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ABSTRACT  

We introduce in this paper the dynamics of Relative 

Superior Tricorn and Multicorns for Ishikawa iteration. 

 Keywords: Complex dynamics, Ishikawa 

Iteration, Relative Superior Tricorn and Relative 

Superior Multicorns. 

 

1.  INTRODUCTION 

The word “Fractal” from Latin word “fractus” meaning 

“broken” was introduced in 1975 by mathematician Benoit 

B. Mandelbrot to describe irregular and intricate natural 

phenomenon as lunar landscapes, mountains, trees 

branching and coastlines etc. The object Mandelbrot set, 

given by Mandelbrot in 1979 and its relative object Julia 

set due to their beauty and complexity of their nature have 

become elite area of research nowadays. 

 Recently Shizuo [8], has presented the various 

properties of Multicorns and Tricorn along with beautiful 

figures. Shizuo has quoted the Multicorns as the 

generalized Tricorn or the Tricorn of higher order.  The 

dynamics of antipolynomial
dz z c


 of complex 

polynomial
dz c , where   2d , leads to interesting 

tricorn and multicorns antifractals with respect to function 

iteration (see [2] and [7, 8]). Tricorn are being used for 

commercial purpose, e.g. Tricorn mugs and Tricorn T 

shirts.  Multicorns are symmetrical objects. Their 

symmetry has been studied by Lau and Schleicher [5].  

  The study of connectedness locus for 

antiholomorphic polynomials 
2z c


defined as Tricorn, 

coined by Milnor, plays intermediate role between 

quadratic and cubic polynomials. Crowe etal.[1] 

considered it as in formal analogy with Mandelbrot set and 

named it as Mandel-bar set and also brought its features 

bifurcations along axes rather than at points. Milnor [6] 

found it as a real slice of cubic connected locus. Winters 

[16] showed it as boundary along the smooth arc. Superior 

Tricorn and Superior Multicorns using the Mann iterates 

rather than function iterates is studied and explored by A. 

Negi[9]. In this paper we introduce a new class of Relative 

Superior Tricorn and Relative Superior Multicorns using 

Ishikawa iterates and also study their corresponding 

Relative Superior Julia sets. 

2.  PRELIMINEARIES 

2.1 Tricorn and Multicorns: 

Following the Milnor’s study, Shizuo [8] has 

defined the Tricorn, as the connectedness locus for 

antiholomorphic polynomials,
nz c , where 2n .   

Definition2.1: The Multicorns cA , for the quadratic 

( )c
nA z z c  is defined as the collection of all 

c C  for which the orbit of the point 0 is bounded, that 

is, 0,1,2,3,...{ : (0) }c c nA c C A is bounded . An 

equivalent formulation is   

{ : (0) }c cA c C A not tends to as n  

The Tricorn are special Multicorns when n = 2.  

As quoted by Shizuo [8], the Tricorn plays an intermediate 

role between quadratic and cubic polynomials.  As quoted 

by Devaney [2], iterations of the function
2

cA z c , 

using the Escape Time Algorithm, results in many strange 

and surprising structures.  Devaney [2] has named it 

Tricorn and observed that ( )f z , the conjugate function 

of ( )f z , is antipolynomial. Further, its second iterates is 

a polynomial of degree 4. Taking the initial choice 0z , one 

can iterate
1( )cA z , resulting 1z equals

2
0z c , which 

can be written as
2 2

0 0{| | / }z z c , since 0 0z z   is 

equivalent to 
2

0{| | }z , which gives 1z  equals 

4 2

0 0{| | / }z z c . Using this value one can state the 

conjugate of 1z  as 
4 2

1 0 0{| | / }z z z c , 

resulting
2

0z c . Now the second iterate can be stated 

as 
2 ( )cA z which is equal to

2

1z c , on simplifying, one 

can get
2 2

0{ }z c c , further, 
4 2 2

0 02z z c c c , 
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which is a polynomial of degree 4 in z.  Further, Devaney 

[2], has observed that the function 
2z c is conjugate 

of
2z d , where

2 /3id e , which shows that the 

Tricorn is symmetric under rotations through 

angle 2 / 3 . The critical point for cA  is 0, since 

(0)cc A has only one preimage whereas any 

other w C , has two preimages.   

Definition2.2:  Ishikawa Iteration [3]: Let X be a subset 

of real or complex numbers and :f X X . 

For 0x X , we have the sequences{ }nx and { }ny  in X 

in the following manner: 

( ) (1 )n n n n ny s f x s x  

1 1 1 1( ) (1 )n n n n nx s f y s x  

where 0 1ns , 0 1ns and 
ns & 

ns are 

both convergent to non zero number. 

 

Definition 2.3: The sequences 
nx and 

ny constructed 

above is called Ishikawa sequences of iterations or 

Relative superior sequences of iterates. We denote it 

by 0( , , , )n nRSO x s s t . 

Notice that 0( , , , )n nRSO x s s t  with ns =1 is 

0( , , )nRSO x s t i.e. Mann’s orbit and if we place 

1n ns s  then 0( , , , )n nRSO x s s t  reduces to 

0( , )O x t . 

             We remark that Ishikawa orbit 

0( , , , )n nRSO x s s t with 1/ 2ns  is Relative 

Superior orbit. Now we define Mandelbrot sets for 

function with respect to Ishikawa iterates. We call them as 

Relative Superior Mandelbrot sets. 

  

Definition 2.3: Relative Superior Mandelbrot set RSM 

for the function of the form ( ) n

cQ z z c , where n = 

1, 2, 3, 4… is defined as the collection of c C for 

which the orbit of 0 is bounded i.e. 

 { : (0) : 0,1,2...}k

cRSM c C Q k is bounded. 

Here we present the study of Relative Superior Julia set of 

Relative Superior Tricorn by using the Escape Time 

Algorithm with respect to Ishikawa Iterates.   

Now, we define escape criterions for these sets. 

2.4 Escape Criterion:  We obtain a general escape 

criterion for polynomials of the form ( ) n

cG z z c   

Theorem 2.1: For general function ( ) n

cG z z c , n 

= 1, 2, 3, 4 …where 0 1, 0 1s s  and c is the 

complex plane.  

 Define 1 (1 ) ( )cz s z sG z  

                            

1 1(1 ) ( )n n c nz s z sG z


 

The general escape criterion is 
1 1

1 1max{| |, (2 / ) ,(2 / ) }n nc s s . 

Proof: We shall prove this theorem by induction: 

For n = 1, we get ( )cG z z c . So, the escape 

criterion is |c|, which is obvious, i.e. 

| | max{| |,0,0}z c  

For n = 2, we get
2( )cG z z c . So, the escape 

criterion is | | max{| |,2 / ,2 / }z c s s   

For n = 3, we get
3( )cG z z c . So, the escape 

criterion is
1/2 1/2| | max{| |, (2 / ) , (2 / ) }z c s s .  

Assume that the theorem is true for n = 1, 2, 3, 4…So, 

let
1( ) n

cG z z c  and
1/ 1| | | | (2 / ) nz c s  as 

well as
1/ 1| | | | (2 / ) nz c s  exists.  

Then, | ( ) | | (1 ) ( ) |n cG z s z s G z  where 

1( ) n
cG z z c  

1| ( ) |nz s z s z c  

1| | | |ns z s z z s c  

| | ( | | 1| | |nz s z s s z        (  | | | |z c ) 

| |{( | | | | |1|} | |nz s z s s z  

| | ( | | 1 )nz s z s s  

| | ( | | 1)nz s z  

Now,  1| | | (1 ) ( ) |nz s z sG z  

| (1 ) | | ( | | 1) |ns z s z s z  

| | | . | | | ||nz sz s z s z s z  

1(| | | |) ( | | | |)nz s z ss z s z  

1( | | | |)nss z z  

1| | | |nss z z  

| | ( | | 1)nz ss z  

Since
1/ 1/| | (2 / ) ; | | (2 / )n nz s z s and

1/| | (2 / ) nz ss .So
1/| | (2 / ) nz ss , therefore 

( | | 1) 1nss z  

 Hence, for some 0 , we have 

( | | 1) 1nss z . Thus, 1| | (1 ) | |z z  
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| | (1 ) | |n

nz z


 

Therefore, the Ishikawa orbit of z under the iteration of 
1nz c tends to infinity. Hence 

1/ 1/| | max{| |, (2 / ) , (2 / ) }n nz c s s  is the escape 

criterion. This proves the theorem. 

Corollary 2.1:  Suppose that
1/ 1| | (2 / ) nc s and 

1/ 1| | (2 / ) nc s  exists. Then, the Relative Superior 

orbit ( ,0, , )cRSO G s s  escapes to infinity. 

Corollary2.2:  Assume that 
1/ 1 1/ 1| | max{| |, (2 / ) , (2 / ) }k k

kz c s s for some 

0k . Then 
1| | | |k kz z and | |nz , as 

n . This corollary gives an algorithm for computing 

the Relative Superior Mandelbrot sets for the functions of 

the form ( ) n

cG z z c , n = 1, 2, 3, 4… 

The purpose of this paper is to visualize the relative 

superior antifractals, i.e., antifractals with respect to 

relative superior orbit and to analyze the pattern of 

symmetry among them. 

3.  GEOMETRY OF RELATIVE 

SUPERIOR TRICORNS AND 

MULTICORNS 

   The results of plotting the Relative Superior Mandelbrot 

set for the function cA  using Ishikawa Iterates, gives us 

the Tricorned like structure, hence, it can be named as 

Relative Superior Tricorn. Crowe et. al [12], has 

considered it in formal analogy with Mandelbrot set and 

named it “Mandelbar set”. The general escape criterion for 

higher powers of polynomials, ( )c
nA z z c  where 

n is the degree of the polynomial, is given 

as
1/ 1/max{| |, (2 / ) , (2 / ) }n nc s s  This can be used as 

the escape criterion for the function ( )cA z .We derive 

Relative Superior Multicorns using this escape criteria. 

We have used the same escape criterion for generating the 

new Tricorn for which the condition 

is max{| |, 2 / , 2 / }c s s .   

  The characteristics of the Relative Superior Julia set for a 

point inside the Relative Superior Tricorn and Multicorns 

can be given by observing the Relative Superior Tricorn. 

We know that, if c lies in cA , the orbit of 0.0 does not 

escape to infinity. Hence we can say that if c does not lie 

in cA  then the Relative Superior Julia set cJ  for 

Relative Superior Tricorn, is a Cantor set. The Relative 

Superior Julia set of cA is either connected or totally 

disconnected, depending on, whether the orbit of 0 is 

bounded or escapes to infinity. We know that every 

Relative Superior Julia set is either a:   

 · Primary Relative Superior Julia set, or  

 · Secondary Relative Superior Julia set  

 

    Primary Relative Superior Julia set are the 

Relative superior Julia set for the points attached to the 

primary ovoid of the Relative Superior Tricorn, whereas 

the name secondary Relative Superior Julia set can be 

given to those Julia set which belongs to the ovoid 

attached to the primary ovoid. We study here the primary 

Relative Superior Julia set for Relative Superior Tricorn 

(See Section 6).  Further, we observe that the Relative 

Superior Julia set for Relative superior Tricorn consists of 

all c-values for which cJ  is connected, or the orbit of 0.0 

under 
2z c does not tend to infinity.  

We see that the Relative Superior Tricorn 

consists of three main ovoids. Further, these ovoids can be 

named as primary ovoids of Relative Superior Tricorn. 

The Relative superior Tricorn and Relative Superior 

Multicorns contain the Main body having an ovoid 

attached to the main body. Here we want to mention that 

the ovoid are connected to the main body in a different 

way than that in the Mandelbrot set. 

   Here, we are presenting the observation in the study 

of the Relative Superior Tricorn and Relative Superior 

Multicorns from the figures mentioned in Section 5.  

 Here we notice that the number of ovoids in the 

Relative Superior Tricorn and Relative Superior 

Multicorns is n + 1, where n is the power of z . 

 As the value of s tend to 1 and s' tends to 1, the 

Relative Superior Tricorn and Relative Superior 

Multicorns converts to the general Tricorn and 

general Multicorns, in which all the branches are 

similar, hence we can say that the Relative 

Superior Tricorn and Relative Superior 

Multicorns is the general case of the usual 

Tricorn and Multicorns. 

 Starting with ( )c
nA z z c , for n = 2 and 

s < 1, s' < 1and applying the Ishikawa iterates we 

see that the Relative Superior Mandelbrot set of 

this function is also a Tricorned set but the small 

bulbs at the ovoid vanishes as the value of  s' 

becomes smaller but the symmetry of the 

Relative Superior Tricorn and Relative Superior 

Multicorns is not distorted. 

 

 We also observe that for n is odd we have 

symmetry about both X and Y axis but for n is 

even the symmetry is maintained only along X 

axis. 
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4. FIXED POINTS:  

4.1 Fixed points of quadratic polynomial  

Table 1: Orbit of F(z) for s=1, s'=1 at z0=-0.35-0.03125i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.35139 5 0.11271 

2 0.14891 6 0.1127 

3 0.11487 7 0.1127 

4 0.11281 8 0.1127 

Here we observe that the value converges to a fixed 

point after 06 iterations 

Figure 1: Orbit of F(z) for s=1, s'=1 at z0=-0.35-0.03125i 

 

Table 2: Orbit of F(z) for s=0.5, s'=0.7 at 

z0= 0.07056911734+ 0.03212328902i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.077536 14 0.24658 

2 0.14361 15 0.24673 

3 0.18384 16 0.2469 

4 0.20785 17 0.24694 

5 0.22246 18 0.24696 

6 0.23151 19 0.24698 

7 0.23717 20 0.24699 

8 0.24075 21 0.24699 

9 0.24301 22 0.247 

10 0.24446 23 0.247 

11 0.24538 24 0.247 

12 0.24596 25 0.247 

13 0.24634 26 0.247 

Here we observe that the value converges to a fixed 

point after 22 iterations 

Figure 2:  Orbit of F(z) for s=0.5, s'=0.7 at 

z0= 0.07056911734+ 0.03212328902i 

  

Table 3: Orbit of F(z) for s=0.6, s'=0.4 at 

z0= 0.06415024553+ 0.03414122547i 

 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.07267 16 0.23638 

2 0.13743 17 0.23643 

3 0.17641 18 0.23646 

4 0.19914 19 0.23648 

5 0.21289 20 0.23649 

6 0.22143 21 0.2365 

7 0.22681 22 0.2365 

8 0.23025 23 0.23651 

9 0.23246 24 0.23651 

10 0.23389 25 0.23651 

11 0.23481 26 0.23651 

12 0.2354 27 0.23651 

13 0.23579 28 0.23651 

14 0.23604 29 0.23651 

15 0.23621 30 0.23651 

 

Here the value converges to a fixed point after 23 

iterations 

 

Figure 3:  Orbit of F(z) for s=0.6, s'=0.4 at 

z0= 0.06415024553+ 0.03414122547i 

 

4.2  Fixed points of Cubic  polynomial  

 

Table 1: Orbit of F(z) for s=1, s'=1 at 

z0= -0.4435087557-0.4140905325i 

 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.60677 6 0.10103 

2 0.095583 7 0.10103 

3 0.10102 8 0.10103 

4 0.10103 9 0.10103 

5 0.10103 10 0.10103 

 

Here the value converges to a fixed point after 04 

iterations 
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Figure 1: Orbit of F(z) for s=1, s'=1 at 

z0= -0.4435087557-0.4140905325i 

 

Table 2: Orbit of F(z) for s=0.8 and s’=0.2 at 

z0 =0.06175051669+ 0.03515650565i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.071057 7 0.13392 

2 0.11487 8 0.13394 

3 0.12861 9 0.13395 

4 0.13244 10 0.13395 

5 0.13353 11 0.13395 

6 0.13383 12 0.13395 

Here the value converges to a fixed point after 09 

iterations  

Figure 2: Orbit of F(z) for  s=0.8 and s’=0.2 at 

z0= 0.06175051669+ 0.03515650565i 

 
Table 3: Orbit of F(z) for s=0.5, s'=0.4 at 

z0= -0.01341912254+ 0.001017666092i 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.013458 12 0.21207 

2 0.09368 13 0.2122 

3 0.14876 14 0.21228 

4 0.17784 15 0.21232 

5 0.19348 16 0.21235 

6 0.20199 17 0.21236 

7 0.20665 18 0.21236 

8 0.20922 19 0.21236 

9 0.21063 20 0.21237 

10 0.21141 21 0.21237 

11 0.21184 22 0.21237 

Here the value converges to a fixed point after 20 

iterations 

Figure 3:  Orbit of F(z) for s=0.5, s'=0.4 at 

z0= -0.01341912254+ 0.001017666092i 

 
 

4.3  Fixed points of Bi-quadratic polynomial 

Table 1: Orbit of F(z) for s=1, s'=1 at 

z0= -0.1886568966 + 0.5678133512i 

 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.59833 5 0.1001 

2 0.098889 6 0.1001 

3 0.1001 7 0.1001 

4 0.1001 8 0.1001 

Here the value converges to a fixed point after 03 

iterations 

Figure 1: Orbit of F(z) for s=1, s'=1 at 

z0= -0.1886568966 + 0.5678133512i 

 
Table 2: Orbit of F(z) for s=0.8, s'=0.2 at 

z0= 0.02786208647-0.03509673188i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.044812 7 0.12663 

2 0.10592 8 0.12664 

3 0.12207 9 0.12664 

4 0.12563 10 0.12664 

5 0.12642 11 0.12664 

6 0.12659 12 0.12664 

 

Here the value converges to a fixed point after 08 

iterations  
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Figure 2: Orbit of F(z) for s=0.8, s'=0.2 at 

z0= 0.02786208647-0.03509673188i 

 

Table 3: Orbit of F(z) for s=0.5, s'=0.6 at 

z0= -0.0353428342 + 0.01325006551i 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.037745 11 0.20083 

2 0.082621 12 0.20096 

3 0.14137 13 0.20102 

4 0.17098 14 0.20105 

5 0.18589 15 0.20107 

6 0.19342 16 0.20108 

7 0.19721 17 0.20108 

8 0.19913 18 0.20108 

9 0.2001 19 0.20108 

10 0.20058 20 0.20108 

Here the value converges to a fixed point after 16 

iterations  

Figure 3:  Orbit of F(z) for 0.5, s'=0.6 at 

z0= -0.0353428342 + 0.01325006551i 

 

 

5. GENERATION OF RELATIVE 

SUPERIOR TRICRONS AND 

MULTICORNS: 
           We generate Relative Superior Tricorns and 

Multicorns. We present here some Relative Superior 

Tricorns and Multicorn for cubic and biquadratic function.  

 

4.1 Relative Superior Tricorn for Quadratic function: 

Figure 1: Relative Superior Tricorn for s=s'=1    

 
  Figure 2: Relative Superior Tricorn for s=0.1, s'=0.3 

 

Figure 3: Relative Superior Tricorn for s=0.6, s'=0.4 

 
Figure 4: Relative Superior Tricorn for s=0.1, s'=0.1 

 
   4.2 Relative Superior Multicorns for Cubic function: 

Figure 1: Relative Superior Multicorns for s=1, s'=1 
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Figure 2: Relative Superior Multicorns for s=0.1, 

s'=0.3 

 
 

Figure 3: Relative Superior Multicorns for s=0.5, 

s'=0.4 

 

 
 

Figure 4: Relative Superior Multicorns s=0.1, s'=0.1 

 
 

 

4.3 Relative Superior Multicorns for Bi-quadratic 

function: 

Figure 1: Relative Superior Multicorns for s=s'=1  

      

 

Figure 2: Relative Superior Multicorns for s=0.5 

s'=0.6 

 
Figure 3: Relative Superior Multicorns for s=0.8, 

s'=0.2 

 
Figure 4: Relative Superior Multicorns for s=0.1, 

s'=0.1 

 
4.4. Generalization of Relative Superior Multicorns: 

Figure 1: Relative Superior Multicorns for s=0.1, 

s'=0.3, n=19 

 
Figure 2: Relative Superior Multicorns for s=0.8, 

s'=0.2, n=19 
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Figure 3: Relative Superior Multicorns for s=0.1, 

s'=0.3, n=52 

 
 

6. GENERATION OF RELATIVE 

SUPERIOR JULIA SETS FOR 

TRICORNS AND MULTICORNS: 
 We present here some filled Relative Superior 

Julia sets for quadratic, cubic and biquadratic function.  

6.1 Relative Superior Julia sets for Quadratic: 

Figure 1: Relative Superior Julia Set for s=0.6, s'=0.4 

c=0.06415024553 + 0.03414122547i 

 
          

Figure 2: Relative Superior Julia Set for, s=0.5, s'=0.7, 

c = 0.07056911734    +0.03212328902i 

 

 6.2   Relative Superior Julia sets for Cubic function: 

Figure 1: Relative Superior Julia for s=0.8, s'=0.2 

c=0.06175051669+0.03515650565i 

 

 

Figure 2: Relative Superior Julia Set for s=0.5, s'=0.4 

c=-0.01341912254+0.001017666092i 

 
 

6.3 Relative Superior Julia sets for Bi-quadratic 

function: 

 

Figure 1: Relative Superior Julia for s=0.8, s'=0.2 

c=0.02786208647-  0.03509673188i 

 
 

Figure 2: Relative Superior Julia for s=0.5, s'=0.6 

c = -0.0353428342 +0.01325006551i 

 
 

 

7.  CONCLUSION: 

 In the dynamics of antipolynomial   of complex 

polynomial 
nz c , where    2n , there exist many 

Tricorns and Multicorns antifractals for a value of n with 

respect to Relative Superior orbit. Further, for the odd 

values of n, all the Relative Superior Multicorns are 

symmetrical objects, and for even values of n, all the 

Relative Superior Multicorns (including Relative Superior 

Tricorns) are symmetrical about x-axis.  
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