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ABSTRACT 

We investigate in this paper the dynamics and the method of 

generating fractal images for Ishikawa iteration procedure. The 

geometry of relative superior Julia sets are explored for Ishikawa 

iteration. 
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1. INTRODUCTION 
Many authors have presented the papers on several “orbit traps” 

rendering methods to create the artistic fractal images. An orbit 

trap is a bounded area in complex plane into which an orbiting 

point may fall. Motivated by this idea of “orbit traps”, this paper 

introduces the different types of orbit traps for Ishikawa iteration 

procedure. It is well known that Julia sets of 
2

1n nz az c  

are connected and bounded for a and c. So, we consider them as 

orbit traps and explore their relative fractal images.   

2. PRELIMINARIES 

 Let{ : 1,2,3,4.........}nz n , denoted by { }nz  be a 

sequence of complex numbers. Then, we say 
n

n
Lim z  if for 

given M > 0, there exists N > 0, such that for all n > N, we must 

have | |nz M . Thus all the values of nz ,  lies outside a circle 

of radius M, for sufficiently large values of n.  

 Let 
1 2 1 0

0 1 2 1 0( ) ............... ; 0n n n

n nQ z a z a z a z a z a z a be 

a polynomial of degree n, where 2n .  The coefficients are 

allowed to be complex numbers. In other words, it follows 

that
2( )cQ z z c . 

Definition 2.1: Let X be a nonempty set and :f X X . For 

any point 0x X , the Picard’s orbit is defined as the set of 

iterates of a point 0x , that is; 

0 1( , ) { ; ( ), 1,2,3.....}n n nO f x x x f x n . 

               In functional dynamics, we have existence of two 

different types of points. Points that leave the interval after a 

finite number are in stable set of infinity. Points that never leave 

the interval after any number of iterations have bounded orbits. 

So, an orbit is bounded if there exists a positive real number, 

such that the modulus of every point in the orbit is less than this 

number.  The collection of points that are bounded, i.e. there 

exists M, such that | ( ) |nQ z M , for all n, is called as a 

prisoner set while the collection of points that are in the stable 

set of infinity is called the  escape set. Hence, the boundary of 

the prisoner set is simultaneously the boundary of escape set and 

that is Julia set for Q. 

Definition 2.2: The set of points K whose orbits are bounded 

under the iteration function of ( )cQ z is called the Julia set. We 

choose the initial point 0, as 0 is the only critical point 

of ( )cQ z . 

 

3. ISHIKAWA ITERATION FOR 

RELATIVE SUPERIOR JULIA SETS 
Let X be a subset of real or complex numbers 

and :f X X . For 0x X , we construct the 

sequences{ }nx and { }ny  in X in the following manner: 

0 0 0 0 0( ) (1 )y s f x s x  

1 1 1 1 1( ) (1 )y s f x s x  ……. 

( ) (1 )n n n n ny s f x s x  

where 0 1ns and 
ns is convergent to non zero number 

and 

1 0 0 0 0( ) (1 )x s f y s x  

2 1 1 1 1( ) (1 )x s f y s x ……. 

1 1 1 1( ) (1 )n n n n nx s f y s x  

where  0 1ns and 
ns is convergent to non zero 

number[12]. 

Definition 3.1: The sequences 
nx and 

ny constructed 

above is called Ishikawa sequences of iteration or relative 

superior sequences of iterates. We denote it 

by 0( , , , )n nRSO x s s t .  

 Notice that 0( , , , )n nRSO x s s t  with ns =1 is 0( , , )nRSO x s t   
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i.e. Mann’s orbit and if we place 1n ns s  then 

0( , , , )n nRSO x s s t  reduces to 0( , )O x t .We remark that 

Ishikawa orbit 0( , , , )n nRSO x s s t with 1/ 2ns  is Relative 

superior orbit. Now we define Julia set for function with respect 

to Ishikawa iterates. We call them as Relative Superior Julia 

sets. 

Definition 3.2: The set of points SK whose orbits are bounded 

under Relative superior iteration of function Q(z) is called 

Relative Superior Julia sets. Relative Superior Julia set of Q is 

boundary of Julia set RSK. 

We now define escape criterions for these sets. 

 

3.1 Relative Superior Escape Criterions for Quadratics 

         The following theorem gives us an escape Criterions for 

function 
2

cQ z c in respect to Ishikawa iteration 

procedure. 

Theorem 3.1: Let’s assume that | | | | 2 /z c s ; 

| | | | 2 /z c s , where 0 1s , 0 1s and c is a 

complex number. Define 1 (1 ) ( )cz s z sQ z  

                                                 

1 1(1 ) ( )n n c nz s z sQ z


 

where ( )cQ z can be a quadratic, cubic or biquadratic 

polynomial in terms of  s and n = 2,3,4,... then  | |nz , as 

n . 

Proof: Let’s take     | ( ) | | (1 ) ( ) |c cQ z s z s Q z  ,   

                                                                 where 
2( )cQ z z c  

       

2

2

| (1 ) |

| (1 ) | | |

s z s z s c

s z s z s c
 

                                                                                           

       | | (| (1 ) |) | |z s z s s z      ( | | | |z c ) 

                                                                   

      | | (| | 1 ) | |z s z s s z  

      | | (| | 1)z s z                                                       .... (1) 

Now since,                 1(1 ) ( )n n cz s z sQ z  

So,    1| | | (1 ) ( ) |cz s z sQ z              on substituting (1) 

                 | (1 ) | | (| | 1) |s z s z s z  

                 | | | . | | | ||z sz s z s z s z  

                 (| | | |) ( | | . | | | |)z sz s z s z s z  

                 | | | | | | . | | | |z sz s z s z s z  

| |(1 | |)z ss z , since | | 2s z , so, | | 2ss z , there 

exists 0 , such that | | 1 1ss z  

Consequently               1| | (1 ) | |z z  

                                   
| | (1 ) | |n

nz z


 

Thus, the Ishikawa orbit of z, under the quadratic function tends 

to infinity. This completes the proof.  

Corollary 3.1: Suppose that | | 2 /c s ;| | 2 /c s .Then, 

the relative superior orbit of Ishikawa ( ,0, , )cRSO Q s s     

escapes to infinity.  

In the proof of the theorem, we used the facts that 

| | | |z c and | | 2 /z s as well as | | 2 /z s  . Hence, the 

following corollary is the refinement of the escape criterion 

discussed in the above theorem. 

Corollary 3.2(Escape Criterion): Suppose 

that | | max{| |,2 / ,2 / }z c s s , then | | (1 ) | |n

nz z  

and | |nz as n . 

Corollary 3.3: Suppose that | | max{| |, 2 / , 2 / }kz c s s , 

for some 0k .Then, 1| | (1 ) | |n

k kz z  and 

| |nz as n . 

This corollary gives us an algorithm for computing the Relative 

Superior Julia sets of cQ , for any c. Given any point | | | |z c , 

we have computed the superior orbit of z. If for some n, 

| |nz lies outside the circle of radius max{| |,2 / ,2 / }c s s , 

we guarantee that the orbit escapes. Hence, z is not in the 

Relative Superior Julia sets. On the other hand, if | |nz never 

exceeds this bound, then by definition of the Relative Superior 

Julia sets, denoted by cRSK . We can make extensive use of this 

algorithm in the next section. 

3.2 Relative Superior Escape Criterion for Cubic 

Polynomials: 

First, we prove the following theorem for the function 
3

, ( )a bQ z z az b with respect to the Ishikawa iteration 

procedure. 

Theorem 3.2: Suppose
1/2| | | | (| | 2 / )z b a s , 

1/2| | | | (| | 2 / )z b a s exists, where 0 1;0 1s s  

and a and b are in complex plane .Define 

1 ,(1 ) ( )a bz s z sQ z  

               

            1 , 1(1 ) ( )n n a b nz s z sQ z , n =2, 3…… 

where , ( )a bQ z is the function of s , then | |nz as 

n . 

Proof: Let’s take    , ,| ( ) | | (1 ) ( ) |a b a bQ z s z s Q z  

                                      

 
3| (1 ) ( ) |s z s z az b  

3| |s z s az z s z bs                                                       
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3| | | |s z s az z s z bs                                                        

 
2| | (| 1 |) | |z s z s a s s z              | | | |z b                                                       

2

2

| | ( | | |1 |) | |

| |{| | 1 }

z s z as s s z

z s z as s s
 

2| |{ | | 1}z s z a                                                       

2| | {| | 1/ }s z z a s                           

2

2

| |{| | | | 1/ }

| |{| | (| | 1/ )}

s z z a s

s z z a s
 

Now since  1 ,| | | (1 ) ( ) |a bz s z sQ z                     

2

2

2

2

2

2

2

2

| (1 ) . | | .{ (| |) 1} |

| | | . (| |) | ||

| | | | { | | . (| |) | |}

| | | | . | | (| |) | |

| |{1 . | |}

| | . (1/ . | |)

| | . (1/ . | | | |)

| | . {| |

s z s z s z a

z sz s z s z a s z

z s z s z s z a s z

z s z s s z z a s z

z s s z a

z s s s s z a

z s s s s z a

z s s z (| | 1 / . )}a s s

 

 Since 
1/2| | (| | 2 / )z a s and

1/2| | (| | 2 / )z a s exists 

and so 
1/2| | (| | 2 / )z a ss follows .Therefore, 

2 1/2| | (| | 1/ ) 1/z a ss ss such 

that
2{| | (| | 1/ )} 1ss z a ss . Hence, there 

exists 1 , such that 1| | | |z z .  Repeating this 

argument n time, we get | | | |n

nz z . Therefore, the 

Relative Superior orbit of z, under the cubic 

polynomial , ( )a bQ z , tends to infinity. This completes the proof. 

Corollary 3.4:  Suppose that
1/2| | (| | 2 / )b a s and 

1/2| | (| | 2 / )b a s  exists. Then, the Relative Superior 

orbit ,( ,0, , )a bRSO Q s s  escapes to infinity. 

Corollary 3.5(Escape Criterion):  

Suppose 
1/2 1/2| | max{| |, (| | 2 / ) , (| | 2 / ) }z b a s a s  

then | |nz   as n . Corollary 3.5 gives an escape 

criterion for cubic polynomials. 

Corollary 3.6:  

Assume that 
1/2 1/2| | max{| |, (| | 2 / ) , (| | 2 / ) }kz b a s a s  

for some 0k .Then 1| | | |k kz z and | |nz , 

as n .From Corollary 3.6, we find an algorithm for 

computing the superior Julia sets of , ( )a bQ z , for any a and b. 

3.3 A General Escape Criterion: 

           We will obtain a general escape criterion for polynomials 

of the form ( ) n

cG z z c  .      

Theorem 3.3: For general function ( ) n

cG z z c , n = 1, 2, 

3, 4 …where 0 1, 0 1s s  and c is the complex plane. 

Define 1 (1 ) ( )cz s z sG z  

             

1 1(1 ) ( )n n c nz s z sG z


 

Thus, the general escape criterion is 
1 1

1 1max{| |, (2 / ) ,(2 / ) }n nc s s . 

Proof: We shall prove this theorem by induction: 

For n = 1, we get ( )cG z z c . So, the escape criterion is |c|, 

which is obvious, i.e. | | max{| |,0,0}z c  

For n = 2, we get
2( )cG z z c . So, the escape criterion is 

| | max{| |,2 / ,2 / }z c s s  (See Theorem 3.1) 

For n = 3, we get
3( )cG z z c . So, the result follows from 

Theorem 3.2 with a = 0 and b = c, such that the escape criterion 

is
1/2 1/2| | max{| |, (2 / ) , (2 / ) }z c s s . Hence, the 

theorem is true for  n = 1, 2, 3, 4… 

            Now, suppose that theorem is true for any n. 

Let
1( ) n

cG z z c  and
1/ 1| | | | (2 / ) nz c s  as well 

as
1/ 1| | | | (2 / ) nz c s  exists. Then, 

| ( ) | | (1 ) ( ) |n cG z s z s G z   where 
1( ) n

cG z z c  

                  

1

1

| ( ) |

| | | |

n

n

z s z s z c

s z s z z s c
 

| | ( | | 1| | |nz s z s s z                  (  | | | |z c ) 

| |{( | | | | |1 |} | |

| | ( | | 1 )

| | ( | | 1)

n

n

n

z s z s s z

z s z s s

z s z

 

Now,   1| | | (1 ) ( ) |nz s z sG z  

| (1 ) | | ( | | 1) |ns z s z s z  

 | | | . | | | ||nz sz s z s z s z  

1(| | | |) ( | | | |)nz s z ss z s z
1( | | | |)nss z z  

1| | | |nss z z                                               

| | ( | | 1)nz ss z  
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Since
1/ 1/| | (2 / ) ; | | (2 / )n nz s z s and

1/| | (2 / ) nz ss

.So
1/| | (2 / ) nz ss , therefore ( | | 1) 1nss z  

 Hence, for some 0 , we have ( | | 1) 1nss z . 

Thus,      1| | (1 ) | |z z  

               
| | (1 ) | |n

nz z


 

Therefore, the Ishikawa orbit of z under the iteration of 
1nz c tends to infinity. Hence 

1/ 1/| | max{| |, (2 / ) , (2 / ) }n nz c s s  is the escape criterion. 

This proves the theorem. 

Corollary 3.7:  Suppose that
1/ 1| | (2 / ) nc s and 

1/ 1| | (2 / ) nc s  exists. Then, the Relative Superior orbit 

( ,0, , )cRSO G s s  escapes to infinity. 

Corollary3.8:    

Assume that
1/ 1 1/ 1| | max{| |, (2 / ) , (2 / ) }k k

kz c s s for 

some 0k . Then 1| | | |k kz z and | |nz , as n . 

This corollary gives an algorithm for computing the Relative 

Superior Julia sets for the functions of the form ( ) n

cG z z c , n 

= 1, 2, 3, 4… 

 

4. FIXED POINTS  

4.1 Fixed points of quadratic polynomial  

Table 1: Orbit of F(z) for (z0=-1.077560973 - 0.823761912i ) 

at s=0.1 and s’=0.4 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 1.3564 16 1.716 

2 1.0463 17 1.7164 

3 0.94717 18 1.7166 

4 1.0745 19 1.7167 

5 1.3067 20 1.7167 

6 1.5394 21 1.7167 

7 1.7178 22 1.7167 

8 1.8123 23 1.7167 

9 1.8205 24 1.7167 

10 1.7819 25 1.7167 

11 1.7454 26 1.7167 

12 1.7258 27 1.7167 

13 1.718 28 1.7167 

14 1.7158 29 1.7167 

15 1.7156 30 1.7167 

 

Here we observe that the value converges to a fixed point after 

19 iterations 

 

Figure  1.  Orbit of F(z) for (z0=-1.077560973 -0.823761912i ) 

at s=0.1 and s’=0.4  

 

Table 2: Orbit of F(z) for (z0= -1.71 -0.24i) at s=0.3 and s’=0.4 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 1.7268 16 0.97304 

2 1.3866 17 0.97304 

3 1.2095 18 0.97304 

4 1.132 19 0.97304 

5 1.0602 20 0.97304 

6 1.0051 21 0.97304 

7 0.98257 22 0.97304 

8 0.97564 23 0.97304 

9 0.97371 24 0.97304 

10 0.9732 25 0.97304 

11 0.97308 26 0.97304 

12 0.97305 27 0.97304 

13 0.97304 28 0.97304 

14 0.97304 29 0.97304 

15 0.97304 30 0.97304 

Here we observe that the value converges to a fixed point after 

13 iterations 

Figure 2.  Orbit of F(z) for (z0= -1.71 -0.24i) at s=0.3 and 

s’=0.4 
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Table 3: Orbit of F(z) for (z0= -4.85 - 0.86i ) at s=0.4 and s’=0.1 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 4.9257 16 0.69181 

2 1.6058 17 0.69174 

3 0.30906 18 0.69164 

4 0.48244 19 0.69161 

5 0.71099 20 0.69163 

6 0.78288 21 0.69165 

7 0.73382 22 0.69165 

8 0.68229 23 0.69165 

9 0.67418 24 0.69165 

10 0.68627 25 0.69165 

11 0.69467 26 0.69165 

12 0.69487 27 0.69165 

13 0.69224 28 0.69165 

14 0.6909 29 0.69165 

15 0.69109 30 0.69165 

Here the value converges to a fixed point after 21 iterations 

Figure 3.  Orbit of F(z) for (z0= -4.85 - 0.86i ) at s=0.4 and 

s’=0.1 

 

4.2  Fixed points of Cubic  polynomial  

Table 1: Orbit of F(z) for (z0= -0.082+0.056i) at s=0.6 and 

s’=0.4 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.099298 16 0.4428 

2 0.43343 17 0.4428 

3 0.44234 18 0.4428 

4 0.44277 19 0.4428 

5 0.44279 20 0.4428 

6 0.4428 21 0.4428 

7 0.4428 22 0.4428 

8 0.4428 23 0.4428 

9 0.4428 24 0.4428 

10 0.4428 25 0.4428 

11 0.4428 26 0.4428 

12 0.4428 27 0.4428 

13 0.4428 28 0.4428 

14 0.4428 29 0.4428 

15 0.4428 30 0.4428 

Here the value converges to a fixed point after 06 iterations 

Figure  1 Orbit of F(z) for (z0= -0.082+0.056i) at s=0.6 and 

s’=0.4 

 

Table 2: Orbit of F(z) for (z0=-0.08+0.057i) at s=0.8 and s’=0.2 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

10 0.26107 26 0.26716 

11 0.27154 27 0.26721 

12 0.26406 28 0.26717 

13 0.26942 29 0.2672 

14 0.26558 30 0.26718 

15 0.26833 31 0.26719 

16 0.26637 32 0.26718 

17 0.26777 33 0.26719 

18 0.26677 34 0.26719 

19 0.26749 35 0.26719 

20 0.26697 36 0.26719 

21 0.26734 37 0.26719 

22 0.26708 38 0.26719 

24 0.26727 39 0.26719 

25 0.26713 40 0.26719 

 

We skipped 09 iterations and after 33 iterations value 

converges 

Figure 2.  Orbit of F(z) for (z0=-0.08+0.057i)  at s=0.8 and 

s’=0.2 
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Table 3: Orbit of F(z) for (z0= 0.14+2.25i) at s=0.4 and s’=0.1 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 2.2544 16 0.47644 

2 0.81868 17 0.47644 

3 0.42429 18 0.47644 

4 0.51067 19 0.47644 

5 0.46793 20 0.47644 

6 0.47848 21 0.47644 

7 0.47594 22 0.47644 

8 0.47655 23 0.47644 

9 0.47641 24 0.47644 

10 0.47644 25 0.47644 

11 0.47643 26 0.47644 

12 0.47644 27 0.47644 

13 0.47644 28 0.47644 

14 0.47644 29 0.47644 

15 0.47644 30 0.47644 

Here the value converges to a fixed point after 12 iterations 

Figure 3.  Orbit of F(z) for (z0= 0.14+2.25i) at s=0.4 and s’=0.1 

 

4.3  Fixed points of Bi-quadratic polynomial 

Table 1: Orbit of F(z) for (z0= -0.046+0.165i) at s=0.6 and 

s’=0.4 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.17129 16 0.62734 

2 0.58304 17 0.62734 

3 0.69194 18 0.62734 

4 0.64174 19 0.62734 

5 0.63002 20 0.62734 

6 0.62746 21 0.62734 

7 0.6272 22 0.62734 

8 0.62728 23 0.62734 

9 0.62732 24 0.62734 

10 0.62733 25 0.62734 

11 0.62734 26 0.62734 

12 0.62734 27 0.62734 

13 0.62734 28 0.62734 

14 0.62734 29 0.62734 

15 0.62734 30 0.62734 

Here the value converges to a fixed point after 11 iterations 

Figure 1 Orbit of F(z) for (z0= -0.046+0.165i) at s=0.6 and 

s’=0.4 

 

Table 2: Orbit of F(z) for (z0= 0.134+0.128i) at s=0.3 and 

s’=0.4 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

81 0.9200 96 0.9199 

82 0.9196 97 0.9200 

83 0.9197 98 0.9200 

84 0.9201 99 0.9198 

85 0.9201 100 0.9198 

86 0.9198 101 0.9200 

87 0.9197 102 0.9200 

88 0.9200 103 0.9199 

89 0.9201 104 0.9198 

90 0.9199 105 0.9199 

91 0.9197 106 0.9200 

92 0.9199 107 0.9199 

93 0.9200 108 0.9199 

94 0.9199 109 0.9199 

95 0.9198 110 0.9199 

 

We skipped 81 iterations and after 107 iterations value 

converges 

Figure 2 Orbit of F(z) for (z0= 0.134+0.128i) at s=0.3 and 

s’=0.4 
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Table 3: Orbit of F(z) for (z0= -0.118+0.021i) at s=0.4 and 

s’=0.1 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

30 0.56705 45 0.56824 

31 0.56825 46 0.56826 

32 0.56908 47 0.5683 

33 0.56782 48 0.56827 

34 0.56801 49 0.56826 

35 0.56872 50 0.56828 

36 0.56819 51 0.56827 

37 0.56803 52 0.56826 

38 0.56847 53 0.56828 

39 0.56831 54 0.56828 

40 0.56812 55 0.56827 

41 0.56833 56 0.56827 

42 0.56834 57 0.56827 

43 0.5682 58 0.56827 

44 0.56827 59 0.56827 

We skipped 29 iterations and after 55 iterations value 

converges 

Figure 3.  Orbit of F(z) for (z0= -0.118+0.021i) at s=0.4 and 

s’=0.1 

 

5. GENERATION OF RELATIVE SUPERIOR JULIA 

SETS: 

 We generated the Relative Superior Julia sets. We present here 

some beautiful filled Relative Superior Julia sets for quadratic, 

cubic and biquadratic function.  

5.1 Relative Superior Julia sets for Quadratic: 

     

 Figure 1: Relative Superior Julia Set for s=s'=1, c = -1.38 

                

         Figure 2: Relative Superior Julia Set for s=1, s'=0.3,  

c = 0.430+0.18i  

 

Figure 3: Relative Superior Julia Set for s=0.3, s'=1, 

c=-2.46 

 
 

Figure 4: Relative Superior Julia Set for s=0.1, s'=0.4,  

c=-20.26+0.097i  

 
 

Figure 5: Relative Superior Julia Set for s=0.4, s'=0.1, 

c=2.1+5.53i 
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 5.2  Relative Superior Julia sets for Cubic  function: 

 

Figure 1: Relative Superior Julia for s=s'=1, c=-0.2+1.1i  

 
Figure 2: Relative Superior Julia Set for s=1, s'=0.5,  

c= -0.146+1.54i   

 
Figure 3: Relative Superior Julia Set for s=0.3, s'=1, c= -

0.5+1.41i 

 
Figure 4: Relative Superior Julia Set for s=0.1, s'=0.4, 

 c = -1.6+6.7i  

 

Figure 5: Relative Superior Julia Set for s=0.4, s'=0.1,  

c = -1+0.5i 

 
 

5.3 Relative Superior Julia sets for Bi-quadratic function: 

 

Figure 1: Relative Superior Julia for s=s'=1, c = 0.58 - 0.98i 

 
 

Figure 2: Relative Superior Julia Set for s=1, s'=0.5, c = -1.57 

 
 

Figure 3: Relative Superior Julia Set for s=0.5, s'=1, c= -1.24 
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Figure 4: Relative Superior Julia Set for s=0.1, s'=0.4, 

c=2.6+0.0i 

 
Figure 5: Relative Superior Julia Set for s=0.3, s'=0.4, c= -

3.6+0.0i 
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