
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

5

A Comparison Study on Key Exchange-Authentication

protocol
Razieh

Mokhtarnameh*

Nithiapidary

Muthuvelu*

Sin Ban Ho* Ian Chai*

*Faculty of Information Technology, Multimedia University,

Jalan Multimedia, 63100 Cyberjaya, Selangor, Malaysia

ABSTRACT

A key exchange protocol enables two parties to share a common

key for encrypting a large amount of data. Authentication is an

essential requirement prior to the key exchange process in order

to prevent man-in-the-middle attack. It is important to

understand the capabilities and performance of the existing key

exchange protocols before employing the protocols in our

applications. In this paper, we compare Secure Socket Layer,

Secure Shell, and Identity-based key exchange protocols by

quantifying the performance, complexity, and level of security of

each protocol. Detailed experiments and observations are

conducted to examine the protocols in terms of disk usage,

computation time, and data transmission time. The analysis

shows that the identity-based key exchange maintains similar

security level as the other protocols, while conveying better

performance.

General Terms

Security, protocol, cryptography.

Keywords

Key exchange protocol, performance, security, complexity.

1. INTRODUCTION
The Internet provides great access to valuable data, not only to

legal users, but also to the hackers, data thieves, and network

sniffers. As a result, data confidentially is an essential

requirement for secure data communication over the Internet;

protecting data from being disclosed to unintended parties while

being communicated between the authorized entities.

It is common to utilize symmetric encryption to encrypt large

amount of data being transferred between the authorized entities.

In this symmetric encryption, a shared or common key is used by

the entities to encrypt and decrypt the data. This common key is

shared between the entities using a key exchange protocol which

involves exchanging messages over an open channel. Thus, there

is a need to prevent the sniffers from obtaining a copy of the key.

Key exchange together with entity authentication will avoid the

man-in-the-middle attacks [17]. These attacks take place when a

trusted server is impersonated by a malicious server. Therefore,

the key exchange protocols are associated with authentication

protocols.

The performance of authentication and key exchange protocols

affects the overall data communication process in terms of time

and CPU cycles, especially when a particular application

involves massive, frequent communication of sensitive data.

Peer-to-peer systems, ad hoc network environments, and

distributed systems are examples of environments which involve

frequent key exchange. It is usually desirable to limit the amount

of data compromised if an attacker learns the key.

Our focus is to study and examine the key exchange protocols in

order to quantify their capabilities in terms of security level,

computation time, and data transmission time. These

performance analyses will help us to decide on the appropriate or

most suitable protocol when one has to apply it to an application.

As for this purpose, three key exchange protocols (which are

associated with authentication protocols) are chosen, namely,

Identity-based Key Exchange (ID- KEX) [25], Secure Socket

layer (SSL) [14] (that uses Public Key Infrastructure (PKI) [24]

for mutual authentication and key exchange) and Secure SHell

(SSH) [4].

The rest of the paper is organized as follows: the related work on

key exchange protocols is presented in section 2. Section 3

describes the experimental setup for evaluating the three key

exchange protocols (ID-KEX, SSL, SSH). Section 4 provides a

study on their security and complexity levels. Complexity

consists of the amount of disk space being used by the protocols

and the performance trade-offs. The performance trade-offs in

terms of computational and communication costs are identified

and discussed further. The results and discussions are included

in subsections of section 4. Section 5 concludes the paper with a

discussion on the future work.

2. RELATED WORK

2.1 Diffie-Hellman Session Key Agreement
Diffe-Hellman session key agreement is the first key exchange

protocol, proposed by Diffie and Hellman [11] as shown in

Figure1. Diffie-Hellman key exchange by itself achieves perfect

forward secrecy because no long-term keying material exists at

the end of the session to be disclosed. However, it does not

provide authentication of the communicating parties; hence it is

vulnerable to a man-in-the-middle attack.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

6

2.2 Station-To-Station (STS) Protocol
In order to fix the security flaw in the Diffie-Hellman protocol,

the Station-To-Station (STS) protocol was proposed in [12]. To

add authentication, the STS protocol requires both the parties to

have a pair of public keys for signature generation and

verification, and to know a publicly released symmetric key

encryption. In contrast, note that the Diffie-Hellman protocol

does not have these assumptions. These assumptions can be

included into the protocol by sending public key certificates if the

keys are not known in advance. In the STS protocol, STS

protocol uses signatures to authenticate the communicating

parties. It encrypts the signatures with the session key

subsequently to show the knowledge of this session key.

However, signatures and certificates cause the messages to

increase considerably in size.

2.3 Secure Socket Layer (SSL)
SSL [14] involves negotiating and establishing secure

connections, and securing the data transmission. SSL handshake

uses certificates and PKI [24] for mutual authentication and key

exchange. PKI binds public keys with particular user identities

by means of a certificate authority (CA). The CA is the trusted

entity that signs and issues digital certificates [13] to other

parties. A digital certificate contains a public key and the identity

of the owner and the validity period of the certificate. Therefore,

authentication is performed through sending and verifying

certificates which involve a great overhead. SSL key exchange

can use an RSA algorithm, an asymmetric technique for session

key exchange which encrypts the session key from the client to

the server. A Diffie-Hellman key exchange can also be used

which is more secure since both parties agree on the session key

without having to send the key across the wire.

2.4 ID-based Authenticated Key Agreement
Many protocols were proposed for ID-KEX [20] [19] [9] [10].

Paterson and Price [18] noted that the aim in designing a good

ID-KEX protocol is to achieve all the properties of the best usual

key agreement protocols while trying to maximize efficiency. The

public key can be chosen by any client in the system as it is

generated from public information (email address or network

address). Each party, then contacts the trusted authority (TA)

once to authenticate and get the required private key. Therefore,

there is no earlier distribution of keys between individual

participants. Yuan and Li [25] proposed an efficient ID-KEX

Protocol as shown in Figure 2. A key agreement protocol is said

to be authenticated if it offers the guarantee that only the

participating parties of the protocol can compute the agreed key.

Therefore, this ID-KEX protocol is authenticated because it uses

public and private keys to generate a shared secret.

2.5 SSH (Secure SHell)
SSH is a secure network protocol used by the user to log into a

remote computer running an SSH server [4]. It was designed to

replace telnet which is an earlier protocol that passes username

and password in plain text. However, SSH provides a secure

transmission by encrypting the authentication strings and all the

other data exchanged between the hosts. Ylonen and Lonvick

explored three layers of the SSH protocol; the Transport Layer

Protocol [23] provides host authentication, confidentiality

(encryption), and integrity; the User Authentication Protocol [21]

authenticates the client-side user to the server and provides a

number of authentication methods; and the Connection Protocol

[22] multiplexes the encrypted tunnel into several logical

channels.

Private key SB

Picks a at random,

Computes TA = aP

Client Public key QA

Private key SA
Server

Picks b at random,

Computes TB = bP

KAB = e(aPpub + SA, TB + QB)

h = aTB = abP

KAB = e(TA + QA, bPpub + SB)

h = aTA = abP

TA

TB

Output is the session key: H (A,B, h, KAB)= e(h,(QA+QB))+KAB, where KAB = KBA

Public key QB

1 1
2

2 3 3

4

Picks a private random

natural number a

Client Server

gab = (gb)a mod p

gba = (ga)b mod p

ga mod p

gb mod p

Output: gab = gba = k, client and server now have a shared secret key

k

Agree on g and p

where p is prime number

and g is primitive root mod p

1

Picks a private random

natural number b

2
3

3 4 4

5

2

Figure 1. Diffie-Hellman key exchange (DH-KEX)

Figure 2. ID-based key exchange (ID-KEX)

http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Primitive_root_modulo_n

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

7

SSH supports both password authentication and public key

authentication. Although passwords are convenient and they

require no additional configuration or setup from the users, they

can be guessed, and the hacker can get into the system. Public

key authentication provides better security as every machine

creates a public/private key by itself. SSH clients and servers

maintain and check a database containing identifications for all

the hosts that have been involved in the interactions. Therefore,

the first time when a user connects to a remote entity, the user

has to know or trust that the key fingerprint for that entity is

correct as SSH does not practice a central authority to assure

access for each entity.

The Diffie-Hellman key-exchange protocol has been the subject

of many works. Canetti and Krawczyk [6] analyzed key-exchange

protocols (Diffie-Hellman and key-transport) authenticated via

symmetric or asymmetric techniques to obtain the proof of

security. In [7] they presented a security analysis of the Diffie-

Hellman key exchange protocol authenticated with digital

signatures used by the Internet Key Exchange (IKE) standard. In

addition, many ID-based authenticated key agreement protocols

were proposed and compared with others [20] [19] [9] [10]. Lee,

Malkin, and Nahum [16] focused on the different parts of SSL

such as the strength of SSL/TLS servers; Castelluccia, Mykletun,

and Tsudik [8] analyzed the performance of SSL/TLS

Handshakes and suggested an improvement. Moreover, the

performance of pre-shared and Public Key Exchange

Mechanisms for TLS protocol has been reported by Kuo,

Tschofenig, Meyer, and Fu [15].

3. Methodology
Our experimental environment contains one client machine and

one server machine. The client machine is equipped with an Intel

® Pentium® 4 CPU 2.66 GHz with 512 MB of RAM and 40 G

HDD. The server machine is prepared with an Intel® Pentium

®4 CPU 2.80 GHz with 512 MB of RAM and 50 G HDD. The

length of the RSA keys are 2048 bits.

In our experiments, OpenSSL [2] is used for implementing SSL

since it is the best-known open library for secure communication

at the time of this writing. As shown in Figure 3, a context object

is used to create a new connection object for each new SSL

connection. These connection objects are used to do SSL

handshakes, reads, and writes.

The PBC (Pairing-Based Cryptography) library [3] is used for

implementing ID-KEX [25]. It is a C library that performs the

mathematical operations underlying pairing-based cryptosystems.

Figure 4 shows the algorithm for Yuan and Li ID-KEX. Pairings

involve two groups of prime order q. The PBC library refers to

them as G1 and G2, where G1 is an additive group and G1 denotes

a related multiplicative group. The pairing is a bilinear map that

takes two elements as input from G1 and outputs an element of

G2. The parameters can be found in Figure 2.

 Generate CA certificate for all the machines

with OpenSSL commands

 Generate key and certificate for each machine

with OpenSSL commands

1. initialize_ctx(): context

initialization.

a) SSL_library_init():Initialize the

library which primarily loads up the

algorithms that OpenSSL will be using

b) SSL_CTX_new(): create the context

c) SSL_CTX_use_certificate_chain_file():

load the certificate chain

d) SSL_CTX_use_Private-Key_file():load

the private key

2. tcp_connect(): create a TCP connection

between client and server

3. SSL_connect(): perform the SSL

handshake to authenticate server and client,

and establish the shared key

4. check_cert(): check the host’s

certificate

Initialization steps:

1. Setup program to generate system

parameters (P, Ppub)

2. Extract program to calculate the

private key for each machine (Sa)

3. Client and Server programs to

calculate the shared key (K)

Client program:

 Initializing pairing and elements
ex: element_init_G1(P, pairing);//initialize

element P from G1

 Client/server connection
 Calculate the shared key (Qa and Qb are
public keys and Tb is received from server

program)

element_random(a);//assign random element to a

element_mul_zn(Ta, P, a);//Ta = P * a

element_mul_zn(h, Tb, a);//h = Tb * a

element_mul_zn(temp1, Ppub, a);

element_add(temp1, temp1, Sa);//temp1=temp1+Sa

element_add(temp2, Tb, Qb);

pairing_apply(Kab, temp1, temp2, pairing);

//applying pairing as Kab = e(temp1,temp2)

element_add(temp3, Qa, Qb);

pairing_apply(temp4, h, temp3, pairing);

element_add(K, temp4, Kab);

Note: The Server program is similar to the

client program

Figure 4. Algorithm for ID-based authentication key

exchange (ID-KEX)

Figure 3. Algorithm for SSL

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ID-KEX SSL SSH

T
im

e
(n

s)

Key Exchange Protocols

Connection

time

Client

Computation

time

Server

Computation

time

Figure 6. Connection and Computation Time in KEX

Protocols (kextime).

Table 1. Cryptographic operations

SSL

(authentication

 + KEX)

ID-based

authenticated

KEX

SSH (authentication +

DH-KEX)

Client

RSAverify

 + RSAencrypt

+ RSAsign

1 pairing

+ 3 point

multiplication

RSAencrypt

+ 1modular

exponentiation

 + 1 multiplication

Server
2* RSAverify

+ RSAdecrypt

1 pairing

+ 3 point

multiplication

RSAdecrypt

+1 modular

exponentiation

+ 1 multiplication

Table 2. Processing Time (nanoseconds) for each KEX

mechanisms

Next, libssh [1] is a C library used for SSH implementation

(Figure 5). Client information (the host name of the server, the

port, the binding address, the default username) has to be sent to

the server before the client/server connection. The client

information is given to an ssh-connect function as an option

structure, then this information will be used repeatedly by the

SSH implementation.

4. Results and Discussions

4.1 Performance Metrics
Performance for these key exchange mechanisms are analyzed

and measured in terms of cryptographic computations and data

transmission. Besides client and server processing time, a full

handshake also involves delays due to message passing and

network latency.

4.1.1 Computation Complexity
Table 1 depicts the cryptographic operations in the SSL, ID-

based cryptographic scheme and SSH. An ID-KEX protocol is

authenticated because it uses public and private keys to generate

a shared secret. However, in an ID-KEX protocol, two parties

transfer their parameters to each other and then calculate the

shared key by using their public and private keys as in Yuan’s

algorithm [25]. Figure 2 and Table 1 show the cryptographic

operations involved in the calculation of the shared key which

cost one pairing and three point multiplications. The SSH

computation includes a Diffie-Hellman key exchange, directory

checking, and public key authentication for the client and server.

SSH public key authentication involves one RSA

encryption/decryption as shown in Table 1.

SSL computation involves verifying certificates, client and server

authentication, and key exchanges that involves RSA

encryption/decryption. The RSA key exchange is performed

during the SSL handshake. RSA key exchange requires a

message only from the client. The client generates a 256-bit

random number, encrypts the number using the public keys of the

server and sends it to the server. The server decrypts the random

number as it possesses the private key. This random number is

the key that used to perform symmetric encryption for data

transmission after SSL handshake.

 SSH encrypts all communications to and from the client and

server while SSL attempts to make a connection with

unencrypted channels. As shown in Table 2, SSH connection

time is approximately 91% more than SSL and 94.52% more

than ID-KEX. This is due to a significant cost related to the

establishment of SSH sessions. Table 1 depicts the cryptographic

operations in the SSL, ID-KEX and SSH.

The dominant cost for an ID-KEX is the evaluation of a pairing,

whereas for SSL is the RSA encryption/decryption process.

Pairing is approximately 47.79% slower than an RSA decryption

with pre-computation which involves calculations of certain fixed

parameters. However, the overall processing time for ID-KEX is

less than SSL and SSH since they have overhead for their

authentications. Figure 6 and Table 2 show connection time and

client/server computation time in nanosecond (ns). In conclusion,

Methods

Connection

time (ns)

Computation time (ns)

Client Server

ID-KEX 0.000489 0.067591 0.053368

SSL 0.000795 0.078187 0.058589

SSH 0.008923 0.068206 0.055302

 Generate key-pairs by openssh

 Setting the options

1. ssh_options_new()

2. ssh_options_set_username()

3. ssh_options_set_host()

4. ssh_options_set_ssh_dir()

5. ssh_options_set_identity()

 ssh_new(): create the session

 ssh_set_options(): give options to the

session

 ssh_connect(): connecting the ssh server
 ssh_get_pubkey_hash(): create the hash of
the server public key

 ssh_is_server_known():checks the user's
known host file for server authentication

 ssh_userauth_autopubkey(): client
authentication

 channel_open_session(): opening the channel

Figure 5. Algorithm for SSH

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

9

SSL and SSH have more computation especially on client

machine than ID-KEX.

4.1.2 Data Transmission
The amount of data transmitted to complete the key exchange

mechanisms are shown in Table 3. The ID-KEX protocol has the

Chart(a). Client

Chart(b). Server

Figure 7. Execution time for frequent authentication and

KEX.

Table 3. Data Transmission Time for each KEX Mechanisms

Methods
Transmission time

(ms)

Transmission data

(bytes)

ID-KEX 0.092 2180

SSL 0.850 5544

SSH 0.139 5125

Table 4. Disk Space for each KEX Mechanism

Methods Client (bytes) Server (bytes)

ID-KEX 1310 1310

SSL 6800 6800

SSH 2134 2134

lowest transmitted amount of data as only two parameters are

calculated (parameter by the client and parameter by the server)

and exchanged; neither certificates nor public keys are

transmitted.

Nevertheless, SSH needs more data to be exchanged since it has

client and server authentication in which their public keys need

to be transferred. As a result, ID-KEX is 1.5 times faster than

SSH in terms of data transmission time. Furthermore, it is 9

times faster than SSL since SSL is using mutual authentication

that exchanges certificates with the biggest data amount. Hence,

SSL has the highest data transmission time.

4.2 Frequent Key Exchange Experiments
Experiments were conducted to realize the effect of the protocols

in an environment that involves frequent authentication and key

exchange mechanisms. It is useful particularly for applications

involve enormous, frequent transmissions of valuable data.

Moreover, man-in-the-middle attack can be reduced through

establishing a new shared key frequently. Figure 7 present the

overall execution time for SSH, SSL, and ID-KEX protocols in

the above mentioned environment.

The SSH duration increases rapidly in comparison with others by

increasing number of rounds on both client and server. It is about

42.29% more than ID- KEX and 72.81% more than SSL on

client. Furthermore, it is about 37.13% more than ID-KEX and

41.68% more than SSL on server. Therefore, it is better to be

used in applications that need infrequent communications. The

duration of SSL increases about 52.89% less than ID-KEX on

client. Although the duration of SSL increases about 7.24% less

than ID-KEX on server, ID-KEX takes less time than SSL. As a

result, ID-KEX indicates better efficiency on the server than the

client. On the other hand, SSL has better efficiency on the client

than the server especially on 20 rounds and more. Therefore, for

applications which involve frequent key exchange and prefer

more lightweight server, the ID-KEX can be a suitable choice.

Whereas, SSL is more appropriate for applications that need

frequent key exchange and lightweight client is desirable.

4.3 Disk Space Consumption
The length of the RSA keys used in SSL and SSH is 2048 bits.

The length of the keys in ID-KEX is 128 bits. This is one of the

features of ID-based cryptography that provides smaller key

sizes. In ID-KEX protocol, the same amount of disk space is used

on client and server machines. The public keys are created on the

fly (using the hostname or IP address of the machine). Hence, the

client and server just need to allocate limited space for its private

key (of 317 bytes) and system parameters (of 993 bytes); the

overall required space is 1310 bytes. The total size of SSL

resource/server certificate and the relevant key is 5400 bytes. In

addition, the certificate of the TA or CA costs 1400 bytes. Thus,

the minimum disk space needed for key/certificate on

resource/server machine is 6800 bytes. In SSH, on each client or

server there are public key (of 391 bytes) and private key (of

1743 bytes). As shown in table 4, SSL uses more space than the

others.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

10

4.4 Security Considerations
In a man-in-the-middle attack [17], an adversary sits between the

client and server, intercepting all traffic and altering or deleting

messages at will. ID-KEX is immune to man-in-the-middle

attack as each party must know the public key of other party to

generate the shared key. Therefore, they know with whom they

have the shared key. SSL by using PKI and SSH by using public

key authentication are not susceptible to man-in-the-middle

attacks. However, SSH can be vulnerable the first time you

connect to a remote entity. You may trust the key fingerprint for

adversary by mistake instead of the original server. According to

[5] all the three protocols that are being compared in this paper

provide Known-Key Security1 and Perfect Forward Secrecy2, as a

fresh and unique session key is generated by client and server

that depend on the ephemeral Diffie-Helman private keys for

each run of protocols. The ephemeral Diffie-Helman private keys

are temporary, which means after each handshake; both the client

and server delete their temporary private keys.

ID-KEX or the protocols which uses Diffie-Helman algorithm for

key exchange, provide No Key Control3 security property. In

Diffie-Helman no entity can decide the key separately. However,

RSA requires a message only from the client. The client

generates a 256-bit random number and send to server. As a

result, client can control the key.

5. Conclusion and Future Work
We have presented a comparison study between SSL, SSH and

ID-based key agreement protocols in their authentication and key

exchange parts. Furthermore, we have discussed and analyzed

their security and complexities aspects. The analysis shows that

in order to provide a satisfying security level, SSL is slower than

the others in terms of data transmission time and mutual

authentication. While SSL is heavy weight, it is the standard

behind many secure communications on the Internet. SSH has

less complexity but can be vulnerable to man-in-the-middle

attacks. We noticed that ID-KEX has better performance than

SSH and SSL. Although the concept of ID-based public keys

appears to be new at the time of this writing, it has some useful

security features in terms of key size and management as

compared to SSL using the PKI approach.

We have compared the protocols for frequent authentication and

key exchange. The ID-KEX and SSL both can be suitable for

frequent key exchange applications. However, various

applications have different requirements or constraints. For

example, ID-KEX can be more suitable for applications that

require less overhead especially on the server side and less

communication bandwidth such as wireless networks. The

1 Known-Key Security: Client and server should generate a

unique secret key in each round of key agreement protocol.

Each key generated in one protocol round is independent and

should not be exposed if other secret keys are compromised.

2 Perfect Forward Secrecy: If secret key is compromised, the

previously established session keys are not compromised.

3 No Key Control: The key should be determined jointly by both

entities. None of the entities can control the key alone.

dynamic and ephemeral network topology demands frequent key

exchanges, in ubiquitous and pervasive computing applications,

such as sensor networks or RFID-systems, the devices in use as

nodes of the network often require severe size limitations and

power consumption constraints.

The comparison presented in this paper may well be tested in

different applications. These may include, for example, peer to

peer systems, ad hoc network environments, and distributed

systems, as well as grid systems in which it is desirable to have

lightweight and flexible security mechanisms.

6. REFERENCES
[1] The libssh project, http://www.libssh.org/

[2] The openssl project, http://www.openssl.org/

[3] The pbc library, http://crypto.stanford.edu/pbc/

[4] Barrett, D., Silverman, R. 2005. SSH: The Secure Shell

(The Definitive Guide). O'Reilly, 2nd edition edn.

[5] Blake-Wilson, S., Johnson, D., Menezes, A. 1997. Key

agreement protocols and their security analysis. In: 6th IMA

International Conference on Cryptography and Coding.

Lecture Notes in Computer Science, vol. 1355, pp. 30-45.

Springer Berlin / Heidelberg.

[6] Canetti, R., Krawczyk, H. 2001. Analysis of key-exchange

protocols and their use for building secure channels. In:

EUROCRYPT '01: Proceedings of the International

Conference on the Theory and Application of Cryptographic

Techniques. pp. 453-474. Springer-Verlag, London, UK.

[7] Canetti, R., Krawczyk, H. 2002. Security analysis of ikes

signature-based key-exchange protocol. In: In: Proc.

CRYPTO02, Springer LNCS 2442. pp. 143-161. Springer-

Verlag.

[8] Castelluccia, C., Mykletun, E., Tsudik, G. 2005. Improving

secure server performance by re-balancing ssl/tls

handshakes. In: in Proceedings of the 10th Annual USENIX

Security Symposium. pp. 26-34.

[9] Chen, L., Kudla, C. 2002. Identity based authenticated key

agreement protocols from pairings. In: In: Proc. 16th IEEE

Security Foundations Workshop. pp. 219-233. IEEE

Computer Society Press.

[10] Choie, Y. J., J.E., Lee, E. 2005. Efficient identity-based

authenticated key agreement protocol from pairings.

Applied Mathematics and Computation 162, 179-188.

[11] Diffie, W., Hellman, M.E. 1976. New directions in

cryptography.

[12] Diffie, W., Van Oorschot, P.C., Wiener, M.J. 1992.

Authentication and authenticated key exchanges. Des.

Codes Cryptography 2(2), 107-125.

[13] Feghhi, J., Feghhi, J., Williams, P. 1999. Digital

Certi_cates: Applied Internet Security. Addison Wesley

Longman.

[14] Frier, A., K.P., Kocher, P. 1996. The secure socket layer.

Technical report, Netscape Communications Corp.

http://www.libssh.org/
http://www.openssl.org/
http://crypto.stanford.edu/pbc/

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

11

[15] chun Kuo, F., Tschofenig, H., Meyer, F., Fu, X. 2006.

Comparison studies between pre- shared and public key

exchange mechanisms for transport layer security. In: 25th

IEEE International Conference on Computer

Communications. pp. 1-6.

[16] Lee, H.K., Malkin, T., Nahum, E. 2007. Cryptographic

strength of ssl/tls servers: cur- rent and recent practices. In:

IMC '07: Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement. pp. 83-92. ACM, New

York, NY, USA.

[17] Ornaghi, A., Valleri, M. 2003 Man in the middle attacks. In:

Black Hat Europe 2003. US.

[18] Paterson, K., Price, G. 2003. A comparison between

traditional public key infrastructures and identity-based

cryptography. Information Security 8(16), 57-72.

[19] Shim, K. 2003. Efficient id-based authenticated key

agreement protocol based on the weil pairing. Electronics

Letters 39(8), 653-654.

[20] Smart, N.P. 2002. An id-based authenticated key agreement

protocol based on the weil pairing. Electronics Letters

38(13), 630-632.

[21] Ylonen, T., Lonvick, C.E. 2006. The secure shell (ssh)

authentication protocol, rfc 4252.

[22] Ylonen, T., Lonvick, C.E. 2006. The secure shell (ssh)

connection protocol, rfc 4254.

[23] Ylonen, T., Lonvick, C.E.2006. The secure shell (ssh)

transport layer protocol, rfc 4253.

[24] 24. Younglove, R. 2001. Public key infrastructure. how it

works. Computing & Control Engineering Journal 12, 99-

102.

[25] Yuan, Q., Li, S. 2005. A new efficient id-based

authenticated key agreement protocol. Cryptology ePrint

Archive: Report 2005/309.

