
International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

27

Analysis and Need of Requirements Engineering

 Ranjeet Kaur Tajinder Singh

Lecturer in Information Technology Lecturer in Information Technology

 GIMET,Amritsar GIMET,Amritsar

ABSTRACT

This paper presents outline of the field of software systems

requirements engineering (RE). It describes the main areas of
RE practice, and highlights some key open Research issues
for the future and what is RE all about? When is it needed?
What kinds of activities are involved in doing RE?
Requirements engineering applies to the development of all
software-intensive systems, but not necessarily to the
development of all software, as we shall see. There are a huge
range of different kinds of software-intensive system, and the

practice of RE varies across this range. Our aim throughout
this paper is to explore both what is common and what varies
across these different types of system. The key techniques
used in requirements engineering for dealing with complexity.

Keywords: RE-Requirement Engineering, Software-intensive
system, System

1. INTRODUCTION

The primary appraise of success of a software system is the
degree to which it meets the purpose for which it was
intended. Generally speaking, software systems requirements
engineering (RE) is the process of discovering that purpose,
by identifying stakeholders and their needs, and documenting
these in a form that is agreeable to analysis, communication,

and subsequent implementation. There are a number of
intrinsic difficulties in this process. Stakeholders (including
paying customers, users and developers) may be several and
distributed. Their goals may vary and conflict, depending on
their perspectives of the environment in which they work and
the tasks they wish to accomplish. Their goals may not be
explicit or may be difficult to communicative, and, inevitably,
satisfaction of these goals may be constrained by a variety of

factors outside their control. In this paper we present an
overview of current research in RE, presented in terms of the
main activities that constitute the field. While these activities
are described independently and in a particular order, in
practice, they are actually interleaved, iterative, and may span
the entire software systems development life cycle.

1.1 The Core RE Activities are:

1. Eliciting requirements,

2. Modeling and analyzing requirements,

3. Communicating requirements,

4. Agreeing requirements, and

5. Evolving requirements.

2. BASIC OF RE:

 “Requirements Engineering (RE) is a set of activities
concerned with identifying and communicating the purpose of

a software-intensive system, and the contexts in which it will
be used. Hence, RE acts as the bridge between the real-world
needs of users, customers, and other constituencies affected
by a software system, and the capabilities and opportunities
afforded by software-intensive technologies.”

 This definition is attractive for a number of reasons. First, it
highlights the importance of “real-world goals” that motivate
the development of a software system. These represent the
„why‟ as well as the „what‟ of a system. Second, it refers to
“precise specifications”. These provide the basis for analyzing
requirements, validating that they are indeed what
stakeholders want, defining what designers have to build, and
verifying that they have done so correctly upon delivery.

Finally, the definition refers to specifications‟ “evolution over
time and across software families”, emphasizing the reality of
a changing world and the need to reuse partial specifications,
as engineers often do in other branches of engineering. It has
been argued that requirements engineering is a misnomer.
Typical textbook definitions of engineering refer to the
creation of cost-effective solutions to practical problems by
applying scientific knowledge. Therefore, the use of the term

engineering in RE serves as a reminder that RE is an
important part of an engineering process, being the part
concerned with anchoring development activities to a real-
world problem, so that the appropriateness and cost-
effectiveness of the solution can then be analyzed. It also
refers to the idea that specifications themselves need to be
engineered, and RE represents a series of engineering
decisions that lead from recognition of a problem to be solved

to a detailed specification of that problem .The tools and
techniques used in RE draw upon a variety of disciplines, and
the requirements engineer may be expected to master skills
from a number of different disciplines. In the context of
software development, computer science plays a particularly
important role. Theoretical computer science provides the
framework to assess the feasibility of requirements, while
practical computer science provides the tools by which
software solutions are developed. Although software

engineering still lacks a mature science of software behavior
on which to draw, requirements engineers need such a science
in order to understand how to specify the required behavior of
software. Since software is a formal description, analysis of
its behavior is amenable to formal reasoning. Logic provides a
vehicle for performing such analysis [1]. A further advantage
of specification languages grounded in logic is that they are
potentially amenable to automated reasoning and analysis. In

the systems engineering context, an understanding and
application of systems theory and practice is also relevant to
RE. This includes work on characterizing systems, identifying
their boundaries and managing their development life cycle.
RE also encompasses work on systems analysis, traditionally
found in the information systems world . The context in which
RE takes place is usually a human activity system, and the

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

28

problem owners are people. Engagement in an RE process
presupposes that some new computer-based system could be
useful, but such a system will change the activities that it
supports. Therefore, RE needs to be sensitive to how people
perceive and understand the world around them, how they

interact, and how the sociology of the workplace affects their
actions. RE draws on the cognitive and social sciences to
provide both theoretical grounding and practical techniques
for eliciting and modeling requirements:

2.1 Cognitive Psychology provides an understanding

of the difficulties people may have in describing their needs.
For example, problem domain experts often have large
amounts of tacit knowledge that is not amenable to
introspection; hence their answers to questions posed by
requirements analysts may not match their behavior. Also, the
requirements engineer may need to model users‟
understanding of software user interfaces, rather than relying
solely on implementers‟ preferences.

2.2 Anthropology provides a ethodological approach to

observing human activities that helps to develop a richer
understanding of how computer systems may help or hinder
those activities. For example, the techniques of ethno
methodology have been applied in RE to develop

observational techniques for analyzing collaborative work and
team interaction.

2.3 Sociology provides an understanding of the political

and cultural changes caused by computerization. Introduction
of a new computer system changes the nature of the work

carried out within an organization, may affect the structure
and communication paths within that organization, and may
even change the original needs that it was built to satisfy. A
requirements gathering exercise can therefore become
politicized.

3. DEALING WITH COMPLEXITY

Requirements Engineering offers a number of techniques for
dealing with complexity of purpose, which are built into the
various techniques described in this book. Of these, three
general principles are so useful that we will briefly introduce
them here: abstraction, decomposition and projection:

3.1. Abstraction involves ignoring the details so that we

can see the big picture. When we take some set of human-
computer activities and describe them as a system, we are
using an abstraction. When we take two different actions and
describe them as instances of the same general activity, we are
using an abstraction.

3.2 Decomposition involves breaking a set of

phenomena into parts, so that we can study them
independently. Such decompositions are never perfect,
because of the coupling between the parts, but a good
decomposition still offers us insights into how things work.

3.3 Projection involves adopting a particular view or

perspective, and describing only the aspects that are relevant
to that perspective. Unlike decomposition, the perspectives
are not intended to be independent in any way.

These ideas are so useful that we use them all the time, often
without realizing it. Requirements analysts use them in a
particular way to understand problem situations, and to

identify parts of a problem that can be solved using software.
Systematic use of decomposition, abstraction and projection

allows us to deal with complexity by making problems
simpler, and mapping them on to existing solution
components.

4. ELICTING REQURIMENTS

The elicitation of requirements is perhaps the activity most
often regarded as the first step in the RE process. The term
“elicitation” is preferred to “capture”, to avoid the suggestion
that requirements are out there to be collected simply by
asking the right questions. Information gathered during
requirements elicitation often has to be interpreted, analyzed,

modeled and validated before the requirements engineer can
feel confident that a complete enough set of requirements of a
system have been collected. Therefore, requirements
elicitation is closely related to other RE activities – to a great
extent, the elicitation technique used is driven by the choice of
modeling scheme, and vice versa: many modeling schemes
imply the use of particular kinds of elicitation techniques.

 4.1 Requirements to Elicit

One of the most important goals of elicitation is to find out
what problem needs to be solved, and hence identify system
boundaries. These boundaries define, at a high level, where
the final delivered system will fit into the current operational
environment. Identifying and agreeing a system‟s boundaries

affects all subsequent elicitation efforts. The identification of
stakeholders and user classes, of goals and tasks, and of
scenarios and use cases all depend on how the boundaries are
chosen. Identifying stakeholders – individuals or
organizations who stand to gain or lose from the success or
failure of a system – is also critical. Stakeholders include
customers or clients, developers, and users. Goals denote the
objectives a system must meet. Eliciting high-level goals early

in the development process is crucial. However, goal-oriented
requirements elicitation [8] is an activity that continues as
development proceeds, as high-level goals are refined into
lower level goals. Eliciting goals focuses the requirements
engineer on the problem domain and the needs of the
stakeholders, rather than on possible solutions to those
problems. It is often the case that users find it difficult to
articulate their requirements. To this end, a requirements
engineer can resort to eliciting information about the tasks

users currently perform and those that they might want to
perform. These tasks can often be represented in use cases
that can be used to describe the outwardly visible
requirements of systems.

4.2 Elicitation Techniques

The choice of elicitation technique depends on the time and
resources available to the requirements engineer, and of
course, the kind of information that needs to be elicited. We
distinguish a number of classes of elicitation technique:

4.2.1 Traditional Techniques include a broad class of

generic data gathering techniques. These include the use of
questionnaires and surveys, interviews, and analysis of
existing documentation such as organizational charts, process
models or standards, and user or other manuals of existing
systems.

4.2.2 Group Elicitation Tehniques aim to foster

stakeholder agreement and buy-in, while exploiting team
dynamics to elicit a richer understanding of needs. They
include brainstorming and focus groups, as well as RAD/JAD
workshops.

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

29

4.2.3 Prototyping has been used for elicitation where there

is a great deal of uncertainty about the requirements, or where
early feedback from stakeholders is needed. Prototyping can
also be readily combined with other techniques, for instance
by using a prototype to provoke discussion in a group
elicitation technique, or as the basis for a questionnaire or
think-aloud protocol.

4.2.4 Model-Driven Techniques provide a specific

model of the type of information to be gathered, and use this
model to drive the elicitation process. These include goal-
based methods, and scenario-based methods.

4.2.5 Cognitive Techniques include a series of

techniques originally developed for knowledge acquisition for
knowledge-based systems. Such techniques include protocol
analysis (in which an expert thinks aloud while performing a

task, to provide the observer with insights into the cognitive
processes used to perform the task), laddering (using probes to
elicit structure and content of stakeholder knowledge), card
sorting, and repertory grids.

4.2.6 Contextual Techniques emerged in the 1990‟s as

an alternative to both traditional and cognitive techniques.
These include the use of ethnographic techniques such as
participant observation. They also include ethnomethodogy
and conversation analysis, both of which apply fine-grained
analysis to identify patterns in conversation and interaction.
To some extent, there is a fundamental methodological
disagreement between the proponents of contextual

techniques on the one hand, and the traditional and cognitive
techniques on the other. Contextual approaches are based on
the premise that local context is vital for understanding social
and organizational behavior, and the observer must be
immersed in this local context in order to experience how
participants create their own social structures.

4.3 The Elicitation Process

With a overabundance of elicitation techniques available to
the requirements engineer, some guidance on their use is
needed. Methods provide one way of delivering such
guidance. Each method itself has its strengths and
weaknesses, and is normally best suited for use in particular
application domains. For example, the Inquiry Cycle [14] and

CREWS [12] provide alternative methods for eliciting
requirements using use cases and scenarios. Of course, in
some circumstances a full-blown method may be neither
required nor necessary. Instead, the requirements engineer
needs simply to select the appropriate technique or techniques
most suitable for the elicitation process in hand. In such
situations, technique-selection guidance is more appropriate
than a rigid method.

5. MODELLING AND ANALYSING

REQURIMENTS

Modeling – the construction of abstract descriptions that are
amenable to interpretation – is a fundamental activity in RE.
So much so that a number of RE textbooks focus almost
entirely on modeling methods and their associated analysis
techniques. Models can be used to represent a whole range of
products of the RE process. Moreover, many modeling
approaches are used as elicitation tools, where the modeling
notation and partial models produced are used as drivers to

prompt further information gathering.

The key question to ask for any modeling approach is “what is
it good for?”, and the answer should always be in terms of the
kind of analysis and reasoning it offers. We suggest below
some general categories of RE modeling approaches, and give
some example techniques under each category. We then

suggest some analysis techniques that can be used to generate
useful information from the models produced.

 5.1 Enterprise Modeling

The context of most RE activities and software systems is an
organization in which development takes place or in which a

system will operate. Enterprise modeling and analysis deals
with understanding an organization‟s structure; the business
rules that affect its operation; the goals, tasks and
responsibilities of its constituent members; and the data that it
needs, generates and manipulates. Enterprise modeling is
often used to capture the purpose of a system, by describing
the behavior of the organization in which that system will
operate. This behavior can be expressed in terms of

organizational objectives or goals and associated tasks and
resources. Others prefer to model an enterprise in terms of its
business rules, workflows and the services that it will provide.
Modelling goals is particularly useful in RE. High-level
business goals can be refined repeatedly as part of the
elicitation process, leading to requirements that can then be
operationalised [8].

5.2 Data Modeling

Large computer-based systems, especially information
systems use and generate large volumes of information. This
information needs to be understood, manipulated and
managed. Careful decisions need to be made about what
information the system will need to represent, and how the

information held by the system corresponds to the real world
phenomena being represented. Data modeling provides the
opportunity to address these issues in RE. Traditionally,
Entity-Relationship-Attribute (ERA) modeling is used for this
type of modeling and analysis. However, object-oriented
modeling, using class and object hierarchies, are increasingly
supplanting ERA techniques.

 5.3 Behavioral Modeling

Modeling requirements often involves modeling the dynamic
or functional behavior of stakeholders and systems, both
existing and required. The distinction between modeling an
existing system, and modeling a future system is an important
one, and is often blurred by the use of the same modeling
techniques for both. Early structured analysis methods

suggested that one should start by modeling how the work is
currently carried out (the current physical system), analyze
this to determine the essential functionality (the current
logical system), and finally build of model of how the new
system ought to operate (the new logical system). Explicitly
constructing all three models may be overkill, but it is
nevertheless useful to distinguish which of these is being
modeled. A wide range of modeling methods are available,

from structured to object-oriented methods, and from soft to
formal methods. These methods provide different levels of
precision and are amenable to different kinds of analysis.
Formal methods can be difficult to construct, but are also
amenable to automated analysis. On the other hand, soft
methods provide rich representations that non-technical
stakeholders find appealing, but are often difficult to check
automatically.

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

30

5.4 Domain Modeling

A significant proportion of the RE process is about

developing domain descriptions. A model of the domain
provides an abstract description of the world in which an
envisioned system will operate. Building explicit domain
models provides two key advantages: they permit detailed
reasoning about (and therefore validation of) what is assumed
about the domain, and they provide opportunities for
requirements reuse within a domain. Domain-specific models
have also been shown to be essential for building automated

tools, because they permit tractable reasoning over a closed
world model of the system interacting with its environment.

 5.5 Modeling Non-Functional requirements

(NFRs)

Non-functional requirements (also known as quality
requirements) are generally more difficult to express in a
measurable way, making them more difficult to analyze. In
particular, NFRs tend to be properties of a system as a whole,
and hence cannot be verified for individual components.
Recent work by both researchers [7] and practitioners has

investigated how to model NFRs and to express them in a
form that is measurable or testable. There also is a growing
body of research concerned with particular kinds of NFRs,
such as safety security [6], reliability [9], and usability.

 5.6 Analyzing Requirements Models

A primary benefit of modeling requirements is the opportunity
this provides for analyzing them. Analysis techniques that
have been investigated in RE include requirements animation,
automated reasoning consistency checking (e.g., model
checking), and a variety of techniques for validation and
verification (V&V).

 5.7 Communicating Requirements

RE is not only a process of discovering and specifying
requirements; it is also a process of facilitating effective
communication of these requirements among different
stakeholders. The way in which equirements are documented
plays an important role in ensuring that they can be read,
analyzed, (re-)written, and validated. The focus of
requirements documentation research is often on specification

languages and notations, with a variety of formal, semi-formal
and informal languages suggested for this purpose. One
attempt to achieve readability has been the development of a
variety of documentation standards that provide guidelines for
structuring requirements documents.

 5.8 Agreeing Requirements

As requirements are elicited and modeled, maintaining
agreement with all stakeholders can be a problem, especially
where stakeholders have divergent goals. Recall that
validation is the process of establishing that the requirements
and models elicited provide an accurate account of
stakeholder requirements. Explicitly describing the
requirements is a necessary precondition not only for

validating requirements, but also for resolving conflicts
between stakeholders. Techniques such as inspection and
formal analysis tend to concentrate on the coherence of the
requirements descriptions: are they consistent, and are they
structurally complete? The formal method SCR [10]
illustrates this approach. The SCR tool provides automated
checking that the formal model is syntactically consistent and
complete. In contrast, techniques such as prototyping,

specification animation, and the use of scenarios are geared
towards testing a correspondence with the real world problem.
For example, have all the aspects of the problem that the
stakeholders regard as important been covered? Requirements
validation is difficult for two reasons. The first reason is

philosophical in nature, and concerns the question of truth and
what is knowable. The second reason is social, and concerns
the difficulty of reaching agreement among different
stakeholders with conflicting goals. We will briefly examine
each of these in turn. We can compare the problem of
validating requirements with the problem of validating
scientific knowledge. Many requirements engineers adopt a
logical positivist approach – essentially the belief that there is

an objective world that can be modeled by building a
consistent body of knowledge grounded in empirical
observation. In RE, this view says that the requirements
describe some objective problem that exists in the world, and
that validation is the task of making sufficient empirical
observations to check that this problem has been captured
correctly.

 5.9 Evolving Requirements

Successful software systems always evolve as the
environment in which these systems operate changes and
stakeholder requirements change. Therefore managing change
is a fundamental activity in RE [4]. Changes to requirements
documentation need to be managed. Minimally, this involves

providing techniques and tools for configuration management
and version control, and exploiting tractability links to
monitor and control the impact of changes in different parts of
the documentation. Typical changes to requirements
specifications include adding or deleting requirements, and
fixing errors. Requirements are added in response to changing
stakeholder needs, or because they were missed in the initial
analysis. Requirements are deleted usually only during
development, to forestall cost and schedule overruns, a

practice known as requirements scrubbing [3].In any case,
managing inconsistency in requirements specifications as they
evolve is a major challenge. Inconsistencies arise both as a
result of mistakes, and because of conflicts between
requirements. Each inconsistency implies that some action is
needed, to identify the cause and seek a resolution. While
tractability links help to scope the possible impact of change,
they do not support automated reasoning about change,

because the links carry little semantic information. One
attempt to address this problem is the Viewpoints framework,
in which consistency relationships between chunks
(„viewpoints‟) of a specification are expressed operationally,
so that automated support for propagation of change becomes
possible. Managing changing requirements is not only a
process of managing documentation, it is also a process of
recognizing change through continued requirements

elicitation, reevaluation of risk, and evaluation of systems in
their operational environment. In software engineering, it has
been demonstrated that focusing change on program code
leads to a loss of structure and maintainability [2]. Thus, each
proposed change needs to be evaluated in terms of existing
requirements and architecture so that the trade-off between the
cost and benefit of making a change can be assessed.

Finally, the development of software system product families

has become an increasingly important form of development
activity. For this purpose, there is a need to develop a range of
software products that share similar requirements and
architectural characteristics, yet differ in certain key
requirements. The process of identifying core requirements in
order to develop architectures that are (a) stable in the

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

31

presence of change, and (b) flexible enough to be customized
and adapted to changing requirements, is one of the key
research issues in software engineering.

5.10 Integrated Requirements Engineering

RE is a multi-disciplinary activity, deploying a variety of
techniques and tools at different stages of development and
for different kinds of application domains. Methods provide a
systematic approach to combining different techniques and
notations, and method engineering [5] plays an important role
in designing the RE process to be deployed for a particular

problem or domain. Methods provide heuristics and
guidelines for the requirements engineer to deploy the
appropriate notation or modeling technique at different stages
of the process. A variety of approaches have been suggested
to manage and integrate different RE activities and products.
Jackson, for example, uses problem frames to structure
different kinds of elementary and composite problems. His
argument is that identifying well-understood problems offers

the possibility of selecting corresponding, appropriate, well-
understood, solutions. An alternative approach to organizing,
selecting and tailoring multiple methods is through the use of
multiple perspectives or views of requirements. This approach
can facilitate requirements partitioning and subsequent
modeling and analysis. For example, a viewpoint can be
treated as an encapsulation of an individual technique, with a
defined notation, a set of actions that can be performed on that

notation, and a set of rules for consistency relationships with
other viewpoints. In this way, the design and integration of
multiple methods can be supported as a process of creating
and tailoring viewpoint templates. Finally, to enable effective
management of an integrated RE process, automated tool
support is essential. Requirements management tools, such as
DOORS, Requisite Pro, Cradle, and others, provide
capabilities for documenting requirements, managing their
change, and integrating them in different ways depending on

project needs.

6. A REQUIREMENTS ENGINEERING

DRAFT

This paper has set out a draft, and we feel that no draft is
complete without a big arrow labeled you are here”1. By way
of providing such a marker, we will summarize the important
developments in RE during the last decade, and give our
predictions about what will be important in RE research for
the coming decade. The 1990‟s saw several important and
radical shifts in the understanding of RE. By the early 1990‟s,

RE had emerged as a field of study in its own right, as
witnessed by the emergence of two series of international
meetings – the IEEE sponsored conference and symposium,
held in alternating years – and the establishment of an
international journal published by Springer. By the late
1990‟s, the field had grown enough to support a large number
of additional smaller meetings and workshops in various
countries. During this period, we can discern the emergence

of three radical new ideas that challenged and overturned the
orthodox views of RE. These three ideas are closely
interconnected:

6.1 The idea that modeling and analysis cannot be

performed adequately in isolation from the organizational and

social context in which any new system will have to operate.
This view emphasized the use of conceptualized enquiry
techniques, including ethno methodology and participant
observation.

6.2 The notion that RE should not focus on specifying the

functionality of a new system, but instead should concentrate

on modeling indicative and optative properties of the
environment. Only by describing the environment, and
expressing what the new system must achieve in that
environment, we can capture the system‟s purpose, and reason
about whether a given design will meet that purpose.

6.3 The idea that the attempt to build consistent and

complete requirements models is useless, and that RE has to
take seriously the need to analyze and resolve conflicting
requirements, to support stakeholder negotiation, and to
reason with models that contain inconsistencies. Having
identified these trends from the past decade, we now turn our
attention to the future. We believe the following represent
major challenges for RE in the years ahead:

6.3.1 Development of new techniques for formally modeling

and analyzing properties of the environment, as opposed to
the 1 Sadly, this is an infeasible requirement for most portable

road maps! 2 Indicative descriptions express things that are
currently true (and will be true irrespective of the introduction
of a new system), while optative descriptions express the
things that we wish the new system to make true. behavior of
the software. Such techniques must take into account the need
to deal with inconsistent, incomplete, and evolving models.
We expect such approaches will better support areas where
RE has been weak in the past, including the specification of
the expectations that a software component has of its

environment. This facilitates migration of software
components to different software and hardware environments,
and the adaptation of products into product families.

6.3.2 Bridging the gap between requirements elicitation

approaches based on contextual enquiry and more formal
specification and analysis techniques. Contextual approaches,
such as those based on ethnographic techniques, provide a
rich understanding of the organizational context for a new
software system, but do not map well onto existing techniques
for formally modeling the current and desired properties of
problem domains. This includes the incorporation of a wider

variety of media, such as video and audio, into behavioral
modeling techniques.

6.3.3 Richer models for capturing and analyzing non-

functional requirements. These are also known as the “ilities”

and have defied a clear characterization for decades.

6.3.4. Better understanding of the impact of software

architectural choices on the prioritization and evolution of

requirements. While work in software architectures has
concentrated on how to express software architectures and
reason about their behavioral properties, there is still an open
question about how to analyze what impact a particular
architectural choice has on the ability to satisfy current and
future requirements, and variations in requirements across a
product family.

6.3.5 Reuse of requirements models. We expect that in many

domains of application, we will see the development of
reference models for specifying requirements, so that the
effort of developing requirements models from scratch is
reduced. This will help move many software projects from

being creative design to being normal design, and will
facilitate the selection of commercial off-the-shelf software
[13].

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

32

6.3.6 Multidisciplinary training for requirements

practitioners. In this paper, we have used the term
“requirements engineer” to refer to any development
participant who applies the techniques described in the paper
to elicit, specify, and analyze requirements. While many
organizations do not even employ such a person, the skills
that such a person or group should possess is a matter of
critical importance. The requirements engineer must possess

both the social skills to interact with a variety of stakeholders,
including potentially non-technical customers, and the
technical skills to interact with systems designers and
developers. Many delivered systems do not meet their
customers‟ requirements due, at least partly, to ineffective RE.
RE is often treated as a time-consuming, bureaucratic and
contractual process. This attitude is changing as RE is
increasingly recognized as a critically important activity in

any systems engineering process. The novelty of many
software applications, the speed with which they need to be
developed, and the degree to which they are expected to
change, all play a role in determining how the systems
development process should be conducted. The demand for
better, faster, and more usable software systems will continue,
and RE will therefore continue to evolve in order to deal with
different development scenarios. We believe that effective RE
will continue to play a key role in determining the success or

failure of projects, and in determining the quality of systems
that are delivered.

7. REFERENCES

[1] Abramsky, S., Gabbay, D. & Maibaum, T. (Ed.). (1992).
Handbook of Logic in Computer Science Vol 1: Background:

Mathematical Structures. Clarendon Press.

[2] Bennett, K. H. & Rajlich, V. T. (2000). Software
Maintenance and Evolution.

 [3] Boehm, B. (1991). Software Risk Management:
Principles and Practices. IEEE Software, 8(1): 32-41.

[4] Bohner, S. A. & Arnold, R. S. (Ed.). (1996). Software
Change Impact Analysis. IEEE Computer Society Press.

[5] Brinkkemper, S. & Joosten, S. (1996). Editorial: Method
Engineering and Meta-modelling. Information and Software
Technology, 38(4): 259.

 [6] Chung, L. (1993). Dealing with Security Requirements
During the Development of Information Systems. 5th

International Conference on Advanced Information Systems
Engineering (CAiSE'93), Paris, France, 1993, pp. 234-251.

[7] Chung, L., Nixon, B., Yu, E. & Mylopoulos, J. (2000).
Non- Functional Requirements in Software Engineering.
Boston: Kluwer Academic Publishers.

[8] Dardenne, A., Lamsweerde, A. v. & Fickas, S. (1993).
Goal-Directed Requirements Acquisition. Science of
Computer Programming, 20:3-50.

[9] del Gobbo, D., Napolitano, M., Callahan, J. & Cukic, B.
(1998.). Experience in Developing System Requirements
Specification for a Sensor Failure Detection and Identification
Scheme. 3rd High Assurance Systems Engineering
Symposium, Washington, DC, USA, 13-14 November 1998.

[10] Heitmeyer, C. L., Jeffords, R. D. & Labaw, B. G. (1996).
Automated Consistency Checking of Requirements
Specifications. IEEE Transactions on Software Engineering

and Methodology, 5(3): 231-261.

 [11] Maiden, N. (1998). CREWS-SAVRE: Scenarios for
Acquiring and Validating Requirements. Automated Software
Engineering, 5(4):419-446.

[12] Maiden, N. & Rugg, G. (1996). ACRE: Selecting
Methods For Requirements Acquisition. Software
Engineering Journal, 11(3):183-192.

[13] Maiden, N. A. M. & Ncube, C. (1998). Acquiring

Requirements for Commercial Off-The-Shelf Package
Selection. IEEE Software, 15(2):46-56.

 [14] Potts, C., Takahashi, K. & Anton, A. (1993). Inquiry-
based requirements Analysis. IEEE Software, 11(2): 21-32.

