 

This corollary gives us an algorithm for computing the Relative 

Superior Mandelbrot sets of cQ , for any c. Given any 

point | | | |z c , we have computed the Relative superior orbit 

of z. If for some n, | |nz lies outside the circle of 

radius max{| |,2 / ,2 / }c s s , we guarantee that the orbit 

escapes. Hence, z is not in the Relative Superior Mandelbrot 

sets. On the other hand, if | |nz never exceeds this bound, then 

by definition of the Relative Superior Mandelbrot sets, denoted 

by RSM . We can make extensive use of this algorithm in the 

next section. 

 

3.2 Relative Superior Escape Criterion for Cubic 

Polynomials: 

We prove the following theorem for the function 
3

, ( )a bQ z z az b with respect to the Ishikawa iteration 

. 

Theorem 3.2: Suppose
1/2| | | | (| | 2 / )z b a s , 

1/2| | | | (| | 2 / )z b a s exists, where 0 1;0 1s s  

and a and b are in complex plane .Define 

1 ,(1 ) ( )a bz s z sQ z  

   

1 , 1(1 ) ( )n n a b nz s z sQ z ,           n =2, 3…… 

where , ( )a bQ z is the function of s , then | |nz as 

n . 

 Proof: Let’s take    , ,| ( ) | | (1 ) ( ) |a b a bQ z s z s Q z  

                                                
3

3

| (1 ) ( ) |

| |

s z s z az b

s z s az z s z bs
 

3| | | |s z s az z s z bs  

2| | (| 1 |) | |z s z s a s s z               | | | |z b  

2| | (| | |1 |) | |z s z as s s z  

2| |{| | 1 }z s z as s s  

2| |{ | | 1}z s z a  

2| |{| | 1/ }s z z a s  

2

2

| |{| | | | 1/ }

| |{| | (| | 1/ )}

s z z a s

s z z a s
 

Now since,   1 ,| | | (1 ) ( ) |a bz s z sQ z  

 

2

2

2

2

2

2

2

2

| (1 ) . | | .{ (| |) 1}|

| | | . (| |) | ||

| | | | { | | . (| |) | |}

| | | | . | | (| |) | |

| |{1 . | |}

| | . (1/ . | |)

| | . (1/ . | | | |)

| | . {| |

s z s z s z a

z sz s z s z a s z

z s z s z s z a s z

z s z s s z z a s z

z s s z a

z s s s s z a

z s s s s z a

z s s z (| | 1/ . )}a s s

 

 Since 
1/2| | (| | 2 / )z a s and

1/2| | (| | 2 / )z a s exists 

and so 
1/2| | (| | 2 / )z a ss follows .Therefore, 

2 1/2| | (| | 1/ ) 1/z a ss ss  such that 
2{| | (| | 1/ )} 1ss z a ss . 

Hence, there exists 1 , such that 1| | | |z z .  

Repeating this argument n time, we get | | | |n

nz z . 

Therefore, the Relative superior orbit of z, under the cubic 

polynomial , ( )a bQ z , tends to infinity. This completes the proof. 

 

Corollary 3.4:  Suppose that
1/2| | (| | 2 / )b a s and  

1/2| | (| | 2 / )b a s  exists. Then, the Relative superior  

orbit ,( ,0, , )a bRSO Q s s  escapes to infinity. 

 

Corollary 3.5(Escape Criterion): Suppose 
1/2 1/2| | max{| |, (| | 2 / ) , (| | 2 / ) }z b a s a s  

then | |nz   as n . Corollary 3.5 gives an escape 

criterion for cubic polynomials. 

 

Corollary 3.6: Assume that 
1/2 1/2| | max{| |, (| | 2 / ) , (| | 2 / ) }kz b a s a s for some 

0k .Then 1| | | |k kz z and | |nz , as n .  

From Corollary 3.6, we find an algorithm for computing the 

Relative Superior Mandelbrot sets of , ( )a bQ z , for any a and b. 

 

3.3 A General Escape Criterion: 

                        We will obtain a general escape criterion for 

polynomials of the form ( ) n

cG z z c  .      

Theorem 3.3: For general function ( ) n

cG z z c , n = 1, 2, 

3, 4 …where 0 1, 0 1s s  and c is the complex plane. 

Define 1 (1 ) ( )cz s z sG z  

            

1 1(1 ) ( )n n c nz s z sG z
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Thus, the general escape criterion is 
1 1

1 1max{| |, (2 / ) ,(2 / ) }n nc s s . 

Proof: We shall prove this theorem by induction: 

For n = 1, we get ( )cG z z c . So, the escape criterion is |c|, 

which is obvious, i.e. | | max{| |,0,0}z c  

For n = 2, we get
2( )cG z z c . So, the escape criterion is 

| | max{| |,2 / ,2 / }z c s s  (Theorem 3.1) 

For n = 3, we get
3( )cG z z c . So, the result follows from 

Theorem 3.2 with a = 0 and b = c, such that the escape criterion 

is
1/2 1/2| | max{| |, (2 / ) , (2 / ) }z c s s . Hence, the 

theorem is true for n = 1, 2, 3, 4… 

           Now, suppose that theorem is true for any n. 

Let
1( ) n

cG z z c  and
1/ 1| | | | (2 / ) nz c s  as well 

as
1/ 1| | | | (2 / ) nz c s exists. Then, 

| ( ) | | (1 ) ( ) |n cG z s z s G z , where 
1( ) n

cG z z c  

1| ( ) |nz s z s z c  

1| | | |ns z s z z s c  

| | ( | | 1| | |nz s z s s z                  (  | | | |z c ) 

| |{( | | | | |1|} | |nz s z s s z  

| | ( | | 1 )nz s z s s  

| | ( | | 1)nz s z  

Now,  1| | | (1 ) ( ) |nz s z sG z  

| (1 ) | | ( | | 1) |ns z s z s z  

| | | . | | | ||nz sz s z s z s z  

1(| | | |) ( | | | |)nz s z ss z s z  

1( | | | |)nss z z  

1| | | |nss z z  

| | ( | | 1)nz ss z  

Since
1/ 1/| | (2 / ) ; | | (2 / )n nz s z s and

1/| | (2 / ) nz ss

.So
1/| | (2 / ) nz ss , therefore ( | | 1) 1nss z  

 Hence, for some 0 , we have ( | | 1) 1nss z . 

Thus,            1| | (1 ) | |z z  

                     
| | (1 ) | |n

nz z


 

Therefore, the Ishikawa orbit of z under the iteration of 
1nz c tends to infinity. 

Hence
1/ 1/| | max{| |, (2 / ) , (2 / ) }n nz c s s  is the escape 

criterion. This proves the theorem. 

 

Corollary 3.7:  Suppose that
1/ 1| | (2 / ) nc s and 

1/ 1| | (2 / ) nc s  exists. Then, the Relative Superior orbit 

( ,0, , )cRSO G s s  escapes to infinity. 

 

Corollary3.8:   Assume 

that
1/ 1 1/ 1| | max{| |, (2 / ) , (2 / ) }k k

kz c s s for 

some 0k . Then 1| | | |k kz z  

and | |nz , as n . This corollary gives an algorithm 

for computing the Relative Superior Mandelbrot sets for the 

functions of the form ( ) n

cG z z c , n = 1, 2, 3, 4… 

 

4. GENERATION OF RELATIVE 

SUPERIOR MANDELBROT SETS: 
           We generate Relative Superior Mandelbrot sets. We 

present here some Relative Superior Mandelbrot sets for 

quadratic, cubic and biquadratic function.  

4.1 Relative Superior Mandelbrot Sets for Quadratic 

function: 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1    

 
  Figure 2: Relative Superior Mandelbrot Set for s=1, s'=0.3 

 

Figure 3: Relative Superior Mandelbrot Set for s=0.3, s'=1            
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Figure 4: Relative Superior Mandelbrot Set for s=0.1,s'=0.4 

 
 

Figure 5: Relative Superior Mandelbrot Set for s=0.4, s'=0.1 

 
 

   4.2 Relative Superior Mandelbrot Sets for Cubic function: 

 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1  

 
Figure 2: Relative Superior Mandelbrot Set for s=1, s'=0.5 

 

Figure 3: Relative Superior Mandelbrot Set for s=0.3 s'=1 

 
 

Figure 4: Relative Superior Mandelbrot Set s=0.1, s'=0.4 

 
Figure 5: Relative Superior Mandelbrot Set for s=0.4, s'=0.1 

 
 

4.3 Relative Superior Mandelbrot Sets for Bi-quadratic 

function: 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1       
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Figure 2: Relative Superior Mandelbrot Set for s=1, s'=0.3 

 
 

Figure 3: Relative Superior Mandelbrot Set for s=0.5, s'=1 

 
 

Figure 4: Relative Superior Mandelbrot Set for s=0.1, s'=0.4   

 
 

Figure 5: Relative Superior Mandelbrot Set for s=0.3, s'=0.4 

 
                                                  

4.4 Generalization of Relative Superior Mandelbrot Set 

 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1,n=19       

 
 

Figure 2: Relative Superior Mandelbrot Set for s=0.1, s'=0.4, 

n=19 

 
 

Figure 3: Relative Superior Mandelbrot Set for s=0.4, s'=0.1, 

n=19 

 
 

Figure 4: Relative Superior Mandelbrot Set for s=0.1, s'=0.4, 

n=52   
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Figure 5: Relative Superior Mandelbrot Set for s=0.4, s'=0.1, 

n=52 

 
 

Figure 6: Relative Superior Mandelbrot Set for s=0.3, s'=0.5, 

n=52 
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