
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.3, September 2010

5

Model Transformation from Ontology Model to Content

Analysis Model
Wafaa Alakwaa

Computer Science Dept.
Cairo University

Giza , Cairo 12613, Egypt

Akram Salah
Computer Science Dept.

Cairo University
Giza , Cairo 12613, Egypt

ABSTRACT

This paper introduces a technique to extend existing Web

engineering methodologies to develop the semantic web

applications. We investigate the use of ontology in the domain

analysis for the development of web applications. The

contribution of this paper is the automatic generation of Content

Analysis Model from the Ontology Model. This technique makes

a straight forward mapping between Ontology Definition

Metamodel (ODM) model’s elements and the Content Analysis

Model’s elements. We further show how this technique could be

integrated with many web engineering methodologies, which are

based on systematic and automatic chain of transformation

during all the development phases. The requirement model that

is generated from the Ontology model guarantees that an

application terminologies are unified all over the web

engineering process.

General Terms

Semantic web, Ontology , Ontology Modeling, Model

Transformation , Web Engineering.

Keywords

Unified Modeling Language (UML),Model Driven

Architecture(MDA), Ontology, Semantic Web, Ontology

Definition Metamodel(ODM), Web Ontology Language (OWL),

Web Engineering.

1. INTRODUCTION
Software development techniques are continuously evolving with

the goal of solving the main problems that still affect the

building and maintenance of software systems: time, costs and

error-proneness. Model-driven development (MDD) approaches

aim to reduce at least some of these problems providing

techniques for the construction of models and the specification of

transformation rules, tool support, and automatic generation of

code and documentation. The method of resolution of MDD is to

first build models, which are independent of the platform,

transforming them in later stages to technological dependent

models, and to achieve automatic model and code generation

based on transformation rules [1].

Web applications vary widely: from small-scale, short-lived

services to large-scale enterprise applications distributed across

the Internet and corporate intranet. Web Engineering is a new

area of Software Engineering, which focuses on the development

of Web Systems. It concerns applying systematic, disciplined and

quantifiable approaches to develop, operate, and maintain of

such Web applications [3]. Several approaches have been

proposed for the Web engineering process. These methods

provide specific modeling elements for the analysis and design

and most of them define a proprietary notation used for the

graphical representation of the elements [4].

Most of these Web engineering methodologies are based on

separation-of-concerns to define strict roles in the development

process and to enable parallel development . The most frequently

used models are the content model , the navigation model and

presentation model [4].

Ontologies provide shared domain conceptualizations

representing knowledge, by concepts , their properties and

relations between these concepts, to model the problem domain

as well as the solution domain. The Web Ontology Language

(OWL)is the most prominent for Semantic Web applications

among ontology languages, providing a class definition language

for ontologies [5].

To be able to design a Semantic Web application, a new model is

introduced, the ontology model. In this paper we show how this

new model can be used to extend current Web engineering

techniques to develop Semantic Web applications. We call the

engineering of ontology based Web applications a ” Semantic

Web Engineering”. The contribution of this paper is the

automatic generation of Content Analysis Model from the

Ontology Model. Most of the current web engineering

methodology propose specific processes to support the systematic

or semiautomatic development of Web applications. However,

most of the existing web methodologies start the development

with modeling requirement and few of the existing Web

methodologies start the development cycle with a detailed

requirements analysis.

In this paper we propose a semantic web engineering, which

starts with the development of ontology model. This model is

built using MDA standards technique that were proposed by

many researchers. Here we use our profile that was originally

created to handle the practical implementation of ontology

concepts with a straight forward mapping between ontology and

Object oriented concepts. From this ontology model, the Content

Analysis Model is being automatically generated. This

transformation will lead to create an application that is clear of

any ambiguous, with no redundant terminologies. Requirements

that are automatic generated from the ontology model, will have

no contradiction in its content. Designer and developers then will

mailto:wafaa_alakwaa@yahoo.com%0eAkram
mailto:wafaa_alakwaa@yahoo.com%0eAkram

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.3, September 2010

6

not use different terminologies for the same concept, neither

apply the same term for more than one entity.

The rest of the paper will be organized as follows, section 2 will

give an overview of the model driven development and the main

Web engineering concepts. An overview about Semantic web and

ontology modeling will be shown in section Our methodology to

model ontology using class diagram, with our developed UML

profile will be shown in section .. Then in section 4, will show

the model to model transformation techniques and languages.

Section 5 will show the transformation steps with one-to-one

mapping between Ontology Definition Metamodel (ODM) and

UML Metamodel concepts. Finally section 6 concludes our work

and mention similar approaches to use ontology in the web

engineering process.

2. OVERVIEW OF MODEL DRIVEN

DEVELOPMENT ,WEB ENGINEERING

AND REQUIREMENT ANALYSIS

Model-Driven Software Development (MDSD) is becoming a

widely accepted approach for developing complex distributed

applications. MDSD advocates the use of models as the key

artifacts in all phases of development, from system specification

and analysis, to design and implementation. They focus on the

construction of models, specification of transformation rules, tool

support and automatic generation of code and documentation.

The central idea of MDD is to separate the platform independent

design from the platform specific implementation of applications

delaying as much as possible the dependence on specific

technologies. Therefore, MDD advocates the construction of

platform independent models and the support of model

transformations. Software development process then can be

viewed as a chain of model transformations [1].

A model is a coherent set of formal elements describing

something built for some purpose that is amenable to a particular

form of analysis. A model is a simplified representation of a

software system and is useful if it allows for a better

understanding of the system. Models are built to offer different

views of a same system. These views need to be refined and

integrated and used to produce code, when possible in an

automated way, i.e. with the help of transformation rules. Models

are represented using a modeling language. The goal of MDD

can be summarized as to provide better separation of concerns,

automatic generation of models and code, and traceability

between code and models [6].

Web Engineering is a specific domain in which MDD can be

successfully applied. Existing model-driven Web engineering

(MDWE) approaches already provide excellent methodologies

and tools for the design and development of Web applications.

They address different concerns using separate models

(navigation, presentation, content, etc.), and are supported by

model transformation that produce most of the application's Web

pages and logic based on the models [1]. However, most of the

existing web methodologies start the development with modeling

requirement and few of the existing Web methodologies start the

development cycle with a detailed requirements analysis [4].

Web engineering community has proposed several languages,

architectures, methods and processes for the development of Web

applications. In particular, methods for modeling such systems

were developed, for example Hera , OOHDM , OO-H, OOWS ,

UWE , WebML , and W2000 . They focus on the specification of

analysis and design models for Web systems, for instance on the

construction of navigation and adaptation models. However, the

model transformation aspects were neglected by most of these

methods [2].

Requirements play a key role in the development of Web

applications. But they are often not described properly and may

be specified in an ambiguous, vague, or incorrect manner.

Typical consequences of poor requirements are low user

acceptance, planning failures, or inadequate software

architectures. There exists two main type of requirements,

functional and nonfunctional requirements. Functional

Requirements (FR) specify the capabilities and services a system

is supposed to offer. Functional requirement are categorized to

many classes, Data requirements, Interface requirements,

Navigational requirements, Personalization requirements and

Transactional requirements. Data requirements, which is an

important type of the functional requirement, also known as

conceptual requirements or content requirements, establish how

content is represented as a model, showing relationships between

concepts and properties accompanied with each concept related

to the application domain. Non-functional requirements act to

constraint the solution, e.g. portability requirements; reuse

requirements, usability requirements, availability requirements,

performance requirements, etc. [7].

UML techniques are being used in the production of a

requirements analysis model for web applications. UML is now

fast becoming an industry standard, has OMG (Object

Management Group) acceptance, and a rich set of resources and

software development tools available [8].

Some UML-based methodologies suggest starting the analysis

process with requirement modeling. They starts the development

with creating a class diagram describing the real world entities

and concepts in the problem domain, using the name Domain

Model for this preliminary class diagram. The general class

diagram, which describes the domain is an important basis and a

glossary for creating use cases that describe the functional

requirements [9].

The study in [10] investigated the possible synergetic values and

relationships between the use case and class diagrams in the

context of requirements analysis. This study used theories from

cognitive psychology as its theoretical and conceptual foundation.

The results showed that the use case diagrams and class

diagrams depict different aspects of the problem domain, they

have very little overlap in the information captured, and both are

necessary in requirements analysis.

The experiment study shown in [9] expected that creating a class

diagram prior to defining the functional requirements with use

cases should yield better results, i.e. better class diagrams and

better use cases. This is because objects are more

"tangible"/"stable" than use cases; users can identify and

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.3, September 2010

7

describe more easily the objects they are dealing with and their

attributes than functions or use cases of the sought system. On

the other hand, functions are not "tangible" and may be vague.

3. OVERVIEW OF SEMANTIC WEB AND

OWL ONTOLOGY.

The goal of the semantic web is to be "a web talking to

machines", i.e. in which machines can provide a better help to

people because they can take advantage of the content of the

Web. The information on the web should thus be expressed in a

meaningful way accessible to computers. The semantic web can

also be thought of as an infrastructure for supplying the web with

formalized knowledge in addition to its actual informal content

[11].

An ontology expresses, for a particular domain, the set of terms,

entities, objects, classes and the relationships between them, and

provides formal definitions and axioms that constrain the

interpretation of these terms. An ontology permits a rich variety

of structural and nonstructural relationships, such as

generalization, inheritance, aggregation, and instantiation and

can supply a precise domain model for software applications

[12]. Ontologies are central to the semantic web because they

allow applications to agree on the terms that they use when

communicating. They are a key factor for enabling

interoperability in the semantic web. Ontologies will have to

grow and develop with the semantic web and this needs support.

Ontologies aim at modeling and structuring domain knowledge

that provides a commonly agreed understanding of a domain,

which may be reused and shared across applications and groups

of people [11].

The semantic Web architecture is a functional, non-fixed

architecture [13]. Barnes-Lee defined three distinct levels that

incrementally introduce expressive primitives: metadata layer,

schema layer and logical layer Languages that support this

architecture [14]. Figure 1 shows the main 3 layers of the

semantic web architecture, where each of these layers is based on

a technology that plays a distinct role in deploying and reusing

learning objects on the Semantic Web. Metadata layer based on

XML and RDF, schema layer based on RDF schema and finally

the logical layer that is based on OWL [15].

Figure 1: OWL in the Semantic Web Architecture [16].

The Web Ontology Language, which is a W3C effort, is the

recent and complete language for describing ontology. The OWL

language provides three increasingly expressive sublanguages

designed for use by specific communities of implementers and

users. The OWL Lite supports the primarily classification

hierarchy and simple constraint features. OWL DL supports the

maximum expressiveness without losing computational

completeness and decidability of reasoning systems. OWL Full is

meant for maximum expressiveness and the syntactic freedom of

RDF with no computational guarantees [17].

3.1 Ontology Model.

The importance and use of ontology was expanded from being a

basic building block of the Semantic web [18], to participate in

many software applications and the critical semantic foundation

for many rapidly expanding technologies such as software agents,

e-commerce and knowledge management [19]. This importance

caused for many new tools to be developed to accelerate and aid

in building , representation, design and construction of domain

ontologies [20]. Most of the current Semantic Web ontologies are

developed in AI laboratories. Because of this, the use of

ontologies by Software engineers professionals and researchers

can be seen as an additional learning experience, and in some

cases, of considerably great effort.

Researchers have investigated that a strong coupling exists

between the knowledge engineering and software engineering

phases of a knowledge-based system. These researches tried to

converge between MDA standards and ontology developments.

Applying MDA techniques in developing ontologies has been

discussed, focusing on what is common among them [21]. The

Object Management group (OMG) ,as a consortium which

develops standards for various aspects of software engineering

which are widely used in industry including UML, has published

a RFP (Request for Proposal) that tries to define a suitable

language for modeling Semantic Web ontology languages in the

context of MDA. This RFP was responsible for modeling Web

Ontology Language, which is a W3C effort. This metamodel will

make ontology being used in a computing application. Ontology

then could be represented as some sort of computer-readable data

structure [22].

For this metamodel to be used with UML tools, we have been

adapted a UML profile named “Ontology Modeling profile” [33],

so all the ODM concepts can be mapped directly to the UML

metamodel concepts, especially for those related to statement and

individuals. For more detail about our profile reader refers to

[33]

4. MODEL TO MODEL

TRANSFORMATION.

Transformations are vital for the success of the MDA approach.

Expressed exaggeratedly, transformations lift the purpose of

models from documentation to first class artifacts of the

development process [23].

Model-to-model transformations translate between source and

target models, which can be instances of the same or different

metamodels. Most existing MDA tools provide only model-to-

code transformation, which they use for generating PSMs (in this

case being just the implementation code) from PIMs. Model to

Model transformation can be used when bridging large

abstraction gaps between PIMs and PSMs. It facilitate generating

intermediate models rather than go straight to the target PSM

[24].

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.3, September 2010

8

The basic idea of model transformation is presented in Figure 2

where (at the bottom) a transformation operation Mt takes a

model Ma as the source model and produces a model Mb as the

target model. This operation Mt is probably the most important

operation in model engineering. Being models, Ma and Mb

conform to metamodels MMa and MMb. Usually, the

transformation Mt has complete knowledge of the source

metamodel MMa and the target metamodel MMb. Furthermore,

the metamodels MMa and MMb conform to a metametamodel,

such as the OMG's MOF which in turn conforms to itself [25].

Czarnecki et al. propose a possible taxonomy for model

transformation approaches [24]. We will only discuss here the

model to model transformation classification approaches. Direct-

manipulation approaches can access an internal model

representation via an Application Programming Interface (API)

for a particular programming language, such as Java. Relational

approaches are declarative approaches based on mathematical

relations. Basically, a relation is specified by defining constraints

over the source and target elements of a transformation. QVT

and ATL support the relational approach and additionally

provide imperative constructs, i.e. they are hybrid approaches.

Graph-Transformation-Based Approaches are declarative

approaches based on the theoretical work on graph

transformations. Typed, attributed, labeled graphs are

particularly suitable to represent UML-like models. Structure-

Driven Approaches have two distinct phases: the first phase is

concerned with creating the hierarchical structure of the target

model, whereas the second phase sets the attributes and

references in the target. The overall framework determines the

scheduling and application strategy; users are only concerned

with providing the transformation rules.Hybrid approaches

combine different techniques from the previous categories. In a

hybrid rule, the source and/or target pattern are complemented

with a block of imperative logic, which is run after the

application of the target pattern [24].

The Atlas Transformation Language (ATL) is a hybrid approach.

ATL is a hybrid language, i.e. it provides a mix of declarative

and imperative constructs. The LHS of a fully declarative rule

(so-called source pattern) consist of a set of syntactically typed

variables with an optional OCL constraint as a filter or

navigation logic. The RHS of a fully declarative rule (so-called

target pattern) contains a set of variables and some declarative

logic to bind the values of the attributes in the target elements

[24].

ATL Development Tools (ADT) is developed under the ATL

Eclipse/GMT subproject. ADT is composed of the ATL

transformation engine and the ATL Integrated Development

Environment (IDE): an editor, a compiler and a debugger. ATL

contains a mixture of declarative and imperative constructs [24].

ATL is applied in a transformational pattern shown in Figure 2.

In this pattern a source model Ma is transformed into a target

model Mb. The transformation is driven by a transformation

definition (or a transformation program)written in the ATL

language. The transformation definition is a model. The source

and target models and the transformation definition conform to

their metamodels MMa, MMb, and ATL respectively. The

metamodels conform to the MOF meta-meta-model [27].

Figure2 : Model transformation pattern\cite{ATL08}}

ATL is inspired by the OMG QVT requirements and builds upon

the OCL formalism. The choice of using OCL is motivated by its

wide adoption in MDE and the fact that it is a standard language

supported by OMG and the major tool vendors. ATL is a hybrid

language, i.e. it provides a mix of declarative and imperative

constructs [27].

5. TRANSFORMING ONTOLOGY MODEL

TO REQUIREMENTS MODEL

Based on the Ontology Modeling Profile given in Section 3.1,

we define our approach of deriving the system requirement

models from its ontology models. The approach is based on

metamodel mappings, i.e. transformations rules are defined to

map the ontology model elements from the ontology Modeling

Profile elements.

The transformation implements the MDA model transformation

pattern, as shown in Figure 3. Both metamodels are specified

using the MOF language, which is also an OMG standard. Figure

3 shows how a requirement model is derived from an ontology

model by means of the metamodel-based transformations. Note

that the generated requirement model is a first draft as its

completion may require additional information, partially

depending on the developer's decisions.

Figure 3: Transformation from Ontology Model to

Requirement Model with ATL language.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.3, September 2010

9

In an ontology model, the main block is a "graph", which is

mapped to a "model" in a requirement model. An "ontology", in

an ontology model serves as a "package" containing related

concepts and their interrelations with each others. "OWLclass"

refers to every concept that is worth to be modeled in an ontology

model, we map it to a UML "class" in a requirement model. For

more clarity, we have implemented the museum concepts as an

example to show how concepts are mapped from Ontology model

to the requirement model. In the museum example, from the owl

concepts modeled using the Ontology modeling profile as shown

in Figure 4,we have generated the classes (painter, painting,

museum, artifact and artist) as a content analysis UML class

diagram, see Figure 5.

Figure 4: Ontology Model : partial OWL classes in the

Museum example

In ATL, the rule that mapped the OWLClass to the UML class is

simple as shown in the rule named OWLClass below:

Figure 5:T he resulted classes , attributes and associations in

the Requirement Model of the museum example.

DatatypeProperties in an ontology model refer to a relation

between the owlclasses (the property's domain) and a primitive

types (e.g. Integer, Float, Boolean , String,..etc) which is the

property range). In a Content Analysis model, we map them to

attributes of a class in the UML class diagram. Attributes in the

requirement model are being deduced from many resources. One

of them is from the datatypeProperties , as explained above.

These datatypeProperties are attached to the owl classes via

domain and range stereotypes properties as shown in Figure 4

and Figure 6.

Figure6 : Ontology Model : DatatypeProperties in the

museum example.

The code that is used to collect every datatypeproperties and

transform them to Attributes , is shown below. In this code we

used the lazy rule "thisModule.dtp2umlP(e)" which is

responsible for constructing attributes via getting the name and

type of them from the source model. Note that the property

ownedAttribute in the UML metamodel refers to the attributes

owned by a class.

Attributes in a UML class are also deduced from the

relationships with other classes such as, unionOf, InterssectionOf

ComplementOf, disjointWith or EquivelentWith. The attributes

generated from these dependencies in the Ontology model are

accompanied with the previous generated ownedAttribute, as

shown below:

Where the lazy rule named thisModule.suppU2Prp(e) is

responsible for constructing attributes via setting name of the

attribute as "Union Of" and the type with the dependency's

stereotyped "unionOf" supplier.

rule OWLClass{

from oc : ML!Class(oc.hasStereotype('OWLClass'))

to c : UML!Class

name <- oc.name

isAbstract <- oc.isAbstract……}

ownedAttribute<-if oc.hasStereotype('Union') then

oc.getSuppliers('UnionOf') -> collect(e |

thisModule.suppU2Prp(e))

else

Sequence{}

 endif,

ownedAttribute <- oc.getDatatypeProperty ->

collect(e|thisModule.dtp2umlP(e))

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.3, September 2010

10

On the other hand, objectProperties in ontology model relate

individuals with each other (domain and range of these

properties are individuals). In requirement model this is modeled

as associations shown as in Figure 7 .

Figure7: Ontology Model : ObjectProperties in the museum

example.

The code used to generate the UML class's associations from the

Ontology Model's objectProperties is shown below

Note that srcProp and dmnProp are deduced as type of classes

participate in the ObjectProperty's domain and range

respectively.

Individuals in an ontology models are instances of owlclasses,

where they can be mapped to objects in UML. Individuals that

participate in a statement are either subject or object, and in this

case, slots are used to link individuals with their

datatypeproperties or objectProperties. Slots in an Ontology

model exists in three places. The first is in individuals, by which

individuals are the subject of these properties, and these slots are

stereotyped "subjectSlots". The last element which could have

slots is the objectProperties instances, by which it refer to its

object , and these slots are named "objectSlots". The individuals

of the museum example as shown in Figure 8, are transformed to

objects as shown in Figure 9.classes are linked to their

datatyeProperties instances, slots then are stereotyped "dataSlot".

Slots also appear in navigable links, that connect an individuals

with their objectProperties instances;

Figure 8: Ontology Model : ObjectProperties in the museum

example.

Part of the code responsible for transforming individuals to UML

objects is shown below in the rule named "individual":

Figure 9: Ontology Model : Individuals in the museum example

rule objProperty{

 from opc : UML!Class(

 opc.hasStereotype('ObjectProperty'))

 to assoc : UML!Association (

 name <- ' Association _ ' +

thisModule.AssocID.toString() + ' '+ opc.name ,

ownedEnd <- srcProp,

ownedEnd <- dmnProp)}
rule individual

{

from individual : UML!InstanceSpecification(

individual.classifier >first().oclIsTypeOf(UML!Class)

and(individual.hasStereotype('OWLClass')or

individual.hasStereotype('Individual')or

individual.hasStereotype('Subject') or

individual.hasStereotype('Object')))

to object : UML!InstanceSpecification(

name <- individual.name,

lassifier <- individual.classifier ,

slot <- individual.slot)}

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.3, September 2010

11

.

And the rule that collect each object's slots is shown below:

Note that ATL is a transformation language that allows only

reading the source model , and writing only the target model, so

we make two steps transformation ATL file that run in an Ant

build file with the command "superImpose" , so it is also

possible to superimpose several transformation modules on top of

each other [28].

Note that our transformation used UML metamodel as the

metamodel for both source and target metamodels. The source

model is accompanied with our Ontology Modeling Profile [33].

The transformation rules check the stereotype of the UML

element before transforming to the target elements. More about

using ATL and UML profiles could be found in the ATL site

[29]. The examples are modeled using Magicdraw 16.6

enterprize edition.

6. CONCLUSION AND RELATED WORK

Many approaches have been proposed to use ontology in the

development process of current web engineering methodologies.

Xu. et al., in [30], presented a formal approach for extracting

OWL DL ontologies from existing UML class diagrams. This

approach establishes a precise conceptual correspondence

between the two models and relies on a semantics-preserving

UML-to-OWL translation algorithm. The proposed approach

shows automatic ontology extraction from UML Class Diagrams.

In [31], Reif et al. have introduced a technique to extend the

existing Web engineering methodologies to develop semantically

annotated Web pages. They defined a mapping from XML

Schema to ontologies, called WEESA, that can be used to

automatically generate RDF meta-data from XML content

documents. They also showed how to integrate the WEESA

mapping into an Apache Cocoon transformer to easily extend

XML based Web applications to semantically annotated Web

application. In [32], Gregory et al. presented an approach to the

representation of requirements based on an ontology framework,

which is the requirement ontology. In the requirement ontology,

structures of a sentence are described as relations between

sentence components. And meanings of key words are explained

by WordNet. Thus, semantics of natural language requirements

(NLRs) are captured for further processing.

In our approach, we proposed generating the requirement models

from the prior modeled Ontology model. This approach provide

an extension to the current web engineering, in order to be able

to develop semantic web engineering. Defining transformation

rules at metamodel level we achieve a model driven development

approach. We present such transformations rules for an early

phase in the development life cycle of Web system, which is the

basis for an automated generation of analysis model from

ontology model. The source modeling elements for our

transformations are instances of any ontology model based on our

profile specialized for modeling ontology concepts in accordance

to the OMG's ODM. The targets of our transformations is the

content analysis model that can be used for further web

engineering process. The transformation rules are specified in the

ATL (Atlas Transformation Language) language. For the success

of applying MDD in web engineering techniques we aim to make

automatic generation of the Web Ontology Language (OWL)

from UML model based on our profile (OMP).This conversion

transforms an ontology from its OMP into OWL description.

Accordingly, this generated OWL model can be shared with

ontological engineering tools (i.e. Protege).

7. REFERENCES
[1]. N. Moreno, J. R. Romero, and A. Vallecillo, “An

overview of model-driven web engineering and the mda,”

2008, pp. 353-382.

[2]. N. Koch, “Classi_cation of model transformation

techniques used in uml-based web engineering,” Institution of

Engineering and Technology, vol. 1, no. 3, pp. 98-111, 2007.

[3]. Y. Deshpande, A. Murugesan, S.and Ginige, S.

Hansen, D. Schwabe, M. Gaedke, and B. White, ”Web

engineering,” Web Engineering, vol. 1, no. 1, pp. 003-017,

2002.

[4]. M. J. Escalona and N. Koch, “ Metamodelling the

requirements of web systems.” in Proc. of 2nd International

Conference on Web Information Systems and Technologies,

Setubal, Portugal,, April 2006., pp. 310-317.

[5]. C. W. E. T. Fernando Silva Parreiras, TobiasWalter,

“Model-driven software development with semantic web

technologies,” Tutorial at the 6th European Conference on

Modelling Foundations and Applications ECMFA 2010, Paris,

France, June 15-18, 2010.

[6]. J. M. Stephen, N. C. Anthony, and F. Takao, “Model-

driven development,” IEEE Software, pp. 14-18, Sep./Oct.

2003.

[7]. M. J. Escalona and N. Koch, “ Requirements

engineering for web applications: A comparative study.” Web

Engineering, vol. 2, no. 3, pp. 192-212, Feb. 2004.

[8]. R. Vidgen, “Requirement analysis and uml, use cases

and class diagrams,” Computing and Control Engineering, pp.

12-17, 2003.

[9]. P. Shoval, A. Yampolsky, and M. Last, “Class

diagrams and use cases,” in Proc. of the Workshop on

Exploring Modeling Methods for Systems Analysis and Design

(EMMSAD'06),J. Krogstie, T. Halpin, and H. E. Proper, Eds.

Namur University Press, Namur, Belgium, EU, 2006, pp. 453-

464.

rule slot {

 from s : UML!Slot

 to os : UML!Slot(

definingFeature <- s.getDF(),

value <- if s.value.oclIsTypeOf(UML!InstanceValue)

 then

 let a : UML!InstanceSpecification= s.value.Instace in

a.slot ->first().value

 else s.value

 endif)

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.3, September 2010

12

[10]. K. Siau and L. Lee, “Are use case and class diagrams

complementary in requirements analysis? an experimental

study on use case and class diagrams in uml,” Requirements

Engineering, Springer London, pp. 229-237, 7 Oct. 2004.

[11]. J. Euzenat, “Research challenges and perspectives of the

semantic web,” Intelligent Systems,IEEE, vol. 17, no. 5, pp.

86-88, 2002.
[12]. “Ontology engineering” ,from wikipedia, the free

encyclopedia.

[13]. Z. P. Je_ and H. Ian, “Metamodeling architecture of web

ontology languages,” in Proc. of the Semantic Web Working

Symposium, July 2001, pp. 131-149.

[14]. D. Dragan, G. Dragan, D. Vladan, and D. Violeta, “A uml

profile for owl ontologies,” in Proc. of the Workshop on Model

Driven Architecture: Foundations and Applications, Linkoping
University, Sweden, 2004, pp. 138-152.

[15]. D. Djuric, G. D., D. V., and D. V., MDA-Based

Ontological Engineering. World Scientific Publishing Co.,

Singapore, 2005, pp. 203-231.

[16]. D. Gasevic, D. Djuric, and D. V., “Bridging mda and owl

ontologies,” Journal of Web Engineering, vol. 4, no. 1, pp. 119-

135, 2005.

[17]. K. S. Michael, W. Chris, and L. M. Deborah, “Owl web

ontology language guide,” http://www.w3.org/TR/owl-guide/,

10 Feb. 2004.

[18]. D. Li, K. Pranam, D. Zhongli, A. Sasikanth, and J.

Anupam, “Using ontologies in the semantic web: A survey,”

UMBC, Tech. Rep., July 2005.

[19]. J. Hans and S. Stefan, “Applications of ontologies in

software engineering,” in International Workshop on Semantic

Web Enabled Software Engineering (SWESE'06), November

2006.

[20]. A. S. C. Seria, C. B. Sabin, C. Liliana, and C. N. Ovidiu,

“Survey on web ontology editing tools,”

http://thor.info.uaic.ro/~busaco/publications/articles/web-

ontology-tool-survey.pdf, 2006.

[21]. X. Wang and C. Chan, “Ontology modeling using uml,”

in Proc. of the Seventh International Conference on Object

Oriented Information Systems (OOIS), Calgary, Canada, Aug.

2001, pp. 59 -70.

[22]. C. Coral, R. Francisco, and P. Mario, Ontologies for

Software Engineering and Software Technology. Francis:

Springer-Verlag Berlin Heidelberg, 2006.

[23]. A. Kraus, “Model driven software engineering for web

applications,” Ph.D. dissertation, Ludwig-Maximilians-

Universitat Munchen, 23rd / 04 2007.

[24]. K. Czarnecki and S. Helsen, “Classification of model

transformation approaches,” in OOP- SLA03 Workshop on

Generative Techniques in the Context of Model-Driven

Architecture, 2003.

[25]. J. Bezivin, F. , Fabian Buttner, M. , Gogolla, F. Jouault, I.

Kurtev, and A. Lindow, “Model transformations?

transformation models!” in Model Driven Engineering

Languages and Systems, 2006, pp. 440-453.

[26]. F. Jouault, F. Allilaire, J. Bzivin, I. Kurtev, and P.

Valduriez, “Atl: a qvt-like transformation language,” in

OOPSLA '06: Companion to the 21st ACM SIGPLAN

symposium on Object- oriented programming systems,

languages, and applications. ACM, 2006, pp. 719-720.

[27]. F. Jouault, F. Allilaire, J. Bzivin, and I. Kurtev, “Atl: A

model transformation tool,” Science of Computer

Programming, vol. 72, no. 1-2, pp. 31-39, June 2008.

[28]. “Atl superimposition,” http://wiki.eclipse.org/ATL

Superimposition.

[29]. A. T. List,

http://www.eclipse.org/m2m/atl/atlTransformations/.

[30]. Z. Xu, Y. Ni, L. . Lin, and H. Gu, A Semantics-Preserving

Approach for Extracting OWL Ontologies from UML Class

Diagrams. Springer Berlin Heidelberg, 2009.

[31]. R. G., M. Jazayeri, and H. Gall, “Towards semantic web

engineering: Weesa - mapping xml schema to ontologies,” in In

Workshop on Application Design, Development and

Implementation Issues in the Semantic Web at the 13th

International World Wide Web Conference, 2005, pp. 722-729.

[32]. H. C. Rong Li, Keqing He, “From natural language

requirements to requirement ontologies,” 2010 2nd

International Conference on Future Computer and

Communication, vol. 3, pp. 755-758, 2010.

[33]. W. Alakwaa and A. Salah, “Ontology modeling profile , an

extension for the ontology uml profile,” Aug. 2010.

