Acyclic Coloring of Star Graph Families

Dr. K. Thilagavathi Associate Professor Department of mathematics Kongunadu Arts and Science College Coimbatore Tamilnadu-641029, India.

ABSTRACT

In this paper, we discuss the acyclic vertex colouring and acyclic chromatic number of middle graph, central graph and total graph of star graph.

General Terms

Middle graph, central graph and total graph of star graph are denoted by $M(K_{1,n})$, $C(K_{1,n})$ and $T(K_{1,n})$ respectively.

Keywords

Middle graph, central graph, total graph, acyclic colouring, acyclic chromatic number.

1. INTRODUCTION

Let *G* be a graph with vertex set V(G) and edge set E(G). The middle graph [6,9] of *G*, denoted by M(G) is defined as follows. The vertex set of M(G) is $V(G) \cup E(G)$. Two vertices *x*, *y* in the vertex set of M(G) are adjacent in M(G) in case one of following holds:

(i) x, y Are in E(G) and x, y are adjacent in G. (ii) x Is in V(G), y is in E(G), and x, y are incident in G.

Let *G* be a finite undirected graph with no loops and multiple edges. The central graph [16] of a graph *G*, *C*(*G*) is obtained by subdividing each edge of *G* exactly once and joining all the non-adjacent vertices of *G*. By the definition $p_{cG} = p + q$. For any

p,q graph there exist exactly p vertices of degree p-1 and q vertices of degree 2 in C(G).

Let *G* be a graph with vertex set V(G) and edge set E(G). The total graph [6,9] of *G*, denoted by T(G) is defined as follows. The vertex set of T(G) is $V(G) \cup E(G)$. Two vertices *x*, *y* in the vertex set of T(G) are adjacent in T(G) in case one of the following holds:

(i) x, y are in V(G) and x is adjacent to y in G.(ii) x, y are in E(G) and x, y are adjacent in G. (ii) x is in V(G), y is in E(G), and x, y are incident in G.

A proper vertex colouring of a graph is acyclic if every cycle uses at least three colours [13]. The acyclic chromatic number of G, denoted by a G, is the minimum k such that G admits an acyclic k-colouring.

Mr. P. Shanas Babu Research Scholar Department of mathematics Kongunadu Arts and Science College Coimbatore Tamilnadu-641029, India.

2. ACYCLIC COLOURING OF $M(K_{1,n})$

2.1 Theorem

For any star graph $K_{1,n}$ the acyclic chromatic number, $a[M(K_{1,n})] = n+1$.

Proof

Consider the star graph $K_{1,n}$ with $V K_{1,n} = v_1 v_2 v_3 ... v_n v$ with v as the root vertex. In middle graph $M(K_{1,n})$, by the definition each edge vv_i for $1 \le i \le n$ of $K_{1,n}$ is subdivided by the vertex e_i in $M(K_{1,n})$. and the vertices $e_1 e_2 e_3 ... e_n v$ induce a clique of order n + 1 in $M(K_{1,n})$ i.e.,

 $V(M(K_{1,n})) = \{v_i / 1 \le i \le n\} \bigcup \{e_i / 1 \le i \le n\} \bigcup \{v\}$. Now assign a proper colouring to these vertices as follows. Consider a colour class $C = c_1, c_2, c_3, \dots, c_{n+1}$. Assign the colour c_i to the vertex e_i for $i = 1, 2, \dots n$ and the colour c_{n+1} to the vertex v and to v_i for $i = 1, 2, \dots n$. The colouring is minimum, as $M(K_{1,n})$ contains a clique of order n+1, minimum n+1 colours are required for its proper colouring. Next we have to prove that the above said coloring is acyclic. It is obvious that to form a bichromatic cycle both colours should occur at least twice. But in the above said colouring, the only colour class which occur atleast twice is c_{n+1} and all other colour classes occur only once in the colouring procedure. Hence the above said colouring is acyclic.

Thus $a[M(K_{1,n})] = n+1$.

Example

$$a[M(K_{1,n})] = n+1$$

3. ACYCLIC COLOURING OF $C(K_{1,n})$

3.1 Theorem

For the graph $K_{1,n}$ the acyclic chromatic number $a \begin{bmatrix} C & K_{1,n} \end{bmatrix} = n, n \ge 3$.

Proof

Consider the star graph $K_{1,n}$ with $V K_{1,n} = u_1 u_2 u_3 \dots u_n u_0$ with u_0 as the root vertex. In $C(K_{1,n})$, let $u_{i,0}$ represents the newly introduced vertex in the edge connecting u_i and u_0 for i = 1, 2...n. Now assign a proper colouring to these vertices as follows. Consider a colour class $C = c_1, c_2, c_3, \dots, c_n$. Assign the colour c_i to the vertex u_i for i=1,2...n and the colour c_1 to the vertex u_0 . Such a colouring excludes the newly introduced vertices. The colour C_2 is assigned to the newly introduced vertices $u_{i,0}$ for $i \neq 2$ and the colour c_3 is assigned to $u_{2,0}$. The colouring is minimum, as $C(K_{1,n})$ contains the subgraph K_n , minimum *n* colours are required for its proper colouring. Next we have to prove that the above said coloring is acyclic. It is obvious that to form a bichromatic cycle both colours should occur at least twice. So in the above said colouring, the color classes $c_k, 4 \le k \le n$ never induce a 2-chromatic cycle (it occur only once in the colouring procedure). Now we need to examine the subgraphs induced by $\langle c_i, c_i \rangle$ for i = 1, 2 and j = 2, 3 with $i \neq j$ whether they induce a 2-chromatic cycle or not.

Case 1. If i=1 and j=2, then the sub graph induced by $\langle c_1, c_2 \rangle$ is a tree with n-3 pendent vertices, which is clearly a forest.

Case 2. If i = 1 and j = 3, then the subgraph induced by $\langle c_1, c_3 \rangle$ is the disjoint union of P_2 with itself. That is it forms a linear forest.

Case 3. If j=2 and j=3, then the subgraph induced by $\langle c_2, c_3 \rangle$ is the union of a tree with n-3 isolated vertices, which also form a forest.

Thus any pair of the colour class will never induce a 2-chromatic cycle in the graph.

Therefore, $a \begin{bmatrix} C & K_{1,n} \end{bmatrix} = n, n \ge 3$.

Note: $a \begin{bmatrix} C & K_{1,n} \end{bmatrix} = 3$, for n = 2.

Example

4. ACYCLIC COLOURING OF $T(K_{1n})$

4.1 Theorem

For any star graph $K_{1,n}$ the acyclic chromatic number, $a[T(K_{1,n})] = n+1$.

Proof

Conside the star graph $K_{1,n}$ with $V K_{1,n} = v_1, v_2, v_3, ..., v_n, v$ with v as the root vertex. In Total graph $T(K_{1,n})$, by the definition each edge vv_i for $1 \le i \le n$ of $K_{1,n}$ is subdivided by the vertex e_i in $T(K_{1,n})$ and the vertices $e_1 e_2 e_3 \dots e_n v$ induce a clique of $\operatorname{in} T(K_{1,n})$. order n+1i.e., $V(M(K_{1,n})) = \{v_i / 1 \le i \le n\} \bigcup \{e_i / 1 \le i \le n\} \bigcup \{v\}$. Now assign a proper colouring to these vertices as follows. Consider a colour class $C = c_1, c_2, c_3, \dots, c_{n+1}$. Assign the colour c_i to the vertex e_i for i=1,2,..n and the colour c_{n+1} to the vertex v. Now assign the colour c_1 to v_i for $2 \le i \le n$ and c_2 to the remaining vertex v_1 . The colouring is minimum, as $T(K_{1,n})$ contains a clique of order n+1, minimum n+1 colours are required for its proper colouring. In the above said colouring, the color classes $c_k, 3 \le k \le n+1$ never induce a 2-chromatic cycle (it occur only once in the colouring procedure). Also the subgraphs induced by $\langle c_1, c_2 \rangle$ is the union of a path P_3 with n-2 isolated vertices, which is a forest. Thus any pair of the colour class will never induce a 2-chromatic cycle in the graph. That is the colouring is acyclic.

Thus $a[T(K_{1,n})] = n+1$.

Example

Figure 3

$$a[T(K_{1,n})] = n+1$$
.

5. REFERENCES

- N. Alon, C. McDiarmid, and B. Reed. "Acyclic colourings of graphs". Random Structures and Algorithms, 2, 277– 288, 1990.
- [2] J.A. Bondy and U.S.R. Murty, *Graph theory with Applications*. MacMillan, London, 976.
- [3] O. V. Borodin "On acyclic colorings of planar graphs", Discrete Math. 25, 211–236, 1979.
- [4] C. B. Boyer, *A history of mathematics*. New York, Wiley. 1968.
- [5] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*. New York: Springer-Verlag, 1989.

- [6] Danuta Michalak, On middle and total graphs with coarseness number equal 1, Spinger Verlag Graph Theory, Lagow (1981) proceedings, Berlin heidelberg, New York, Tokyo, pp. 139-150.
- [7] Douglas B .West, Introduction To Graph Theory, Second Edition, Prentice-Hall of India Private Limited, New Delhi-(2006).
- [8] H. Eves, An Introduction to the History of Mathematics. New York: CBS College. 1983.
- [9] Frank Harrary, Graph theory, Narosa Publishing House-(2001).
- [10] Frank Harary, Gray Chartrand, Ping Zhang, Geodetics sets in graphs. Discuss math. Graph Theory 20(2000)pp.129-138.
- [11] D. Frank Hsu, Harmonious Labelling of Windmill Graphs and Related Graphs, Journal of Graph Theory, Vol. 6 (1982), pp. 85-87.
- [12] Graph Colouring, Wikipedia, the free Encyclopedia.
- [13] B. Grünbaum. "Acyclic colorings of planar graphs". Israel J. Math., 14(3), 390–408, 1973.
- [14] K. Thilagavathi, K.P. Thilagavathy and N. Roopesh, "The Achromatic colouring of graphs", Electronic notes in Discrete mathematics, 153-156, 33, 2009.
- [15] K. Thilagavathi and Vernold Vivin.J, "Harmonious Colouring of Total graphs, n-Leaf, Central Graphs and circumdetic Graphs" PhD Thesis, Kongunadu Arts and Science college, Coimbatore.
- [16] K.Thilagavathi and Vernold Vivin.J and Akbar Ali.M.M, "On Harmonious colouring of Central graphs" Advances and Appications in Discrete Mathematics, 2, 17-33, 2009.
- [17] Vivin J. Vernold, M. Venkatachalam and Ali M.M. Akbar, "A note on achromatic coloring of star graph families" 23:3 (2009), 251–255.