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ABSTRACT 

Mining of association rules mainly focuses at a single 
conceptual level. In a large database of transaction, where 
each transaction consists of a set of items, and taxonomy on 
items, it is required to find out the associations at multiple 
conceptual levels. In this paper, multilevel association rule 
mining algorithms have been evaluated and compared.  

And we will discover additional strong association rules in 
taxonomy data items. The performance indices used for 
performance comparisons are minimum support threshold 
at different levels and varying number of transactions.  
 

Index Terms: 

    Association rules, Multilevel Association Rules, Cross    

    Level Association Rules 

1. INTRODUCTION 
Discovery of interesting association relationships among 
huge amounts of data will help marketing, decision making, 
and business management. Therefore, mining association 
rules from large data sets has been a focused topic in recent 

research into knowledge discovery in databases or Data 
mining. 

 Data mining refers to extracting or “Mining” 

knowledge from large amount of data. Association rule 

mining finds interesting association among a large set of 

data items.   

1.1 Synthetic database: 
 

Synthetic data generation for multilevel association rule 

mining requires generation of the synthetic transaction 

databases as a first step. The second step involves 

generation of the item description tables to build taxonomy 

over the items. Synthetic transaction databases are 

generated using a randomized item sets generation 

algorithm [2]. The following are the basic parameters [1] of 

the generated databases. 

1. D No. of transaction. 

2. T Average size of the transactions. 

3. l Average size of the maximal potentially large item   

     sets. 

4. L maximal potentially large item sets. 

5. N Number of Items. 

To create a dataset, the size of the next transaction is 

determined first. The size is picked from a Poisson 

distribution with mean p equal to T. If each item is chosen 

with the same probability p, and there are N items, the 

expected number of items in a transaction is given by a 

binomial distribution with parameters N and p, and is 

approximated by a Poisson distribution with mean Np. 

Then items to the transaction are assigned. Each 

transaction is assigned a series of potentially large item 

sets. If the large item set on hand does not fit in the 

transaction, the item set is put in the transaction anyway in 

half the cases, and the item set is moved to the next 

transaction in the rest of the cases. ref[7] 

Large item sets are chosen from a set Г of such item sets. 

The number of item sets in Г is set to L. There is an inverse 

relationship between L and the average support for 

potentially large item sets. An item set in Г is generated by 

first picking the size of the item set from a Poisson 

distribution with mean μ equal to I. Items in the first item 

set are chosen randomly. To model the phenomenon that 

large item sets often have common items, some fraction of 

items in subsequent item sets are chosen from the previous 

item set generated. An exponentially distributed random 

variable with mean equal to the correlation level is used to 

decide this fraction for each ref[2] 

Each item set in Г has a weight associated with it, which 

corresponds to the probability that this item set will be 

picked. This weight is picked from an exponential 

distribution with unit mean, and is then normalized so that 

the sum of the weights for all the item sets in Г is 1. The 

next item set to be put in the transaction is chosen from Г 

by tossing an L-sided weighted coin, where the weight for a 

side is the probability of picking the associated item 

The discovery of interesting association relationship 

among huge amount of business transaction records can 

help in business decision making processes like catalogue 

design, cross marketing, and loss leader analysis  

 Mining of association rules mainly focuses at a 

single conceptual level. There are applications which need 

to find associations at multiple conceptual levels. In a large 

database of transaction, where each transaction consists of 

a set of items, and a taxonomy (is-a hierarchy) on items, it 

is required to find out associations between items at any 

level of taxonomy  

To explore multilevel association rule mining [7], 

one needs to provide Data at multiple-level association at 

multiple levels of abstraction and efficient methods for 

multiple level rule mining. The first requirement can be 
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satisfied by providing concept taxonomies from the 

primitive level concepts to higher levels. 

   Second requirement requires efficient methods for 

multilevel rule mining. The following fig is the example: 

 

 

 

 

 

 

 

 

 

 

  
           

 

 

Fig 1: Example for Vehicle 

 

2. Multilevel Association Rules 
 

To discover the mining multilevel of association rules 

[7] from a large set of transaction data, we assume that the 

database contains: A transaction data set, T , which consists 

of a set of transactions <Ti, {Ap,…, Aq}>, where Ti is a 

transaction identifier, Ai  I (for i =  p,…,q), and I is the 

set of all the data items in the item data set And The 

description of the item data set, D, which contains the 

description of each item in I in the form of <Ai,  

description>, where Ai  I.  

Definitions related to multilevel association rules are 

given as follows:  

   Definition 2.1 An item set, A, is a set of data items {Ai, 

Aj}, where Ai, Aj  I. The support of an item set A in a set 

S, σ(A/S), is the number of transactions (in S) which contain 

A versus the total number of transactions in S. The 

confidence of A  B in S, (A  B/S), is the ratio of 

σ(A υ B / S) versus σ(A/S), i.e., the probability that item set 

B occurs in S when item set A occurs in S. 

  

 Definition 2.2 An item set A is large in set S at level l if 

the support of A is no less than its corresponding minimum 

support threshold σ′l. The confidence of a rule “A  

B/S”' is high at level l if its confidence is no less than its 

corresponding minimum confidence threshold 'l. 

  

Definition 2.3 A rule “A  B/S” is strong if “A υ B/S” 

is B/S” is large at the current level and the confidence of 

“A B/S” is high at the current level. 

 

3. Multilevel Association Rule Mining            

     Algorithms 

 A method [7] for mining multilevel association uses a 

taxonomy information encoded transaction table. The 

taxonomy information presented in of Figure 1. is encoded 

as a sequence of digits in the transaction table T[1] (Table 

1).  

 

TID Items 

T1 {111, 121, 211, 221} 

T2 {111, 211, 222, 323} 

T3 {112, 122, 221, 411} 

T4 {111, 121} 

T5 {111, 122, 211, 221, 413} 

T6 {211, 323, 524} 

T7 {323, 411, 524, 713} 

Table 1. Encoded Transaction Table: T[1] 

For example, the item „2% Foremost milk‟ is encoded as 

„112‟ in which the first digit, „1‟, represents „milk‟ at 

level1, the second, „1‟, for „2% (milk)‟ at level2, and the 

third, „2‟, for the brand „Foremost‟ at level3.  

The derivation of the large itemsets at level 1 proceeds as 
follows. Let the minimum support at level 1 be 4 
transactions (i.e., minsup[1] = 4). Notice that since the total 
number of transactions is fixed, the support is expressed in 
an absolute value rather than a relative percentage, for 
simplicity. The level1 large 1itemset table L[1,1] can be 
derived by scanning T[1], registering support of each 
generalized item, such as 1**, …,  4**, if a transaction 
contains such an item is smaller than the minimum support, 
which results in L[2,1] of Figure 3.3.  

 

Level1 minsup = 4 

Level1 large 1itemsets: 

L[1,1] 

 

 

Level1 large 2itemsets: 

L[1,2] 

Itemset Support 

{1**, 2**} 4 
 

Itemset Support 

{1**} 5 

{2**} 5 

 

Filtered transaction table: 

T[2] 
 

TID Items 

T1 

T2 

T3 

T4 

T5 

T6 

{111, 121, 211, 221} 

{111, 211, 222} 

{112, 122, 221} 

{111,121} 

{111, 122, 211, 221} 

{211} 

       
Fig 2: Large item sets at level 1 and filtered transaction 

table T[2]. 

Similarly, the large 2itemset table L[2 2] is formed by the 
combinations of the count and removing those whose 
support entries in L[2,1], Together with the support derived 
from T[2], filtered using the corresponding threshold level-
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2 1-itemsets L[2,1] can be derived from the filtered 
transaction 

 

and filtering out those whose accumulated support count is 

lower than the minimum support. L[1, 1] is then used to 

filter out (1) any item which is not large in a transaction, 

and (2) the transactions in T[1] that contain only small 

items. This results in the filtered transaction table T[2] of 

Figure 3.2. Moreover, since there are only two entries in 

L[1,1], the level1 large2 itemset table L[1,2] may contain 

only 1 candidate item {1**, 2**}, which is supported by 4 

transactions in T[2]. 

According to the definition of multilevel association 

rules (MLassociation rules), only the descendants of the 

large items at level1 (i.e., in L[1,1]) are considered as 

candidates for the level2 large table T[2] by accumulating 

the support. 

Likewise, the large 3itemset table L[2,3] is formed by 

the combinations of the entries in L[2,2]. Finally, L[3,1] 

and L[3,2] at level 3 are computed similarly, with the 

results shown in Figure 3.3. The computation terminates 

since there is no deeper level in the hierarchy. The 

derivation also terminates when an empty large 1itemset 

table is generated at any level [7]. 

 

The above discussion leads to the following algorithms 

for mining strong ML-association rules.  

1. D No. of transaction. 

2. T Average size of the transactions. 

3. l Average size of the maximal potentially large 

itemsets. 

4. L maximal potentially large itemsets. 

5. N Number of Items. 

 

3.1 Algorithm ML_T2L1 

Algorithm ML_T2L1 [7] finds 

multilevel large itemsets for mining strong 

MLassociation rules in a transaction database. 

 

Input:  

T[1], a hierarchyinformationencoded and taskrelevant set 
of a transaction database, in the format 

Output: Multiple level large itemsets. 

  

Method: A top down, progressively deepening process 

which collects large itemsets at different conceptual levels 

as follows. 

   Starting at level 1, derive for each level l, the 

large kitems sets, L[l, k], for each k, and the set of large 

itemsets, LL[l] (for all k’s). 

 

1. for (l := 1; L[l, 1] !=  and l < max level; l++) do 

{  

2. if l = 1 then { 

3. L[l, 1] := get_large_1_itemsets(T[1], l);  

4. T[2] := get_filtered_t_table(T[1], L[1, 1]);  

5. } 

6. 6.       else   L[l, 1] := get_large_1_itemsets(T[2], 

l);  

7. L[l, k] := {c  Ck | c.support ≥ minsup[l]}  

8. .       } 

9. 15.       LL[l] :=  k L[l, k];  

10. 16. } 

 

3.2 Algorithm ML_T1LA  

           This algorithm [7] uses only one encoded transaction 
table T[1], that is, no filtered encoded transaction table 
T[2] will be generated in the processing. At the first scan of 
T[1], large 1itemsets L[l, 1] for every level l can be 
generated in parallel, because the scan of an item i in each 
transaction t may increase the count of the item in every 

L[l, 1] if its has not been incremented by t. After the 
scanning of T[1], each item in L[l, 1] whose parent (if l > 
1) is not a large item in the higher level large 1itemsets or 
whose support is lower than minsup[l] will be removed 
from L[l, 1].  

After the generation of large 1itemsets for each level l, 

the candidate set for large 2itemsets for each level l can be 

generated by the apriorigen algorithm[4]. The get subsets 

function will be processed against the candidate sets at all 

the levels at the same time by scanning T[1] once, which 

calculates the support for each candidate itemset and 

generates large 2itemsets L[l, 2]. Similar processes can be 

processed for stepbystep generation of large kitemsets 

L[l, k] for k > 2.  

This algorithm avoids the generation of a new encoded 

transaction table. Moreover, it needs to scan T[1] once for 

generation of each large kitemset table. Since the total 

number of scanning of T[1] will be k times for the largest 

kitemsets, it is a potentially efficient algorithm. However, 

T[1] may consist of many small items which could be 

wasteful to be scanned or examined. Also, it needs a large 

space to keep all C[l] which may cause some page 

swapping. 

The algorithm is summarized as follows.  

It uses only one encoded transaction table T[1]. The 

input and output specifications are the same as Algorithm 

ML_T2L1. The procedure is described as follows. 

 

1.{L[1,1],…,L[max_l,1]}:=get_all_large_1_itemsets(T[

1]);  

2. more_results := true;  

3. for (k := 2; more_results; k++) do begin  

4.        more_results := false;  

5.        for (l := 1; l < max_l; l++) do  

6.               if L[l, k] !=  then begin  

7.                 C[l] := get_candidate_set(L[l, k-1]);  

 

3.3 Algorithm ML_TML1  

             This algorithm [7] generates multiple encoded 

transaction tables T[1], T[2], …, T[max_l + 1], where 

max_l is the maximal level number to be examined in the 

processing. 
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Level2 minsup = 3  

Level2 large 1itemsets:  

              L[2,1]  

 

Level2 large 2itemsets:  

             L[2,2] 

 

 

 

Itemset Support 

{11*} 

{12*} 

{21*} 

{22*} 

5 

4 

4 

4 

Itemset Support 

{11*, 12* } 

{11*, 21* } 

{11*, 22* } 

{12*, 22* } 

{21*, 22* } 

4 

3 

4 

3 

3 

 

Level2 large 3itemsets:  

                 L[2,3]  

 

Level3 minsup = 3  

Level3 large 1itemsets:  

                 L[3,1]  

 

Level3 large 2itemsets:  

                L[3,2]  
 

Itemset Support 

{11*, 12*, 
22* } 

{11*, 21*, 
22* } 

3 

3 

Itemset Support 

{111} 

{211} 

{221} 

4 

4 

3 

Itemset Support 

{111, 
211} 

3 

 

Fig 3: Large item sets at level 2 and level 3 

and filtered. 

 

This algorithm first scans T[1] and  generates the large 

1itemsets L[1,1] which are used to filter out  small items 

from T[1] . T[2] results from this filtering process and is 

used in the generation of large kitemsets at level 1. 

On the other hand, Algorithm ML_T2L1, T[2] is not 

repeatedly used in the processing of the lower levels. 

Instead, a new table T[l + 1] is generated at the processing 

of each level l, for l > 1. This is done by scanning T[l] to 

generate the large 1itemsets L[l, 1] which are used to filter 

out  small items from T[l]. T[[l + 1] results from this 

filtering process and is used in the generation of large 

kitemsets (for k > l) at level l  and table T [l  + 2] at the 

next lower level.  

The algorithm is summarized as follows.  

It uses multiple encoded transaction tables. The input 

and output specifications are the same as Algorithm 

ML_T2L1.  

 

1. for (l :=1;L[l, 1]!=  and l < max_level; l ++) do 

begin  

2.   if l = 1 then L[l, 1] := get_large_1_itemsets(T[1], l);  

3.  {T[l  + 1], L[l  + 1, 1]}:=get_filtered_T_table and 

                                           large_1_itemsets(T[l],L[l,1]); 

4.          for (k := 2; L[l, k - 1]  != ; k++) do begin  

5.                 Ck := get_candidate_set(L[l, k - 1]);  

6.                 for each transaction t  T [l + 1] do begin  

7.                       Ct := get_subsets(Ck, t);  

8.            for each candidate c Ct  do c.support++;  

9.                 end  

10.               L[l, k] := {c  Ck|c.support – minsup[l]} 

11.         end  

12.         LL[l] :=
k L[l , k];  

 

3.4 Algorithm ML_T2LA 

                This algorithm [7] uses the same two encoded 

transaction tables T[1] and T[2] as in Algorithm 

ML_T2L1, but it integrates some optimization techniques 

considered in the algorithm ML_T1LA. 

The scan of T[1] first generates large 1itemsets L[1 1]. 

An additional scan of T[1] using L[1,1] will generate a 

filtered transaction table T[2] and all the large 1itemset 

tables for all the remaining levels, i.e., L[l, 1] for 1 max_l 

by incrementing the count of every L[l,1] at the scan of 

each transaction and removing small items and the items 

whose parent is small from L[l, 1] at the end of the scan of 

T[1].  

The candidate set for the large 2itemsets at each level l 

can then be generated by the apriorigen algorithm [1], and 

the get subsets routine will extract the candidate sets for all 

the level l (l  1) at the same time by scanning T[2] once. 

This will calculate the support for each candidate itemset 

and generate large 2item-sets L[l,2] for l 1. 

Similar processes proceed stepbystep which generates 

large kitemsets L[l,k] for k>2 using the same T[2]. This 

algorithm avoids the generation of a group of new filtered 

transaction tables. It scans T[1] twice to generate T[2] and 

the large 1itemset tables for all the levels. It then scans 

T[2] once for the generation of each large kitemset, and 

thus scans T[2] in total k-1 times for the generation of all 

the kitemsets, where k is the largest such kitemsets 

available. Since kitemsets generation for k > 1 is 

performed on T[2] which may consist of much less items 

than T[1], the algorithm could be a potentially efficient 

one.  

The algorithm is summarized as follows.  

It uses two encoded transaction tables. The input and 

output specifications are the same as Algorithm ML_T2L1. 

The procedure is described as follows. 

 

1. L[1, 1] := get_large_1_itemsets(T[1], 1);  

2 .{T[2],L[2,1],…,L[max_l,1]}:=get_filtered_t_table_an  

    d_l  large_1_itemsets(T[1], L[1,1]);  

3. more_results := true;  

4.  for (k := 2; more_results; k++) do begin  

5.        more_results := false;  

6.      for (l := 1; l < max_l; l++) do  

7.             if L[l, k -1] !=  then begin  

 

4. Cross Level Association Rules 
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The multilevel association rule mining 

algorithms generate association rules which are confined 

to level-by-level relation in a hierarchy. But there may 

be strong association rules among the concepts at 

“cross-level” of a hierarchy. For example, “2% foremost 

milk → Wonder bread” in which the two concepts are at 

different levels of a hierarchy shown in Figure 2.  

             This can be achieved by making modifications 

to multilevel association rule mining algorithms. The cross-

level association rule mining require the itemsets like 

<{112, 2*1}>. Let minimum support at each level be: 

minsup =4 at level1, and minsup = 3 at levels 2 and 3. The 

derivation of the large itemsets at level 1 proceeds in the 

same way as in algorithm ML_T2L1. Which generates the 

large itemsets tables L[1, 1] and L[1, 2] at level 1, and the 

same filtered transaction table T[2], as shown in Figure 3.1.  

 

Fig 3.1: Crosslevel large itemsets at level 3. 

 

 
Level2 minsup = 3  
Level2 large 1itemset: 

L[2,1] 
 
 
 
 
 
 
 

Level2 large 3itemset: 
L[2,3] 

 

Itemset Support 

{11*} 
{12*} 
{21*} 
{22*} 

5 
4 
4 
4 

Itemset Support 

{11*, 12*, 22*} 

{21*,  22*, 1**} 
3 
3 

 

Fig 3.2: Crosslevel large itemsets at level 2. 
 

                      This can be computed, with the results 

shown in Figure 3.4. The entries which pair with their own 

ancestors are not included since it is contained implicitly in 

their corresponding 2itemsets. For example, <{11*, 12*}, 

4> in L[2,2] implies <{11*,  12*,1**,} 4>  in L[2,3]. 

Finally, the large 1itemset table at level 3, L[3,1], should 

be the same as Figure 3.3. The large 2itemset table 

includes more itemsets since these items can be paired with 

higher level large items, which leads to the large 2itemsets 

L[3, 2] and large 3itemsets L[3, 3] as shown in Figure 3.2.  

Similarly, the itemsets {111,11*} and {111, 1**} have 

the same support as {111} in L[3, 1] and are thus not 

included in L[3,2]. Since the large kitemset (for k > 1) 

tables do not explicitly include the pairs of items with their 

own ancestors, since the existence of a specialized item 

always indicates the existence of an item in that class, such 

as “2% milk → milk(100%)”, such trivial rules should be 

eliminated. 

 The below are some of tables and corresponding graphs 

                        

Item Table # node at level-

1 

M2 M2 

I1 10 10 10 

I2 20 8 5 

                   

Database S T 

DB1 4 100,000 

DB2 6 1000,00 

 

Table 2: Parameters setting of the item description 

(hierarchy) tables 

 

                       Two database settings are used, DB1, with 

average size (the number of frequent items) of potentially 

frequent itemsets of 4 and average transaction size (the 

number of items) of 10 and DB2, with average size of 

potentially frequent itemsets of 6 and average transaction 

size of 20.  

                       Two item tables are used in the testing: 

the first one, I1, has 10, 10, and 10 branches at the levels 1, 

2, and 3 respectively; whereas the second, I2, has 20, 8, and 

5 branches at corresponding levels. 

 

5. PERFORMANCE COMPARISON 
The testing results presented in this section are on the two 

synthetic transaction databases: DB1I1, which uses the 

database setting DB1 and the item description table I1, and 

DB2I2, which uses the databases setting DB2 and the item 

description table I2.  

 

5.1 Minimum Support Threshold at Level 1 

 

 Figure 5.1(a) shows the running time of the four 

algorithms on DB1I1 respect to the minimum support 

Level3 minsup = 3  
Level3 large 1itemset:  

L[3,1]  

Itemset Support 

{111} 

{211} 
{221} 

4 

4 
3 

 

 
 

 

Level3 large 3itemset:  
                 L[3,3]  

Itemset Support 

{111, 21*, 22*} 3 

 

 
Level3 large 2itemset:  

L[3,2]  

Itemset Support 

{111, 211} 
{111, 21*} 
{111, 22*} 
{111, 2**} 
{11*, 22*} 
{1**, 2**} 

3 
3 
3 
4 
3 
3 

 

Itemset Support 

{11*, 12*} 
{11*, 21*} 
{11*, 22*} 
{12*, 22*} 

{21*, 22*} 
{11*, 2**} 
{12*, 2**} 
{21*, 1**} 
{22*, 1**} 

4 
3 
4 
3 

3 
4 
3 
3 
4 



International Journal of Computer Applications (0975 – 8887)  
Volume 7– No.3, September 2010 

33 

 

threshold at level 1.  

The minimum supports at level 2 and 3 are fixed to 2 

percent and 0.75 percent. The level 2 minimum support 

threshold is set to 2 percent which means no filtering of 

items in transactions at level 2. Therefore, T[3] has the 

same size of T[2] and the derivation of T[3] is a waste.  

The four curves in Figure 5.1(a) show that ML_T2LA 

has the best performance, while the ML_T1LA has the 

worst among the four algorithms under the threshold setting 

70 percent and 60 present at level 1. This is because the 

first threshold filters out many small 1itemsets at level 1 

which results in a much smaller filtered transaction table 

T[2]. The filter mechanism at level 2 is not so strong, so 

parallel derivation of L[l, k] without derivation of T[3] and 

T [4] is more beneficial. These lead ML_T2LA to be the 

best algorithm. And ML_T1LA is the worst algorithm since 

it consults a large T[1] at every level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1(a): Minimum support at level 1 for database          

DB1I1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1(b): Minimum Support at level 1 for database           

DB 2I2 

 

5.2 Minimum Support Threshold at Level 2 

Figure 5.2(a) shows the running time for the four 

algorithms on DB1I1 with respect to the minimum support 

threshold at level 2. The minimum supports at levels 1 and 

3 are fixed to 60 percent and 0.75 percent.  

The stronger the filtering mechanism, the more 

1itemsets are filtered out at each level, and the smaller 

large 1itemsets are resulted in. Thus ML_TML1, which 

generates a sequence of filtered transaction tables, has the 

lowest cost at the minimum support threshold 14 percent 

and 11 percent but the highest cost at threshold 8 percent, 5 

percent and 2 percent since few items are filtered out. On 

the contrary, ML_T2L1 has highest cost at 14 and 11 

percent. This because the first threshold is not big enough 

and lower level also has not reasonable small threshold. So 

few small 1-itemsets filtered out at level 1 which results in 

almost same sized transaction table T[2] and generation of 

multiple filtered transaction tables are beneficial at lower 

levels. ML_T2LA performing the best at threshold 

8percent, 5percent and 2 percent because the threshold is 

reasonable small at the lower levels.  

Figure 5.2(b) shows the running time of the four 

algorithms with respect to the minimum support threshold 

at level 2 but using different database DB2I2. The 

minimum supports at level 1 and 3 are fixed to 55 percent 

and 1 percent.  

 

 
Fig 5.2(a): Minimum support at level 2 for database  

DB1I1  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.2(b) Minimum Support at level 2 for database 

DB 1I1 
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5.3 Minimum Support Threshold at Level 3 

Figure 5.3(a) shows the running time of the four 

algorithms on DB1I1 with respect to the minimum support 

threshold at level 3. The minimum supports at levels 1 and 

2 are fixed to 60 percent and 2 percent.  Ref[5] 

The four curves in Figure 5.3(a) show that ML_T2LA 

performing the best because the first threshold filters outs 

many small 1-itemsets at first level 1 which results in a 

much smaller filtered transaction table T[2]. The thresholds 

at lower levels are reasonable small so parallel derivation 

of L[l, k] without derivation of T[3] and T[4] is more 

beneficial. This leads ML_T2LA to be the best algorithm 

and ML_T1LA and ML_TML1 are the worst algorithms.  

Figure 5.3(b) shows the running time of the four 

algorithms with respect to the minimum support threshold 

at level 2 but using different database DB2I2. The 

minimum supports at level 1 and 3 are fixed to 55 percent 

and 1 percent.  

The above figures show two interesting features. First, the 
relative performance of the four algorithms is highly 
relevant to the threshold setting especially the level 1 and 
level 2 thresholds. Thus, based on the effectiveness of a 
threshold, a good algorithm can be selected to achieve good 
performance. Second, the parallel derivation of L[l, k] is 
very useful and the derivation of T[2] is usually beneficial. 
Results show ML_T2LA is always the best or the second 
best algorithm 

6. Extended Algorithms  

The input and output specifications are the same as 

Algorithm ML_T2L1. The procedure is described as 

follows. ref[5] 

 

1. for (l := 1; L[l, 1] !=  and l < max level; l++) do {  

2.        if l = 1 then { 

3.        L[l, 1] := get_large_1_itemsets(T[1], l);  

4.      T[2] := get_filtered_t_table(T[1], L[1, 1]);  

5.                      } 

6.      else   L[l, 1] := get_large_1_itemsets(T[2], l);  

7.        for (k := 2; L[l, k - 1] != ; k++) do { 

L[l, k];  

 8.} 

 

Fig 5.3(a): Minimum support at level 3 for database  
DB1I1 

 

Fig 5.3(b): minimum support at level3 fordatabase 
DB2I2 

 

Function get_cross_candidate_set at line 8 generates 

cross level large item sets that combined with candidate 

item sets in line 9. 

Comparison of extended algorithm with ml_t2l1 
 

 

Fig 5.4: Performance with threshold (60, 8, 1) 

 Multilevel rules can provide richer information 

than single level rules, and represents the 

hierarchical nature of the knowledge discovery 

process. 

 The relative performance of the four algorithms 

is highly relevant to the threshold setting 

especially the level 1 and level 2 thresholds but 

relatively independent of the number of 

transactions used in the testing. Thus, based on 

the effectiveness of a threshold, a good algorithm 

can be selected to achieve good performance. 

 

Fig 5.5 Performance with threshold (65, 2,1) 
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Fig 5.6: Generating a synthetic database 

 

      
Fig 5.7: Selecting the stored database 
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