
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

22

Look Before You Leap: A Survey of Web Service Discovery
Mydhili K Nair

Assistant Professor
M S Ramaiah Institute of Technology

Bangalore, India

Dr. V.Gopalakrishna
Director

Integra Micro Systems
Bangalore, India

ABSTRACT

This paper is an exhaustive review summarizing the results,

observations and findings of the renowned researchers in the

domain of Web Service Discovery. After extensive scavenging on

the Internet, we felt that there is a paucity of good quality survey

papers, which can help, provide directions to a researcher

looking for a fertile area to explore in the Web Services arena,

especially in Discovery of Web Services. We highlight here the

list of problems, which need to be looked into and investigated.

This comprehensive listing of the open-ended unresolved issues

is presented in a novel way, by providing its Cause-Effect

Analysis. In this paper, we hand-hold you to into a literary

journey that provides a glimpse of the huge spectrum of work

investigated by researchers globally in the field of Discovering

the Right Services, based on the Requirements provided by the

Consumer.

Categories and Subject Descriptions
Web Services Discovery Survey, QoS Typology, Quality Models,

Service Discovery Architecture and Frameworks.

General Terms
Ranking and Selection Algorithms, Quality of Service (QoS),

Quality Metrics and Attributes, Broker Matchmaking, Reputation

and Trust, Endorsement, Service Provider and Consumer.

Keywords

Web Service Discovery Survey, QoS, Ranking Algorithms,

Matchmaking Algorithms, WSMO, OWL-S, DAML-S, Broker,

Ontology, UDDI, Service Discovery Frameworks.

1. INTRODUCTION
Four Doctrines for every aspiring Doctorate:

 Download Papers, Categorize, Read. Do a thorough literature

survey of the area of research

 Keep a lookout of the problems highlighted by fellow

researchers and how they tried to solve it.

 Avoid the “Analysis Paralysis”. Thoroughly analyze these

problems and check their validity, feasibility, relevance. Sieve

and filter the problem(s) you want to work on.

 Best place to start. A good survey paper!

This paper aims to be the last doctrine! We give a concise view

of our survey into the realm of Web Services Research. Fig 1

depicts the entire gamut of domains involved in this research

domain, namely, Discovery, Composition, Security,

Choreography, Orchestration, Governance and

Management[1,4,7,8].We would like to draw attention to the

scope and focus of this paper, Services Discovery, specifically

Discovery of Web Services. Other spheres are beyond the scope.

 Web Service

Composition

 Web Service

Orchestration

 Web Service

Choreography

 Web Service

Security

 Beyond the Scope of this Paper

WSD

+

WSC

 Web Service

Governance

 Web Service

Management

 Web Service

Discovery

 Our Area

Of Research

and Focus of

this Survey

 Web Services

Research

Fig 1. Scope of Our Survey

The realm of Web Service Discovery (WSD) is a fundamental

area of research under distributed and ubiquitous computing. It

has been a fertile area of research for less than a decade now.

Nevertheless, there has been a significant amount of work carried

out by industries, universities and individual researchers. These

works cover a wide range of aspects related to the techniques and

approaches involved in Discovering and Selecting Services.

In this paper, we provide comprehensive results of our survey

into these reputed works, focusing on the Requirements given

by the Consumer or User of the Web Service. We investigate into

the various types of Requirements that a Consumer is likely to

have. We review the various techniques adopted by researchers

to model these requirements and effectively search for the correct

Web Services that match the requirements specified.

A precise summary is provided in this paper, of our investigation

into the works of researchers in modeling the Consumer

Requirements, especially the Quality of Service (QoS), a

complex non-functional aspect to model. The Pros and Cons of

these various modeling approaches is provided, taking care to

spotlight the open-ended unsolved issues, so that researchers

reading this survey can take these problems and work on them!

In this paper, we do not delve into the other spheres in Web

Service Discovery such as Broker Architectures, Frameworks,

Match-making, Selection and Ranking Algorithms as well as

techniques to store, organize and publish the Web Service

Profiles effectively for them to be discovered easily. To

understand these, please refer to an allied work of ours [12].

What we do provide in this paper, is an exhaustive list of

challenges that exist in the broad domain of Web Services,

relevant to Web Service Discovery. Apart from listing the

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

23

problems, we provide a Cause-Effect Analysis of these problems

thrown up which are yet to be solved.

The remaining parts of the paper are organized as follows.

Section 2 covers basic concepts in the Web Services domain,

while Section 3 focuses on the problem in hand, namely Web

Service Discovery (WSD). Section 4 describes the work done by

various researchers in WSD. Section 5 attempts to provide a

comparative analysis. Section 6 provides the conclusion.

2. Background and Concepts

2.1 Foundation of the Services Domain
The umbrella domain of our survey is Service Oriented

Architecture (SOA) and Computing (SOC) .Many seek clarity, on

the exact difference between the two terminologies. We attempt

to give the precise distinction here.

In SOA, software resources are packaged as „Services‟. They

are well-defined, self-contained modules, which provide business

functionality. The Services are independent of the state or

context of other services. They communicate with each other

requesting execution of their operations to collectively support a

common business task or process. They have a published

interface and are described in a standard definition language.

Basic services, their descriptions, and operations (publication,

discovery, selection, and binding) that produce or utilize such

descriptions constitute the foundation layer of the SOA Pyramid

[1, 2, 4]. The higher layers provide additional support required

for service composition and service management. SOC, is the

computing paradigm, which utilizes Services as the fundamental

element of developing applications. To build this Service model,

SOC relies on SOA, to define the layers, functionality and roles

of the various services and stakeholders involved [3, 5, 11].

Services come in two flavors: Simple and Complex. Simple

Services focus on doing specific business tasks, while

Composite Services involve assembling or composing existing

services. Whatever the flavor, Services are offered by Service

Providers. They are organizations that procure or develop the

service implementations, supply their service descriptions and

provide related technical and business support. For example,

there could be three Service Providers providing three distinct

Simple Services such as Order Tracking, Order Billing and

Customer Relationship Management. A Service Provider

Enterprise could offer a Composite Service that composes these

services together to create a distributed E-Business application,

which provides customized ordering, customer support, and

billing for a specialized product line (e.g., telecommunication

equipment, medical insurance, etc).

Service Composition[6][3][5] is an emerging and fertile area of

research, having aspects such as Business to Business(B2B)

protocols, service conversation messaging formats, service

integration, composition algorithms etc. In this paper, we do not

touch upon these aspects, which are inherent to the principles of

Service Composition. What we do cover, is the analysis of the

work of researchers who have attempted to discover these

complex, composed service, based on their functional and non-

functional requirements. Fig. depicts the scope of our study.

SOA is a vast and complex subject, embracing a gamut of

technologies innately integrated. SOC is built on inherently

related themes ranging from Service Management, Composition,

Security, Choreography, Orchestration and Discovery[2].

Our realm of research is Web Services(WS),which are specific

kind of services identified by a URI. WSs are „end-points‟ of a

Service where they use Internet as the communication medium

and adhere to open Internet-based standards. We summarize here

the results of our meticulous survey in Web Services, particularly

discovering the right services, as depicted in Fig. 1.

2.2 The Web Services Nuts and Bolts

Fig 2. Three Deployable Web Services and a WSDL Interface

Service 3

WSDL

 WSDL

Location

 Service 3

Implementation

Service Providers

Actual Service

Implementation

 Web Crawler

WSDL Search

Engines

UDDI

REGISTRY

 WSDL

Location Published

 WSDL Published

Bind

Bind

Bind

Fig 3. Web Services Basics

The World Wide Web Consortium (W3C) defines a "Web

Service" as a software system designed to

support interoperable machine-to-machine interaction over

a network[7,8]. The buzzword here is „interoperable‟, which is

achieved through a platform independent, standard meta-data for

message exchange, which is XML(EXtensible Markup

Language). Interactions of Web-Services occur as Simple Object

Access Protocol(SOAP) calls carrying XML(EXtensible Markup

Language) data content. The service description of the WS is

expressed using Web Service Definition Language(WSDL)an

XML-based standard. As shown in Fig 2., WSDL is used to

Publish a WS in terms of its ports (addresses implementing this

http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Machine-to-Machine
http://en.wikipedia.org/wiki/Computer_network

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

24

service), port types (the abstract definition of operations and

exchanges of messages), and bindings (the concrete definition of

the packaging and transportation protocols used to inter-connect

two conversing endpoints).

The Universal Discovery Description and

Integration(UDDI)standard is a directory service that contains

service publications and enables Web Service Consumers(WSC)

to locate candidate services and discover their details. Thus, WSs

are defined as a set of standards, SOAP, UDDI, WSDL, which

enable a flexible way for applications to interact with each other

over networks. All these standards are XML based allowing

applications to interact with each other across networks, no

matter what languages and platforms they use [7,9].Self

description and platform independence are two features which

distinguish web services from other distributed computing

technologies such as CORBA(Component Object Request

Broker) and DCOM(Distributed Component Object Model)[14].

In true distributed computing sense, either the WSDL could be

published as such in the UDDI Registry or the repository could

hold the location of the WSDL file, as depicted in Fig 3. Search

engines such as Google, AlltheWeb, Baidu, Yahoo have become

new sources for finding web services[47].Web Crawler WSDL

Search Engines can be created to fish-out the required WSDLs of

Web Services sought after. This is covered in Section 4.2, Table

2.

3. Web Service Discovery: Principle
The Web Services developed, deployed and published by the

Service Providers mean nothing unless the Service Consumers

can search, locate and bind to them. This fundamental need

forms a relationship between three kinds of participants: the Web

Service Provider(WSP), the Web Service Discovery

Agency/Middle-ware interacting with the Service Registry and

the Web Service Consumer(WSC), forming a Web Services

Triad[8].

The typical interactions involve the publish, find and bind

operations [8][2] as shown in Fig. For example, a Provider hosts

an internet accessible module, which is the actual

implementation of a given service. A WSDL of the WS is defined

by the Provider, which is the description of the service and an

interface to access it. This WSDL could be provided to the

Consumer directly so that it they can bind to the service.

However, this is not a feasible approach, as it is impossible for

the Provider to know who the potential Consumers of his service

are. Therefore, the WSDL is provided to a well-known Service

Discovery Agency, who publishes it, thus making the service

‘discoverable’. The Discovery Agency is associated with a

UDDI, which is a registry maintain the details of all the services

published with it.

Thus, when a Consumer wants a Service with a particular

functionality (e.g. Hotel Booking), he initiates the find operation,

to retrieve the service description(WSDL), from the Discovery

Agency. Using this WSDL, the Consumer binds with the Service

Provider, after which the internet accessible module, which is the

actual WS implementation is invoked and rendered to the

Consumer. A point to note here is that the WSP and WSC roles

are interchangeable, meaning, a Consumer could be Provider for

a different Service.

 WSP WSC

Registry

 WSD

Agency

or Middleware

Publish

Find

 Binds

Fig 4. Web Services Triad plus Discovery Agency

/Middleware

4. WSD: Problems, Solutions by Researchers

4.1 Problems in finding the „Right‟ Service
Although the future of Web Services looks very promising, there

are a lot of challenging problems associated with it. In this paper,

we highlight the problems in Web Services Discovery. Simply

put this is hunt for a solution or technique to find the ‘right

service’ for the Consumer. We start by listing down the well-

known problems worked and analyzed by researchers around the

world.

As conveyed in Section 2.2, the key artifact in discovering a

service is through its WSDL and searching for its published

description in the UDDI. The third player in WSD apart from

the Providers and Consumers is the WSD Agency / Middleware.

Table 1 summarizes the known and important problems

associated with Web Service Discovery, tackled by various

organizations and individual researchers all over the world.

StrikeIron

Registry

Google

WSIL

Functional

Requirements

of the WS

Google

WSDL

Search

Crawl

WSDL

Search

UDDI

Keyword

Query

Qualty

Models

Qualty

Metrics

Typology

 Non-functional

Requirements

Quality of Service

(QoS)

Qualty

Ontologies

 WEB

SERVICES

DISCOVERY

Fig 5. Two Streams of Thought in Web Service Discovery

(Functional and Non-Functional Requirements)

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

25

 Table 1. Cause Effect Analysis of Some Important Problems Associated with Web Service Discovery

Sl# Problem Cause / Reason of the Problem Effect of the Problem

 WSDL Problem

1 WSDL is inherently designed to give

descriptions detailing its functional aspects

like Service Type, Implementation

interface details such as the port to bind to,

the type of parameters etc. It is not

designed to publish the non-functional

aspects[2,4,7,8,9].

WSDL is not designed to take

the “semantic descriptions” of

the service. It is used to Publish

a WS in terms of its ports, port

types and bindings[2,4,7,8,9].

This makes it difficult to store the non-

functional aspects of the service such as its

Quality of Service (QoS). Parameters such as

reliability, availability, response time,

throughput, mean time before failure, price, etc.

Several techniques have been formulated to

solve this problem[23,25,32,33,14,35,34]

 UDDI Problem

2 Current UDDI implementations

are limited in scope. It is not

innately designed to publish

and store the QoS requirements

and other non-functional

requirements of a

service[31,18,19].

UDDI allows search on limited

attributes of a service, namely,

Service Name (selected by the Service

Provider), keyReference (unique for a

service), or on a categoryBag (listing

all the business categories[31,18,19].

This problem makes it difficult to store within the

UDDI, the run-time performance parameters of the

service capturing its QoS parameters.

It is also difficult to capture the Customer Feedback

about the service and store it to analyze and improve

on these valuable metrics[31,18,19,20,15,16].

3 Public UDDI registries, that

were run by IBM, Microsoft,

SAP and NTT Com. have been

shut down in the beginning of

2006[15].

There was no consensus regarding

ownership of the root UDDI

rsegistries. UBRs used to contain

listings of businesses that no longer

existed and sites that were no longer

active [19,15].

There is no Universal Registry where all Web

Services are published. This makes it difficult to

check the performance, scalability and statistical

gathering of data. An earlier work carried out by Su

Myeon Kim and Marcel-Catalin Rosu[19] reports that

only one-third of the 1200 registered services

referenced a valid WSDL.

 Web Service Discovery Middle Agent / Engine Challenges

4 The WSes published are tagged

with a lot of information, making

narrowing down / filtering out

the attributes difficult. [18,19]

This is because repositories store

information gathered about the service

provider apart from the service profile

information. [18,19]

Web Service Discovery Engine must be able

to process this vast data about the service

provider[23,18,19].

5 There would be multiple versions

of WSes in the repositories. This

means that Web Service Discovery

Algorithms must be able to handle

both ‘design time’ and ‘run time

phases’ of discovery. The

matchmaking algorithm must be

able to bind to the correct WS

version[3,2,27,16,17].

Web Services are an emerging technology.

The development methodology of WS

Projects usually adopts an incremental

model[3]. Thus, the basic WSDL structure

depicting the port, port types and bindings

will not change between incremental

changes. The underlying web method

implementations imbibing the incremental

changes, will differ across versions[2][21].

The „design time‟ matches would be done

against the Web Service Interface, WSDL,

which is the same between versions. [26]„Run

time‟ matches must be able to pull out the

correct Version, which has the service

description and profile that match the user

needs. [28]The latest version need not always

be what the user wants!

6 Majority of current approaches

proposed by researchers, lack a

reliable, stable and trust-worthy

dynamic discovery and binding

architecture.[22,13].

In many approaches, apart from the basic

match-making, there is the method of

ranking the Web Services based on its

„Reputation‟, which is a factor calculated

in addition to its Service Profile[26,27,28]

The pertinent question here is the integrity,

reliability and trust-worthiness[25,29,29] of

the Agencies rolling out these „Reputations‟ /

„Endorsements‟. They could be doctored to

suit the business needs of a Service Provider.

7 Service Consumers should be able

to automatically select and bind to

the desired services without

manual intervention[26,27,28].

Fully automated complete binding involves

resolving multiple versioning between the

WSes, complicated matchmaking, ranking

and selection algorithms etc[2,4,7,8,9].

The inability to have a trust-worthy

framework for dynamically binding caused the

mushrooming of a lot of „Broker‟

Architectures that does this job[23,24,25]

8 Current approaches do not have

memory of past service bindings

and interactions[25,26,27].

There is no standardized means to imbibe

learning from past experience[22,13].

Redundancy and repetition in advertising the

Service Profiles, matching them against the

Customers requirements[13,14,24,25].

9 The biggest hurdle is the

heterogeneity between services.

For example, they may have

different formats for exchanging

data [15,16,17,21,27,28].

Domain specific terms and concepts differ

between vendors, causing non-uniformity

in the way data is published. Technical

differences exist between WSs with similar

functionality implemented on different

platforms[15,16,17,21,27,28].

This causes immense problems while

scavenging for WSs based on its functional

requirements, which are innately domain

specific. [15,16,17,21,27,28]

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

26

Table 2. Summary of the Search Methods to extract the WSDL: Functional Requirements Based WSD

 Google WSDL Google WSIL StrikeIron

Registry

UDDI Registry Crawl WSDL

Search

Approach Use Google WS

API & Developer

Kit and extract

the WSDL

references using

the Google

Search Engine.

Here, the Google WS

API & Developer Kit

is used to extract Web

Service Inspection

Language Document

WSIL, which can be

parsed for WSDL

locations.

Search a registry not

associated with a

public Universal

Business Registry

(UBR) like

Microsoft. Instead,

StrikeIron Registry is

used.

Search is

implemented using

Sun‟s Java WS

Toolkit(JAXR) to

query the registry.

Public UBR like

Microsoft needs to

be used.

Uses web crawling

to try and locate a

WSDL from a

domain.

„Crawling‟ starts

at home page and

goes to a specified

number of levels.

Specifics

Uses Four Options namely,

a)Using Stemmed terms from the Home

Page.

b)Using Unstemmed terms from Home

Page.

c)Using “inurl:” Keyword search.

E.g. URL is www.amazon.com

For Google WSDL Approach: Software

extracts “inurl:wsdl” from

“inurl:domain” which here means extract

WSDL from “amazon.com”

For Google WSIL Approach: Software

extracts “inurl:wsil” from “inurl:domain”

which here means extract WSIL from

“amazon.com”

d)Using “site:” Keyword Search

For Google WSDL Approach: Software

extracts “inurl:wsdl” from “site:domain”.

Means extract WSDL from “amazon.com”

For Google WSIL Approach: Software

extracts “inurl:wsil” from “site:domain”.

Means extract WSIL from “amazon.com”

StrikeIron Registry is

not automatically

maintained, therefore

WSs are not

dynamically

discovered.

WSP register their

services just as they

would do in a UBR.

StrikeIron provides

its own software as

well as API to search

in its Registry. The

format of the URL is

http://www.strikeiron

.com/search?amazon,

where „amazon‟ is

the domain name to

search for. The

HTML results page

is retrieved and

parsed to pull out the

WSDL locations.

tModels define the

category.

Uses two

approaches:

Query by:

a)Name

b)Category

a)Name of the WS

is searched.

It tries to find a

matching business

name, from where

the tModel entry

can be traced to

extract the WSDL.

b)Category Search

involves searching

all tModel entries

with classification

“wsdlspec” and

searching for the

domain name in

WSDL list.

The most well

known crawler is

WebSPHINX. It

is a complex

crawler

configurable with

a GUI front end.

Configurable to

specify crawl

levels. For E.g.,

one can choose to

crawl within a

domain or move to

other URLs, which

have the key term

of the domain.

Google “site:”

parameter needs to

be activated to

facilitate this

crawling.

4.2 Solutions to the WSD Riddle
Table 1 precisely captures the Cause-Effect Analysis of the

Problems associated with this fertile research area package called

‘Discovering the Right Web Services’. We now proceed to

highlight the solutions to some of these problems proposed by

Researchers across the globe.

The crucial point to note here is the criteria to search and locate

the Web Services. As depicted in Fig 3., one stream of thought

focuses on finding the WSs based on its functional

requirements[12][14][15][16]. For example, a Consumer could

be looking for a Service Description(WSDL) that combines a set

of related services for the travel domain giving an overall plan

including airfare, hotel, and car rental. As is evident, the

Consumer wants the functional or operational aspects of the

service. He may be interested in selecting the Web Service from

among a list of competitive Services, based on the amount of

intricate details put forth by the overall rental plan.

Holger Lawsen and Thomas Haselwanter[14], Daniel

Bachlechner et al [15]Hicks et al [16] have done elaborate and

meticulous work on scavenging for Web Services based on

their functional requirements. The summary of their overall

approaches and specific techniques used to extract the WSDL is

shown in Table 2. In all these approaches we see a

predominantly keyword based technique, some searches mined to

multiple filtered levels. A point to note here is that the

techniques used by Google are applicable for other search

engines such as Baidu, AlltheWeb and Yahoo.

However, the WS Functional Specifications are not enough to

handle the Service Discovery Process. This is because:

 WS need to be automatically and dynamically discovered and

selected at runtime. A mechanism needs to be in place to

ensure that this automatic discovery happens and the best

services are chosen. This needs specifications in the service

profile beyond the mere functional aspects of a WS.

 With the abundance of WS created by many service providers,

often a number of WSes satisfies the functional requirements

of a service request. Methods were evolved to rank and select

the best Web services for a request among a list of candidate

Web services, which can provide similar functionality.

http://www.strikeiron.com/search?amazon
http://www.strikeiron.com/search?amazon

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

27

Table 3: Summary of Investigation into Various QoS Ontology Languages

Sl

Language &

Contributors

Feature Approach Specifics Pitfalls

1 DAML-QoS

Ontology

C. Zhou et al,

2005[42]

 WS

Domain

specific

ontology

 Developed

to
supplement

DAML-S

QoS

ontology

Has three Layers:

 QoS Profile Layer: Designed for match-making

purpose

 QoS Property Definition Layer: To elaborate the

property‟s domain and range constraint

 QoS Metric Layer: To define and measure QoS metrics

 The Value Type range to hold QoS

Metrics is limited. There are only a

few value types such as string,

numeric, Boolean etc.

 The Impact(Positive, Negative, Exact,

Close, None)of the QoS property value

cannot be defined.

2 OWL-Q

Ontology

K. Kritikos et

al, 2006[39]

 Upper

Level

Ontology

that

extends

OWL-S to

describe

WS QoS.

Have multiple facets, each of which can be developed

and extended independently.

 Connecting Facet supports linking OWL-Q

ontology with OWL-S ontology.

 Basic Facet associates a service profile with

several QoS offers (given by providers) or with only

one QoS request (given by requesters).

 QoS Metric Facet describes classes and properties

used for defining QoS metrics.

 Measurement Directive Facet is used for measuring

simple metrics

 Function and Schedule Facets are used for computing

and measuring complex and/or dynamic metrics.

 Unit Facet describes the unit of a QoS metric.

 QoSValueType Facet describes the value types a QoS

metric can take.

 The Impact(Positive, Negative, Exact,

Close, None)of the QoS property value

cannot be defined.

 Rudimentary facility to do QoS

Grouping of properties that share the

same characteristics. QoS Grouping

helps evaluate the QoS Value of a WS.

 No support for WSD participant roles

other than Service Provider and

Requestor. Important third parties such

as Certifying Authorities, Endorsement

Agencies cannot be modeled.

3 WSMO-QoS

Ontology

X. Wang,

I.Toma et

al[43,44]

2006,2004

Extended

WSMO

model[44]

to specify

quality

metrics,

value

attributes

and their

correspondi

ng

measureme

nts.

Defines a new class QoS that can be attached to the

class webService or class Goal in the WSMO model.

This class has the following attributes:
 hasMetricName (string)

 hasValueType (linguistic numeric, boolean…)

 hasMetricValue (corresponding value which has value

type specified in hasValueType)

 hasMeasurementUnit (including conversion functions

for different measurement units),

 hasValueDefinition (logical expression for computing

QoS value)

 isDynamic (boolean) and isOptional (boolean)

 hasTendency (low/small, high/large, given, for

representing the tendency of the value)

 isGroup (specifying that the property is

defined by a group of other properties or not)

 hasWeight (depicting the property‟s importance).

 No definitions of concrete QoS

properties. These are a group of

common and domain independent

properties.

 Very weak support to specify

relationships between QoS properties

such as independence or correlation

(inversion, opposite, parallel).

 Few support for the usage of QoS

information, except for QoS priority,

mandatory, and QoS grouping.

4 QoS-Ont

Ontology

G.Robson, I.

Sommerville

et al,

2005[45]

Based on

existing

QoS

taxonomies

and

models.

Has several ontologies organized as three layers

 Base Layer: Has a base QoS ontology representing a

minimal set of generic QoS concepts.

 Attribute Layer: Contains ontologies defining

particular QoS attributes and metrics.

 Domain Specific Layer: Links the lower layers to

specific types of systems. This layer provides concepts

for connecting QoS concepts in lower layers with

OWL-S service profiles. For example, network

systems or Web service systems.

 This approach is similar to OWL-

Q[39] mentioned above.

 Does not support specifying a QoS

profile from a set of QoS

characteristics

 No support for QoS relationships.

 The conversion mechanism is used for

units of QoS metrics but not for

mapping different QoS parameters.

 The usage support of the ontology is

also very limited.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

28

This led to the second stream of thought. Discover WSs based

its non-functional requirements. The predominant factor being

‘Quality of Service’(QoS). A Consumer may want a Service that

offers the fastest response time while for another reliability or

constant availability could be the criteria and a third Consumer

may treat security as his most important parameter.

All these, namely, security, response time, reliability, availability

come under the non-functional QoS requirements of a service.

Therefore, the body of work we surveyed and referenced here is

based on QoS. First, we investigated into the various Quality

Models, Metrics, Attributes and Typology associated with QoS.

The hurdles to cross in order to model the quality parameters are:

 The Service Providers and Requesters use different languages

and models for QoS advertisements and requirements.

 It is necessary to find a way to evolve a system, which

understands different QoS concepts in QoS descriptions.

 Different domains and applications may require different

 QoS properties; therefore we need a more efficient and

 flexible method to express QoS information. [32,35,36,37,38]

Semantic technology, especially ontology, can be used for

achieving QoS interoperability. The next section focuses on this.

4.3 QoS Ontology for Semantic Modeling
In this section, we review the approaches adopted by researchers

to develop QoS Ontologies. The pros and cons of those

approaches and open issues yet not addressed are discussed here.

Ontology Definition[41]: It is the study of categories of things

that exist or may exist in some domain. It is a catalog of the

types of things that are assumed to exist in a domain of interest

D, from the perspective of a person who uses a language L for

the purpose of talking about D.

The most common language L used is predicate calculus,

conceptual graphs or Knowledge Interchange Format(KIF) all in

realm of un-interpreted logic. By itself, logic says nothing about

conceptual graphs or Knowledge Interchange Format(KIF) all in

anything unless combined with something. The ‘something’ here

is Ontology, specifically QoS Ontology, and the Domain of

interest, D, is Web Service Discovery. This combination of logic

and ontology has given us a range of languages that can express

relationships about the entities in the domain of interest.

Table 3 gives a summary of our survey and exhaustive study into

a few selected QoS Ontology Languages, namely DAML-QoS,

OWL-Q , WSMO-QoS and QoS-Ont,. Some other works such

as Context Ontology Language(CoOL) by Thomas Strang et al,

QoS-Onto Language by I. V. Papaioannou et al, QoS-MO by G.

F. Tondello et al, onQoS Language by E. Giallonardo et al. are

not covered in this paper due to lack of space to include them.

Our allied work [12] elaborates these.

5. Conclusion
In the early years of Service Oriented Computing, the number of

Web Services were few. Finding the relevant services was

primarily done by checking for the published services within the

UDDI(UBR). By 2006, UBR closed and other alternate

approaches bravely pioneered by StrikeIron could not make much

impact. Today, WSDLs, are abundant, scattered across the

WWW. The count of Web Services already deployed with similar

functionality is mammoth in number. There is an increasing need

to evolve Service Discovery Methods that help the Consumer to

find the right kind of services for his requirements.

In this paper, we have put forth our survey results of the work

conducted by researchers across the globe on the WS Discovery

techniques based on User Requirements as their input. We

conclude that the functional requirements of the WS are more or

less handled by the WSDL. In this paper, we have provided an

analysis of the various techniques used by search engines such as

Google, Yahoo, Baidu, AlltheWeb and Web Crawlers such as

WebSPHINX to fish-out the relevant WSDLs.

We have also established that the functional requirements are not

sufficient to discover the right services. The predominant non-

functional WSD approach adopted is to model the Quality of

Service(QoS). In this paper, we give a concise analysis of the

QoS Ontology Modeling using various semantic languages

evolved by researchers. We provided the specifics of the

languages, the advantages and the yet to be solved open-issues.

We hope this meticulous survey would help researchers get a

strong foothold on the realm of Services Discovery and the nitty-

gritty associated with it. We hope it helps them ‘Look Before

they Leap’ to know the challenges, analyzing them and finally

narrowing down of the specific problem they would spend a

good many years working on during their research tenure!

6. REFERENCES
[1] Papazoglou M.P, Willem-Jan van den Heuvel, 2007,

“Service Oriented Architectures:Approaches, Technologies

and Research Issues”, VLDB Journal 2007, Springer-

Verlag, Vol 16, Issue 3.

[2] Thomas Erl, 2008, “Service-Oriented Architecture:

Concepts, Technology and Design”, Pearson Education, 2nd

Impression.

[3] Papazoglou M.P, 2003, “Service–Oriented Computing:

Concepts, Characterisitcs and Directions”, In the

Proceedings of Web Information Systems Engg. (WISE ‟03)

[4] Eric Newcomer, Greg Lomov, “Understanding SOA with

Web Services”, Pearson Education, First Indian Reprint

2005.

[5] Papazoglou M.P, Georgakopoulos D, 2003, “Service

Oriented Computing”, Communications of the ACM,

Vol.46, No.10.

[6] Jian Yang, M.P.Papazoglou, 2004, “Service Components for

Managing the Life-Cycle of Service Compositions”, In the

Proceedings of CAiSE‟03, pp 97-125.

[7] Frank P Coyle, XML, Web Services and the Data

Revolution, Pearson Education, Eighth Impression, 2010.

[8] Sandeep Chatterjee, James Webber, Developing enterprise

Web Services: An architect‟s Guide, 1st Indian Reprint,

2004.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

29

[9] Steve Graham et al, Building Web Services with Java:

Making sense of XML, SOAP, WSDL and UDDI, Pearson

Education.

[10] Mydhili K.Nair, Chandan Bhosle, V. Gopalakrishna, 2009,

“Net Mobile-Cop: A Hybrid „Intelli-Agent‟ Framework to

Manage Networks”, In the Proceedings of IEEE

International Conference on Intelligent and Multi-

Agents(IAMA).

[11] Mydhili K Nair, Shishir M Kakaraddi, Keerthi M

Ramnarayan, V Gopalakrishna, 2009,“Agent with Rule

Engine: The „Glue‟ for Web Service Oriented Computing

applied to Network Management System”,In Proceedings of

IEEE International Conference on Service Computing(SCC)

[12] Mydhili K. Nair, V.Gopalakrishna, 2010, “Standing on the

Shoulders of Giants: A Survey into Web Services

Discovery”, (In Press).

[13] Yao Wang, Julita Vassileva, 2007,“Towards Trust and

Reputation Based Web Service Selection”, In Multi-Agent

and Grid Systems(MAGS) Journal.

[14] Ioan Taoma, Thomas Strang, et al, 2007, “Discovery in Grid

and Web Services Environments: A Survey and Evaluation”,

In Multi-Agent and Grid Systems(MAGS) Journal, Vol 3,

No.3

[15] Holger Lausen and Thomas Haselwanter,2007, ”Finding

Web Services”, In the Proceedings of European Semantic

Technology Conference(ESTC 07)

[16] Daniel Bachlechner et al, 2006, “Web Service Discovery –

A Reality Check”, In the 3rd European Semantic Web

Conference.

[17] Janette Hicks, Madhusudhan Govindaraju, Weiyi Meng,

2007, “Enhancing Discovery of Web Services through

Optimized Algorithms”, In the Proceedings of IEEE

International Confernece on Granular Computing(GRC 07)

[18] Ali ShaikhAli, Rashid Al-Ali et al, 2003, “UDDIe: An

Extended Registry for Web Services”, IEEE Workshop on

Service Oriented Computing: Models, Architectures and

Applications

[19] Adrian Mello, 2002 “Breathing new life into UDDI”, Tech

Update, ZDNET.com.

[20] Su Myeon Kim and Marcel-Catalin Rosu, 2004, “A survey

of public web services”, In the Proceedings of Proceedings

of the 13th International Conference on the World Wide

Web.

[21] John Garofalakis, Yannis Panagis, Evangelos Sakkopoulos

and Athanasios Tsakalidis, 2004, ”Web Service Discovery

Mechanisms: Looking for a Needle in a Haystack?”, In the

International Workshop on Web Engineering.

[22] Ziqiang Xu, 2007, “Reputation-Enhanced Web Services

Discovery with QoS”, In the Proceedings of ICWS 07

[23] T. Rajendran, P. Balasubramanie,2010,“An Optimal

Broker-Based Architecture for Web Service Discovery with

QoS Characteristics”, IJWSP, Vol. 5, No. 1

[24] Keith Decker, Katia Sycara, Mike Williamson, 1997,

“Middle-Agents for the Internet”, In the Proceedings of

IJCAI 1997

[25] Tao Yu and Kwei-Jay Lin, 2004, “The Design of QoS

Broker Algorithms For QoS-Capable Web Services”, In

IJWSR

[26] E. M Maximilien, Munindar P. Singh, 2004 “Toward

Autonomic Web Services Trust and Selection”, In the

Proceedings of 2nd International Conference on Service

Oriented Computing.

[27] E. M Maximilien, Munindar P. Singh, 2003, “Agent-based

Architecture for Autonomic Web Service Selection, In the

1st International Workshop on Web Services and Agent

Based Engg

[28] E. Michael Maximilien, Munindar P. Singh, 2005,

“Multiagent System for Dynamic Web Services Selection”,

1st Workshop on Service-Oriented Computing and Agent

Based Engineering.

[29] E. M Maximilien, Munindar P. Singh, 2005, “Self-

Adjusting Trust and Selection for Web Services”, In the

Proceedings of 2nd International Conference on Automatic

Computing.

[30] E. Michael Maximilien, Munindar P. Singh, 2001,

“Reputation and Endorsement for Web Services”, In

ACMSIGeCom Exchanges, Vol 3, Issue 1.

[31] A.Blum, “UDDI as an Extended Web Services Registry:

Versioning, quality of service, and more”. White paper,

SOA World magazine, Vol. 4(6), 2004.

[32] D. Fensel and C. Bussler, 2002 “The Web Service Modeling

Framework WSMF”, In Electroni Commerce Research and

Applicatins Journal Vol 1, Issue 2.

[33] Shuping Ran, 2003 “A Model for Web Services Discovery

With QoS”, In ACMSIGeCom Exchanges, Vol 4, Issue 1.

[34] Sravanthi Kalepu, Shonali Krishnaswamy, Seng Wai Loke,

2003 “Verity: A QoS Metric for Selecting Web Services and

Providers”, In the Proceedings of 4th International

Conference on Web Information Systems Engineering

Workshop(WiSE 03)

[35] Yannis Makripoulias et al, 2005, “Towards Ubiquitous

Computing with Quality of Web Service Support”, In

UPGRADE, The European Journal for the Informatics

Professional”, Vol 6. No. 5

[36] Vuong Xuan Tran, Hidekazu Tsuji, Ryosuke Masuda, 2009,

“A new QoS ontology and its QoS-based ranking algorithm

for Web services”, In Elsevier Journal: Simulation

Modelling Practice and Thoery.

[37] S. Frolund and J. Koisten. 1998, “QML: A Language for

Quality of Service Specification”, Hewlett-Packard,

http://www.hpl.hp.com/techreports/98/HPL-98-10.html

[38] A. Dan et al. 2002,”Web Service Level Agreement (WSLA)

Specification”, http://www.research.ibm.com/wsla.

[39] A. Sahai, A. Durante, and V. Machiraju.,2002,”Towards

Automated SLA Management for Web Services”, HP,

www.hpl.hp.com/techreports/2001/ HPL-2001-310R1.pdf.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.5, September 2010

30

[40] K. Kritikos and D. Plexousakis. 2006, “Semantic QoS

Metric Matching”, In Proc. of the European Conference on

Web Services (ECWS2006), IEEE Computer Society.

[41] I. V. Papaioannou, D. T. Tsesmetzis, I. G. Roussaki, and M.

E. Anagnostou, 2006,”A QoS Ontology Language for Web

Services”. In Proc. of the 20th International Conference on

Advanced Information Networking and Applications

(AINA2006), IEEE Computer Society.

[42] http://www.jfsowa.com/ontology/ (accessed on 12th Aug

2010, 1.28 am)

[43] C. Zhou, L. Chia, and B. Lee, 2005, ”Web Services

Discovery on DAML-QoS Ontology”. In the International

Journal of Web Services Research(IJWSR)

[44] G. Dobson, R. Lock, and I. Sommerville,2005, ”QoSOnt: a

QoS Ontology for Service-Centric Systems”. In Proc. of the

2005 Euromicro SEAA.

[45] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, 2006, “A

QoS-Aware Selection Model for Semantic Web Services”.In

Proc. of the 4th International Conference Service Oriented

Computing, LNCS, Springer Verlag, Volume 4294.

[46] D. Roman, H. Lausen, and U. Keller, 2004,”Web Service

Modeling Ontology (WSMO)”, http://www.wsmo.org/

2004/d2/v1.0/20040920/

