
International Journal of Computer Applications (0975 – 8887)
Volume 7– No.3, September 2010

28

 Methods for Mining Cross Level Association Rule

In Taxonomy Data Structures

V. Venkata Ramana1

Asst. Prof., CSE Dept.,
SSITS, Rayachoty,

Kadapa (dist), A.P. INDIA.

 M V Rathnamma2
Asst.Prof., CSE Dept.,

SSITS, Rayachoty.
Kadapa (dist), A.P. INDIA.

A. Rama Mohan Reddy 3

Professors, Dept. Of CSE,
SVU College of Engineering,

Tirupati, A.P., INDIA.

ABSTRACT

Mining of association rules mainly focuses at a single
conceptual level. In a large database of transaction, where
each transaction consists of a set of items, and taxonomy on
items, it is required to find out the associations at multiple
conceptual levels. In this paper, multilevel association rule
mining algorithms have been evaluated and compared.

And we will discover additional strong association rules in
taxonomy data items. The performance indices used for
performance comparisons are minimum support threshold
at different levels and varying number of transactions.

Index Terms:

 Association rules, Multilevel Association Rules, Cross

 Level Association Rules

1. INTRODUCTION
Discovery of interesting association relationships among
huge amounts of data will help marketing, decision making,
and business management. Therefore, mining association
rules from large data sets has been a focused topic in recent

research into knowledge discovery in databases or Data
mining.

 Data mining refers to extracting or “Mining”

knowledge from large amount of data. Association rule

mining finds interesting association among a large set of

data items.

1.1 Synthetic database:

Synthetic data generation for multilevel association rule

mining requires generation of the synthetic transaction

databases as a first step. The second step involves

generation of the item description tables to build taxonomy

over the items. Synthetic transaction databases are

generated using a randomized item sets generation

algorithm [2]. The following are the basic parameters [1] of

the generated databases.

1. D No. of transaction.

2. T Average size of the transactions.

3. l Average size of the maximal potentially large item

 sets.

4. L maximal potentially large item sets.

5. N Number of Items.

To create a dataset, the size of the next transaction is

determined first. The size is picked from a Poisson

distribution with mean p equal to T. If each item is chosen

with the same probability p, and there are N items, the

expected number of items in a transaction is given by a

binomial distribution with parameters N and p, and is

approximated by a Poisson distribution with mean Np.

Then items to the transaction are assigned. Each

transaction is assigned a series of potentially large item

sets. If the large item set on hand does not fit in the

transaction, the item set is put in the transaction anyway in

half the cases, and the item set is moved to the next

transaction in the rest of the cases. ref[7]

Large item sets are chosen from a set Г of such item sets.

The number of item sets in Г is set to L. There is an inverse

relationship between L and the average support for

potentially large item sets. An item set in Г is generated by

first picking the size of the item set from a Poisson

distribution with mean μ equal to I. Items in the first item

set are chosen randomly. To model the phenomenon that

large item sets often have common items, some fraction of

items in subsequent item sets are chosen from the previous

item set generated. An exponentially distributed random

variable with mean equal to the correlation level is used to

decide this fraction for each ref[2]

Each item set in Г has a weight associated with it, which

corresponds to the probability that this item set will be

picked. This weight is picked from an exponential

distribution with unit mean, and is then normalized so that

the sum of the weights for all the item sets in Г is 1. The

next item set to be put in the transaction is chosen from Г

by tossing an L-sided weighted coin, where the weight for a

side is the probability of picking the associated item

The discovery of interesting association relationship

among huge amount of business transaction records can

help in business decision making processes like catalogue

design, cross marketing, and loss leader analysis

 Mining of association rules mainly focuses at a

single conceptual level. There are applications which need

to find associations at multiple conceptual levels. In a large

database of transaction, where each transaction consists of

a set of items, and a taxonomy (is-a hierarchy) on items, it

is required to find out associations between items at any

level of taxonomy

To explore multilevel association rule mining [7],

one needs to provide Data at multiple-level association at

multiple levels of abstraction and efficient methods for

multiple level rule mining. The first requirement can be

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.3, September 2010

29

satisfied by providing concept taxonomies from the

primitive level concepts to higher levels.

 Second requirement requires efficient methods for

multilevel rule mining. The following fig is the example:

Fig 1: Example for Vehicle

2. Multilevel Association Rules

To discover the mining multilevel of association rules

[7] from a large set of transaction data, we assume that the

database contains: A transaction data set, T , which consists

of a set of transactions <Ti, {Ap,…, Aq}>, where Ti is a

transaction identifier, Ai I (for i = p,…,q), and I is the

set of all the data items in the item data set And The

description of the item data set, D, which contains the

description of each item in I in the form of <Ai,

description>, where Ai I.

Definitions related to multilevel association rules are

given as follows:

 Definition 2.1 An item set, A, is a set of data items {Ai,

Aj}, where Ai, Aj I. The support of an item set A in a set

S, σ(A/S), is the number of transactions (in S) which contain

A versus the total number of transactions in S. The

confidence of A B in S, (A B/S), is the ratio of

σ(A υ B / S) versus σ(A/S), i.e., the probability that item set

B occurs in S when item set A occurs in S.

 Definition 2.2 An item set A is large in set S at level l if

the support of A is no less than its corresponding minimum

support threshold σ′l. The confidence of a rule “A

B/S”' is high at level l if its confidence is no less than its

corresponding minimum confidence threshold 'l.

Definition 2.3 A rule “A B/S” is strong if “A υ B/S”

is B/S” is large at the current level and the confidence of

“A B/S” is high at the current level.

3. Multilevel Association Rule Mining

 Algorithms

 A method [7] for mining multilevel association uses a

taxonomy information encoded transaction table. The

taxonomy information presented in of Figure 1. is encoded

as a sequence of digits in the transaction table T[1] (Table

1).

TID Items

T1 {111, 121, 211, 221}

T2 {111, 211, 222, 323}

T3 {112, 122, 221, 411}

T4 {111, 121}

T5 {111, 122, 211, 221, 413}

T6 {211, 323, 524}

T7 {323, 411, 524, 713}

Table 1. Encoded Transaction Table: T[1]

For example, the item „2% Foremost milk‟ is encoded as

„112‟ in which the first digit, „1‟, represents „milk‟ at

level1, the second, „1‟, for „2% (milk)‟ at level2, and the

third, „2‟, for the brand „Foremost‟ at level3.

The derivation of the large itemsets at level 1 proceeds as
follows. Let the minimum support at level 1 be 4
transactions (i.e., minsup[1] = 4). Notice that since the total
number of transactions is fixed, the support is expressed in
an absolute value rather than a relative percentage, for
simplicity. The level1 large 1itemset table L[1,1] can be
derived by scanning T[1], registering support of each
generalized item, such as 1**, …, 4**, if a transaction
contains such an item is smaller than the minimum support,
which results in L[2,1] of Figure 3.3.

Level1 minsup = 4

Level1 large 1itemsets:

L[1,1]

Level1 large 2itemsets:

L[1,2]

Itemset Support

{1**, 2**} 4

Itemset Support

{1**} 5

{2**} 5

Filtered transaction table:

T[2]

TID Items

T1

T2

T3

T4

T5

T6

{111, 121, 211, 221}

{111, 211, 222}

{112, 122, 221}

{111,121}

{111, 122, 211, 221}

{211}

Fig 2: Large item sets at level 1 and filtered transaction

table T[2].

Similarly, the large 2itemset table L[2 2] is formed by the
combinations of the count and removing those whose
support entries in L[2,1], Together with the support derived
from T[2], filtered using the corresponding threshold level-

Vehi
cles

Two
Wheeler

Four
Wheeler

Scoot

ers
Cycle

s
Bus Cars

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.3, September 2010

30

2 1-itemsets L[2,1] can be derived from the filtered
transaction

and filtering out those whose accumulated support count is

lower than the minimum support. L[1, 1] is then used to

filter out (1) any item which is not large in a transaction,

and (2) the transactions in T[1] that contain only small

items. This results in the filtered transaction table T[2] of

Figure 3.2. Moreover, since there are only two entries in

L[1,1], the level1 large2 itemset table L[1,2] may contain

only 1 candidate item {1**, 2**}, which is supported by 4

transactions in T[2].

According to the definition of multilevel association

rules (MLassociation rules), only the descendants of the

large items at level1 (i.e., in L[1,1]) are considered as

candidates for the level2 large table T[2] by accumulating

the support.

Likewise, the large 3itemset table L[2,3] is formed by

the combinations of the entries in L[2,2]. Finally, L[3,1]

and L[3,2] at level 3 are computed similarly, with the

results shown in Figure 3.3. The computation terminates

since there is no deeper level in the hierarchy. The

derivation also terminates when an empty large 1itemset

table is generated at any level [7].

The above discussion leads to the following algorithms

for mining strong ML-association rules.

1. D No. of transaction.

2. T Average size of the transactions.

3. l Average size of the maximal potentially large

itemsets.

4. L maximal potentially large itemsets.

5. N Number of Items.

3.1 Algorithm ML_T2L1

Algorithm ML_T2L1 [7] finds

multilevel large itemsets for mining strong

MLassociation rules in a transaction database.

Input:

T[1], a hierarchyinformationencoded and taskrelevant set
of a transaction database, in the format

Output: Multiple level large itemsets.

Method: A top down, progressively deepening process

which collects large itemsets at different conceptual levels

as follows.

 Starting at level 1, derive for each level l, the

large kitems sets, L[l, k], for each k, and the set of large

itemsets, LL[l] (for all k’s).

1. for (l := 1; L[l, 1] != and l < max level; l++) do

{

2. if l = 1 then {

3. L[l, 1] := get_large_1_itemsets(T[1], l);

4. T[2] := get_filtered_t_table(T[1], L[1, 1]);

5. }

6. 6. else L[l, 1] := get_large_1_itemsets(T[2],

l);

7. L[l, k] := {c Ck | c.support ≥ minsup[l]}

8. . }

9. 15. LL[l] := k L[l, k];

10. 16. }

3.2 Algorithm ML_T1LA

 This algorithm [7] uses only one encoded transaction
table T[1], that is, no filtered encoded transaction table
T[2] will be generated in the processing. At the first scan of
T[1], large 1itemsets L[l, 1] for every level l can be
generated in parallel, because the scan of an item i in each
transaction t may increase the count of the item in every

L[l, 1] if its has not been incremented by t. After the
scanning of T[1], each item in L[l, 1] whose parent (if l >
1) is not a large item in the higher level large 1itemsets or
whose support is lower than minsup[l] will be removed
from L[l, 1].

After the generation of large 1itemsets for each level l,

the candidate set for large 2itemsets for each level l can be

generated by the apriorigen algorithm[4]. The get subsets

function will be processed against the candidate sets at all

the levels at the same time by scanning T[1] once, which

calculates the support for each candidate itemset and

generates large 2itemsets L[l, 2]. Similar processes can be

processed for stepbystep generation of large kitemsets

L[l, k] for k > 2.

This algorithm avoids the generation of a new encoded

transaction table. Moreover, it needs to scan T[1] once for

generation of each large kitemset table. Since the total

number of scanning of T[1] will be k times for the largest

kitemsets, it is a potentially efficient algorithm. However,

T[1] may consist of many small items which could be

wasteful to be scanned or examined. Also, it needs a large

space to keep all C[l] which may cause some page

swapping.

The algorithm is summarized as follows.

It uses only one encoded transaction table T[1]. The

input and output specifications are the same as Algorithm

ML_T2L1. The procedure is described as follows.

1.{L[1,1],…,L[max_l,1]}:=get_all_large_1_itemsets(T[

1]);

2. more_results := true;

3. for (k := 2; more_results; k++) do begin

4. more_results := false;

5. for (l := 1; l < max_l; l++) do

6. if L[l, k] != then begin

7. C[l] := get_candidate_set(L[l, k-1]);

3.3 Algorithm ML_TML1

 This algorithm [7] generates multiple encoded

transaction tables T[1], T[2], …, T[max_l + 1], where

max_l is the maximal level number to be examined in the

processing.

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.3, September 2010

31

Level2 minsup = 3

Level2 large 1itemsets:

 L[2,1]

Level2 large 2itemsets:

 L[2,2]

Itemset Support

{11*}

{12*}

{21*}

{22*}

5

4

4

4

Itemset Support

{11*, 12* }

{11*, 21* }

{11*, 22* }

{12*, 22* }

{21*, 22* }

4

3

4

3

3

Level2 large 3itemsets:

 L[2,3]

Level3 minsup = 3

Level3 large 1itemsets:

 L[3,1]

Level3 large 2itemsets:

 L[3,2]

Itemset Support

{11*, 12*,
22* }

{11*, 21*,
22* }

3

3

Itemset Support

{111}

{211}

{221}

4

4

3

Itemset Support

{111,
211}

3

Fig 3: Large item sets at level 2 and level 3

and filtered.

This algorithm first scans T[1] and generates the large

1itemsets L[1,1] which are used to filter out small items

from T[1] . T[2] results from this filtering process and is

used in the generation of large kitemsets at level 1.

On the other hand, Algorithm ML_T2L1, T[2] is not

repeatedly used in the processing of the lower levels.

Instead, a new table T[l + 1] is generated at the processing

of each level l, for l > 1. This is done by scanning T[l] to

generate the large 1itemsets L[l, 1] which are used to filter

out small items from T[l]. T[[l + 1] results from this

filtering process and is used in the generation of large

kitemsets (for k > l) at level l and table T [l + 2] at the

next lower level.

The algorithm is summarized as follows.

It uses multiple encoded transaction tables. The input

and output specifications are the same as Algorithm

ML_T2L1.

1. for (l :=1;L[l, 1]!= and l < max_level; l ++) do

begin

2. if l = 1 then L[l, 1] := get_large_1_itemsets(T[1], l);

3. {T[l + 1], L[l + 1, 1]}:=get_filtered_T_table and

 large_1_itemsets(T[l],L[l,1]);

4. for (k := 2; L[l, k - 1] != ; k++) do begin

5. Ck := get_candidate_set(L[l, k - 1]);

6. for each transaction t T [l + 1] do begin

7. Ct := get_subsets(Ck, t);

8. for each candidate c Ct do c.support++;

9. end

10. L[l, k] := {c Ck|c.support – minsup[l]}

11. end

12. LL[l] :=
k L[l , k];

3.4 Algorithm ML_T2LA

 This algorithm [7] uses the same two encoded

transaction tables T[1] and T[2] as in Algorithm

ML_T2L1, but it integrates some optimization techniques

considered in the algorithm ML_T1LA.

The scan of T[1] first generates large 1itemsets L[1 1].

An additional scan of T[1] using L[1,1] will generate a

filtered transaction table T[2] and all the large 1itemset

tables for all the remaining levels, i.e., L[l, 1] for 1 max_l

by incrementing the count of every L[l,1] at the scan of

each transaction and removing small items and the items

whose parent is small from L[l, 1] at the end of the scan of

T[1].

The candidate set for the large 2itemsets at each level l

can then be generated by the apriorigen algorithm [1], and

the get subsets routine will extract the candidate sets for all

the level l (l 1) at the same time by scanning T[2] once.

This will calculate the support for each candidate itemset

and generate large 2item-sets L[l,2] for l 1.

Similar processes proceed stepbystep which generates

large kitemsets L[l,k] for k>2 using the same T[2]. This

algorithm avoids the generation of a group of new filtered

transaction tables. It scans T[1] twice to generate T[2] and

the large 1itemset tables for all the levels. It then scans

T[2] once for the generation of each large kitemset, and

thus scans T[2] in total k-1 times for the generation of all

the kitemsets, where k is the largest such kitemsets

available. Since kitemsets generation for k > 1 is

performed on T[2] which may consist of much less items

than T[1], the algorithm could be a potentially efficient

one.

The algorithm is summarized as follows.

It uses two encoded transaction tables. The input and

output specifications are the same as Algorithm ML_T2L1.

The procedure is described as follows.

1. L[1, 1] := get_large_1_itemsets(T[1], 1);

2 .{T[2],L[2,1],…,L[max_l,1]}:=get_filtered_t_table_an

 d_l large_1_itemsets(T[1], L[1,1]);

3. more_results := true;

4. for (k := 2; more_results; k++) do begin

5. more_results := false;

6. for (l := 1; l < max_l; l++) do

7. if L[l, k -1] != then begin

4. Cross Level Association Rules

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.3, September 2010

32

The multilevel association rule mining

algorithms generate association rules which are confined

to level-by-level relation in a hierarchy. But there may

be strong association rules among the concepts at

“cross-level” of a hierarchy. For example, “2% foremost

milk → Wonder bread” in which the two concepts are at

different levels of a hierarchy shown in Figure 2.

 This can be achieved by making modifications

to multilevel association rule mining algorithms. The cross-

level association rule mining require the itemsets like

<{112, 2*1}>. Let minimum support at each level be:

minsup =4 at level1, and minsup = 3 at levels 2 and 3. The

derivation of the large itemsets at level 1 proceeds in the

same way as in algorithm ML_T2L1. Which generates the

large itemsets tables L[1, 1] and L[1, 2] at level 1, and the

same filtered transaction table T[2], as shown in Figure 3.1.

Fig 3.1: Crosslevel large itemsets at level 3.

Level2 minsup = 3
Level2 large 1itemset:

L[2,1]

Level2 large 3itemset:
L[2,3]

Itemset Support

{11*}
{12*}
{21*}
{22*}

5
4
4
4

Itemset Support

{11*, 12*, 22*}

{21*, 22*, 1**}
3
3

Fig 3.2: Crosslevel large itemsets at level 2.

 This can be computed, with the results

shown in Figure 3.4. The entries which pair with their own

ancestors are not included since it is contained implicitly in

their corresponding 2itemsets. For example, <{11*, 12*},

4> in L[2,2] implies <{11*, 12*,1**,} 4> in L[2,3].

Finally, the large 1itemset table at level 3, L[3,1], should

be the same as Figure 3.3. The large 2itemset table

includes more itemsets since these items can be paired with

higher level large items, which leads to the large 2itemsets

L[3, 2] and large 3itemsets L[3, 3] as shown in Figure 3.2.

Similarly, the itemsets {111,11*} and {111, 1**} have

the same support as {111} in L[3, 1] and are thus not

included in L[3,2]. Since the large kitemset (for k > 1)

tables do not explicitly include the pairs of items with their

own ancestors, since the existence of a specialized item

always indicates the existence of an item in that class, such

as “2% milk → milk(100%)”, such trivial rules should be

eliminated.

 The below are some of tables and corresponding graphs

Item Table # node at level-

1

M2 M2

I1 10 10 10

I2 20 8 5

Database S T

DB1 4 100,000

DB2 6 1000,00

Table 2: Parameters setting of the item description

(hierarchy) tables

 Two database settings are used, DB1, with

average size (the number of frequent items) of potentially

frequent itemsets of 4 and average transaction size (the

number of items) of 10 and DB2, with average size of

potentially frequent itemsets of 6 and average transaction

size of 20.

 Two item tables are used in the testing:

the first one, I1, has 10, 10, and 10 branches at the levels 1,

2, and 3 respectively; whereas the second, I2, has 20, 8, and

5 branches at corresponding levels.

5. PERFORMANCE COMPARISON
The testing results presented in this section are on the two

synthetic transaction databases: DB1I1, which uses the

database setting DB1 and the item description table I1, and

DB2I2, which uses the databases setting DB2 and the item

description table I2.

5.1 Minimum Support Threshold at Level 1

 Figure 5.1(a) shows the running time of the four

algorithms on DB1I1 respect to the minimum support

Level3 minsup = 3
Level3 large 1itemset:

L[3,1]

Itemset Support

{111}

{211}
{221}

4

4
3

Level3 large 3itemset:
 L[3,3]

Itemset Support

{111, 21*, 22*} 3

Level3 large 2itemset:

L[3,2]

Itemset Support

{111, 211}
{111, 21*}
{111, 22*}
{111, 2**}
{11*, 22*}
{1**, 2**}

3
3
3
4
3
3

Itemset Support

{11*, 12*}
{11*, 21*}
{11*, 22*}
{12*, 22*}

{21*, 22*}
{11*, 2**}
{12*, 2**}
{21*, 1**}
{22*, 1**}

4
3
4
3

3
4
3
3
4

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.3, September 2010

33

threshold at level 1.

The minimum supports at level 2 and 3 are fixed to 2

percent and 0.75 percent. The level 2 minimum support

threshold is set to 2 percent which means no filtering of

items in transactions at level 2. Therefore, T[3] has the

same size of T[2] and the derivation of T[3] is a waste.

The four curves in Figure 5.1(a) show that ML_T2LA

has the best performance, while the ML_T1LA has the

worst among the four algorithms under the threshold setting

70 percent and 60 present at level 1. This is because the

first threshold filters out many small 1itemsets at level 1

which results in a much smaller filtered transaction table

T[2]. The filter mechanism at level 2 is not so strong, so

parallel derivation of L[l, k] without derivation of T[3] and

T [4] is more beneficial. These lead ML_T2LA to be the

best algorithm. And ML_T1LA is the worst algorithm since

it consults a large T[1] at every level.

Fig 5.1(a): Minimum support at level 1 for database

DB1I1

Fig 5.1(b): Minimum Support at level 1 for database

DB 2I2

5.2 Minimum Support Threshold at Level 2

Figure 5.2(a) shows the running time for the four

algorithms on DB1I1 with respect to the minimum support

threshold at level 2. The minimum supports at levels 1 and

3 are fixed to 60 percent and 0.75 percent.

The stronger the filtering mechanism, the more

1itemsets are filtered out at each level, and the smaller

large 1itemsets are resulted in. Thus ML_TML1, which

generates a sequence of filtered transaction tables, has the

lowest cost at the minimum support threshold 14 percent

and 11 percent but the highest cost at threshold 8 percent, 5

percent and 2 percent since few items are filtered out. On

the contrary, ML_T2L1 has highest cost at 14 and 11

percent. This because the first threshold is not big enough

and lower level also has not reasonable small threshold. So

few small 1-itemsets filtered out at level 1 which results in

almost same sized transaction table T[2] and generation of

multiple filtered transaction tables are beneficial at lower

levels. ML_T2LA performing the best at threshold

8percent, 5percent and 2 percent because the threshold is

reasonable small at the lower levels.

Figure 5.2(b) shows the running time of the four

algorithms with respect to the minimum support threshold

at level 2 but using different database DB2I2. The

minimum supports at level 1 and 3 are fixed to 55 percent

and 1 percent.

Fig 5.2(a): Minimum support at level 2 for database

DB1I1

Fig 5.2(b) Minimum Support at level 2 for database

DB 1I1

Minimum Support

Minimum Support

T
im

e
in

 s
ec

o
n

d
s

Minimum Support

T
im

e
in

 s
ec

o
n

d
s

Minimum Support

T
im

e
in

 s
ec

o
n

d
s

T
im

e
in

 s
ec

o
n

d
s

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.3, September 2010

34

5.3 Minimum Support Threshold at Level 3

Figure 5.3(a) shows the running time of the four

algorithms on DB1I1 with respect to the minimum support

threshold at level 3. The minimum supports at levels 1 and

2 are fixed to 60 percent and 2 percent. Ref[5]

The four curves in Figure 5.3(a) show that ML_T2LA

performing the best because the first threshold filters outs

many small 1-itemsets at first level 1 which results in a

much smaller filtered transaction table T[2]. The thresholds

at lower levels are reasonable small so parallel derivation

of L[l, k] without derivation of T[3] and T[4] is more

beneficial. This leads ML_T2LA to be the best algorithm

and ML_T1LA and ML_TML1 are the worst algorithms.

Figure 5.3(b) shows the running time of the four

algorithms with respect to the minimum support threshold

at level 2 but using different database DB2I2. The

minimum supports at level 1 and 3 are fixed to 55 percent

and 1 percent.

The above figures show two interesting features. First, the
relative performance of the four algorithms is highly
relevant to the threshold setting especially the level 1 and
level 2 thresholds. Thus, based on the effectiveness of a
threshold, a good algorithm can be selected to achieve good
performance. Second, the parallel derivation of L[l, k] is
very useful and the derivation of T[2] is usually beneficial.
Results show ML_T2LA is always the best or the second
best algorithm

6. Extended Algorithms

The input and output specifications are the same as

Algorithm ML_T2L1. The procedure is described as

follows. ref[5]

1. for (l := 1; L[l, 1] != and l < max level; l++) do {

2. if l = 1 then {

3. L[l, 1] := get_large_1_itemsets(T[1], l);

4. T[2] := get_filtered_t_table(T[1], L[1, 1]);

5. }

6. else L[l, 1] := get_large_1_itemsets(T[2], l);

7. for (k := 2; L[l, k - 1] != ; k++) do {

L[l, k];

 8.}

Fig 5.3(a): Minimum support at level 3 for database
DB1I1

Fig 5.3(b): minimum support at level3 fordatabase
DB2I2

Function get_cross_candidate_set at line 8 generates

cross level large item sets that combined with candidate

item sets in line 9.

Comparison of extended algorithm with ml_t2l1

Fig 5.4: Performance with threshold (60, 8, 1)

 Multilevel rules can provide richer information

than single level rules, and represents the

hierarchical nature of the knowledge discovery

process.

 The relative performance of the four algorithms

is highly relevant to the threshold setting

especially the level 1 and level 2 thresholds but

relatively independent of the number of

transactions used in the testing. Thus, based on

the effectiveness of a threshold, a good algorithm

can be selected to achieve good performance.

Fig 5.5 Performance with threshold (65, 2,1)

T
im

e
in

 s
ec

o
n

d
s

Minimum Support

R
el

at
iv

e
ti

m
e

Number of
transactions

Minimum Support

T
im

e
in

 s
ec

o
n

d
s

Minimum Support

T
im

e
in

 s
ec

o
n

d
s

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.3, September 2010

35

Fig 5.6: Generating a synthetic database

Fig 5.7: Selecting the stored database

8. REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for
mining Association Rules”, Proceeding of the 20th
VLDB Conference, Chile, Sept. 1994, Page(s): 487-
499.W.-K. Chen, Linear

[2] Networks and Systems (Book style). Belmont,
CA: Wadsworth, 1993, pp. 123–135.

[3] M. S. Chen, J. Han, and P. S. Yu, “Data Mining:
An Overview from a Database Prespective”, IEEE
Transaction on Knowledge and Data Engineering,
Vol. 8, No. 4, July/Aug 1996, Page(s): 866-833.

[4] Charu C. Aggarwal and Philip S. Yu, “Mining
Associations with the Collective Strength Approach”,

IEEE Transaction on Knowledge and Data
Engineering, Vol. 13, No. 6, Nov./Dec. 2001, Page(s):
863-873.

[5] fig Liu, Wynne Hsu and Yiming Ma, “Mining
Association Rules with Multiple Minimum Support”,
IEEE Transaction on Knowledge and Data
Engineering, Vol 13, No. 1, Jan/Feb 2001, Page(s):
64-78.

[6] N. Rajkumar, M.R. Karthik and S. N. Sivananadam,
“Fast Algorithm for Mining Multilevel Association
Rules”, IEEE Transaction on Knowledge and Data
Engineering, Vol 13, No. 1, Nov./Dec 2003, Page(s):
64-69.

[7] Edith Cohen, Mayur Datar and Shinji Fajiwara,
“Finding Interesting Associations without support
Pruning”, IEEE Transaction on Knowledge and Data

Engineering, Vol 13, No. 1, Jan/Feb 2001, Page(s):
64-78.

[8] Charu C. Aggarwal and Philip S. Yu, “Mining

Associations with the Collective Strength Approach”,
IEEE Transaction on Knowledge and Data
Engineering, Vol. 13, No. 6, Nov./Dec. 2001, Page(s):
863-873.

