
International Journal of Computer Applications (0975 – 8887)
Volume 7– No.7, October 2010

27

Entropy Weighting Genetic k-Means Algorithm for
Subspace Clustering

Anil Kumar Tiwari
Disha College of Information

Technology
Raipur, CG-INDIA

Lokesh Kumar Sharma
Rungta College of Engineering and

Technology
Bhilai, CG - INDIA

 G. Rama Krishna
K. L. University

Vijayawada, AP - INDIA

ABSTRACT

This paper presents a genetic k-means algorithm for clustering
high dimensional objects in subspaces. High dimensional data

faces data sparsity problem. In this algorithm, we present the
genetic k-means clustering process to calculate a weight for each
dimension in each cluster and use the weight values to identify the
subsets of important dimensions that categorize different clusters.
This is achieved by including the weight entropy in the objective
function that is minimized in the k-means clustering process.
Further, the use of genetic algorithm ensure for converge to the
global optimum. The experiments on UCI data has reported that

this algorithm can generate better clustering results than other
subspace clustering algorithms.

General Terms

Data Mining

Keywords

Genetic Algorithm, Clustering, Subspace clustering.

1. INTRODUCTION
The ever-growing repository of data in almost all fields
contribute significantly towards future decision making provided
appropriate knowledge discovery mechanisms are applied for
extracting, hidden but potentially useful information embedded in
the data [4][9]. A knowledge-discovery system employs a wide
class of machine learning algorithm to explore the relationships
among tuples and characterize the nature of relationships that
exist between them. Classification and clustering are two most

commonly encountered knowledge discovery techniques that are
applied to extract knowledge. Classificatory analysis refers to a
set of supervised learning algorithms, which study pre -classified
data sets in order to extract rules for classification. Clustering on
the other hard refers to unsupervised learning algorithms which
aim is to partition a given set of data elements into homogeneous
groups called clusters. Clustering is one of the principal
techniques applied for mining data arising from many fields some

of which are banking or medical informatics. Information retrieval
in bio-informatics lack of any prior knowledge about the
distribution of the data points makes the problem more complex.

 One of the initial and most frequently cited k-means algorithm
states the process reasonably efficiently in the sense of class
variance, corroborated to some extent by Mathematical Analysis
and practical experience [4]. Also the k-means procedure is easily
programmed and is computationally economical, so that it is
feasible to process very large samples on a digital computer.

SYNCLUS algorithm is used for variable weighting in k-means
clustering and extension of weighting in k-means clustering is
developed to find optimal variable weights for ultra metric and
additive tree fitting [9]. However these two algorithms are time

consuming [9]. Modha, et al [1] explored the new approach by
minimizing the ratio of the average within-cluster distortion over
the average between-cluster distortion to achieve minimizing the
optimal variables weights. Friedman and Meulman [3] proposed a
new method by assigning the weight for each variable in each
cluster to obtain the suitable weighting variables. Jing et al [5]

recently proposed a novel approach by adding a new step to k-
means. The new step iteratively updates variable weights based on
the current partition of data by a weighting calculation formula.
Unfortunately, all of the above algorithms do not consider the
drawbacks of k-means:

(i) k-Means converge to a local optimum. In other words, all the
algorithms in the above cannot achieve a global optimum.

(ii) The initial parameters influence the results of k-means.

In this paper, we combine genetic algorithm (GA) with k-means
to select the best k value using entropy weighting. Since GA
explores the space more thoroughly than k-means, the new
algorithm (the genetic k-means algorithm) converges to a global
optimum.

In the next section, we present related work on genetic cluster
algorithm and entropy weighting cluster. Section 3 presents
proposed algorithm. Section 4 contains experiment and result

analysis. Finally we conclude our work on section 5.

2. RELATED WORK
Krishna and Murty [4] combined the features of k-means
clustering algorithm and genetic algorithm and developed genetic
k-means algorithm (GKA) GA finds a globally optimal partition

of a given data into a specified number of clusters. GA’s used
earlier in clustering employ either an expressive cross over
operator to generate valid child chromosomes from parent
chromosomes or a costly fitness function or both. To circumvent
these expressive operations, here k- Means operator is defined and
used in GKA as a search operator instead of crossover. Biased
mutation operator specific to clustering called distance based
mutation is used in GKA. Using finite Markov Chain theory GKA

converges to global optimum.

Fast genetic k-means algorithm (FGKA)[7] is inspired by genetic
k-means algorithm and developed with some improved feature
over GKA. FGKA is faster than GKA [7].

Lu et al[8] proposed Incremental Genetic k-means Algorithm
(IGKA). The main idea of IGKA is to calculate objective value
total within cluster variation (TWCV) and the cluster centered
incrementally whenever the mutation probability is small. IGKA
inherits the salient feature of FGKA of always covering to the

global optimum.

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.7, October 2010

28

Entropy weighting is used in k-means algorithm by or subspace
clustering of high dimension sparse data by Jing et al in 2007[5].
Data sparsity problems are faced in clustering high dimensional
data [5]. In this algorithm, k-Means clustering process is extended
to calculate a weight for each dimension in each cluster and use

the weight values to identify the function that is minimized in k-
Means clustering process. An additional step is added to the k-
means clustering process to automatically compute the weights of
all dimensions in each cluster.

High dimensional data [5] is a phenomenon in real world data
mining applications. Text data is a typical example. In text
mining, a text document is viewed as a set of pairs <ti ,fi>, where ti
is a term or word, and fi is a measure of ti , for example the

frequency of ti in the document. The total number of unique terms
in a text data set represents the number of dimensions, which is
usually in thousands. High- dimensional data occurs in business as
well. In retail companies, for effective supplier relationship
management (SRM), suppliers are often categorized in groups
according to their business behavior data is high dimensional
because thousands of attributes are used to describe the supplier’s
behavior, including product items, ordered amounts, order

frequencies, product quality, and so forth.

Sparsity is an accompanying phenomenon of high dimensional
data. In text data, documents related to a particular topic, for
instance sport, are categorized by one subset of terms. The term
describing sport may not occur in the documents describing
music. This implies that fi is zero for the subset of terms in the
documents describing music and vice versa. Such situation also
occurs in supplier categorization. A group of suppliers are

categorized by the subset of product items supplied by the
suppliers. Other suppliers who did not supply product items have
zero order amounts for them in the behavior data.

Clearly, clustering of high dimensional sparse data requires
special treatment. This type of clustering methods is referred to as
subspace clustering, aiming at finding clusters from subspace of
data instead of the entire data space. In a subspace clustering, each
cluster is a set of objects identified by a subset of dimensions and
different subsets of dimensions and different clusters are

represented in different subsets of dimensions.

3. ENTROPY WEIGHTING GENETIC k-

MEANS ALGORITHM (EWGKM)
The main objective of the clustering algorithm under
consideration is to partition a collection of n given patterns; each
pattern is a vector of dimension d, into K groups such that this
partition minimizes the TWCV, which is defined as follows.

wik = 1, if ith pattern belongs to kth cluster,

 wik = 0, otherwise

Then, the matrix w = [wij] has the properties that

wij {0,1} and (1)

In this section we use entropy weighting concept adopted from
EWKM algorithms given by Jing et al 2007 [5] in Genetic k-

means algorithm. Here we consider that the weight of a dimension
in a cluster represents the probability of contribution of that
dimension in forming the cluster. The entropy of the dimension
weights represents the certainty of dimensions in the identification
of a cluster. Therefore, we modify the objective function by

adding the weight entropy term to it so that we can simultaneously
minimize the within cluster dispersion and maximize the negative
weight entropy to stimulate more dimensions to contribute to the
identification of clusters. In this way we can avoid the problem of
identifying cluster by few dimensions in spare data.

 (2)

Subject to

Minimization of S in above objective function we use.

Where

The positive parameter controls the strength of the incentive for

clustering a more dimension for minimizing S we take and
fixed and Cij is updated using.

 (3)

Above is independent of the parameter and the dimension

weights ik.

3.1 Coding
Here the search space of all W matrices that satisfy (1) A natural
way of coding such W into a string sw, is to consider a
chromosome of length n and allow each allele in the chromosome
to take values from {1,2, …. K}. In this case, each allele
corresponds to a pattern and its value represents the cluster

number to which the corresponding pattern belongs. This is
possible because (refer to eq. (1)) for all i, wik =1 for only one k.
GKA maintains a population of such strings.

3.2 Initialization
The initial population P(0) is selected randomly. Each allele in the
population can be initialized to a cluster number randomly
selected from the uniform distribution over the set {1,…, K}. In

this case, we may end up with illegal strings, strings representing
a partition in which some clusters are empty, with some nonzero
probability. This is avoided by assigning p, the greatest integer
which is less than n/K, randomly chosen data points to each
cluster and the rest of the points to randomly chosen clusters.

3.3 Selection
The selection operator randomly selects a chromosome from the

previous population according to the distribution given by

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.7, October 2010

29

K

k kmjmj ddcddcp
1 maxmax /)(

Where F(si) represents fitness value of the string si in the
population and is defined in the next paragraph. We use the
roulette wheel strategy for this random selection.

Solutions in the current population are evaluated based on their
merit to survive in the next population. This requires that each

solution in a population be associated be associated with a figure
of merit or a fitness value. In the present context, the fitness value
of a solution string sw depends on the total within-cluster variation
S (W). Since the objective is to minimize S(W), a solution string
with relatively small square error must have relatively high fitness
value. There are many ways to defining such a fitness function.

We use the -truncation mechanism for this purpose. Let

.)()(),(cfswfswgWSswf where

f and denote the average value and standard deviation of

f(sw) in the current population, respectively c is constant between
1 and 3. Then, the fitness value of sw, F(sw), is given by.

otherwise

swifgswg
sF w

,0

0)(),(
)(

3.4 Mutation
Mutation changes an allele value depending on the distances of

the cluster centroids from corresponding data point. It may be
recalled that each allele corresponds to a point and its value
represents the cluster to which the data point belongs. An operator
is defined such that the probability of changing an allele value to a
cluster number is more if the corresponding cluster center is closer
to the data point. To apply the mutation operator to the allele sw (i)
corresponding to pattern xi, let dj = d(xi, cj) be the Euclidean
distance between xi and cj. Then, the allele is replaced with a
value chosen randomly from the following distribution:

where cm is a constant usually 1 and jj dd maxmax . In

case of a partition with one or more than one singleton clusters,
the cm is introduced because; we need pj to be nonzero for all j to
prove the convergence of GKA. It forces cm to be strictly greater
than 1.

Above mutation may result in the formation of empty clusters

with a nonzero probability. It may be noted that smaller the
number of clusters, larger the SE measure: so empty clusters must
be avoided. A quick way of detecting the possibility of empty
cluster formation is check whether the distance of the data xi from
its cluster center Csw(i) is greater than zero. It be noted that dsw(i) =0

 even in the case of non-singleton clusters were in the data point
and the center of the cluster are the same. Thus, an allele is
mutated only when dsw(i) > 0. The strings that represent K

nonempty clusters are called legal strings; otherwise, they are
called illegal strings. Each allele in a chromosome is mutated as
described above with a probability pm, called mutation
probability. A pseudo-code of the operator is given below.

Mutation (sw)

{for i = 1 to n

{if (drand() < Pm)

{Calculate cluster centers, cj’s,

corresponding to sw;

for j = 1 to K, dj = d(xi,cj);

if (dsw(i)> 0)

{dmax = max {d1, d2, ... dk}

for j = 1 to K,

sw(i)= a number, randomly selected from

{1, 2, ..., K} according to the

distribution {p1, p2, ..., pk};

 } } } }

(drand() returns a uniformly distributed random number in the
range [0, 1]).

3.5 k-Means Operator
The algorithm with the above selection and mutation operators
may take more time to converge, since the initial assignments are
arbitrary and the subsequent changes of the assignments are
probabilistic. Moreover, the mutation probability is forced to
assume a low value because high values of Pm lead to oscillating
behavior of the algorithm. To improve this situation, a one-step k-
means algorithm, named k-Means operator (KMO), is introduced.

Let sw be a string. The following two steps constitute KMO on sw
which yields

1. Calculate cluster centers using (3) for the given matrix W;

2. Reassign each data point to the cluster with the nearest cluster
center.

There is a penalty to be paid for the simplicity of this operator.
The resulting string may represent a partition with empty clusters,
i.e. KMO may result in illegal strings. We convert illegal strings

to legal strings by creating desired number of new singleton
clusters. This is done by placing in each empty cluster a pattern x
from the cluster C with the maximum within-cluster variation
(refer to eq. (2)) x is the farthest from the cluster center of the
cluster C. We chose to do as above because this technique is
found to be effective and computationally less expensive.

3.6 EWGKA
To start with, the initial population is generated as mentioned
above and the subsequent populations are obtained by the
application of selection, KMO over the previous population. The
algorithm is terminated when the limit on the number of
generations is exceeded.

4. EXPERIMENT AND RESULT

ANALYSIS
We implemented our proposed clustering technique Java
language. Our experiments were conducted on a P-IV system with

2.2 Hz CPU and 1 GB RAM. We experiment our clustering
algorithm on some standard data sets. These data were taken from
the UCI repository [10]. In this paper result analysis on data set
Text Data is reported. For each set of the parameters (N, Pm,
Gmax), It is ran 100 times. In these tests, we choose a wide range
of the mutation probability, and we observed that the average
clustering accuracy of algorithm is above 88% and the number of
correct clustering is at least 49 out of 100. Because of the limit of

K

i

jm

jm

j

ddc

ddc
jiswp

1

max

max
Pr

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.7, October 2010

30

the number of generations, the algorithm stops before achieving
the global optimum in some cases.

We experimented on text data applying algorithms EWGKA,
EWKM, PROCLUS [5] and HARP. We observed that EWKM
outperformed PROCLUS and HARP. EWGKA shows good

accuracy as EWKM with global optimum convergence. The
reason is that other clustering algorithm with sparse problem for
high-dimensional data adopted an approximation process to
minimize their objective functions so that some raw information
may be missed. The clustering accuracy of the two hard subspace
clustering algorithm PROCLUS dropped quickly as the sparsity
increased. Our observation shows that GEWKM is better in
clustering complex data, such as sparse data.

5. CONCLUSTION
The algorithm EWGKM benefits from the advantages of both
genetic algorithm (GA) and k-means. Since GA searches the
space more thoroughly than k-means, the genetic k-means
algorithm will not be trapped in a local optimum. Here we used

weight entropy to minimize the within cluster dispersion and
maximize the negative weight entropy in the clustering process
this way we get more dimensions to make a contribution to
identification of each cluster. The problem of identifying cluster
by few sparse dimensions can be avoided.

6. REFERENCES
[1] D.S. Modha and W.S. Spangler, Feature weighting in k-

Means Clustering,Machine learning, vol. 52, pp.217-237,
2003.

[2] Huan, J.Z., Ng, M.K. Hongqiang Rong, Zichen Li,
Automated variable weighting in k-Means type clustering,

IEEE Transactions on pattern Analysis and Machine
Intelligence, vol. 27 Issue 5, May 2005 pages : 657-668.

[3] J.H. Friedman and J. J. Meulman, Clustering Objects on
Subsets on subsets of Attributes, J. Royal Statstical Soc. B.,
2002.

[4] K. Krishna and M. N. Murty, Genetic K-Means Algorithm,
IEEE Transactions on Systems, Man, and Cybernetics vol.
29, NO. 3, (1999), 433-439.

[5] L. Jing, M. K. Ng and J. Z. Huang , ‘An Entropy weighting
k-Means Algorithm for subspace clustering of high
dimensional sparse data’, IEEE Transaction on knowledge
and Data Engineering Vol 19, No 8, August 2007.

[6] W. Frawley, G.Piatetsky-Shapiro, C. Matheus, Knowledge
discovery in databases: an overview, AI Magazine (1992) pp.
213-228.

[7] Y. Lu, S. Lu , F. Fotouhi ,Y. Deng , and S.J. Brown,
FGKA: A Fast Genetic K-means Clustering Algorithm,
ACM Symposium on Applied Computing ISBN:1-58113-
812-1 (2004), 622-623

[8] Y. Lu, S. Lu, F. Fotouhi,Y. Deng and S. J. Brown S. J,
Incremental genetic K-means algorithm and its application in

gene expression data analysis, BMC Bioinformatics (2004),
5(172).

[9] Z. Yu and H. S. Wong, Genetic based k-means algorithm for
selection of feature variables, IEEE ICPR’06, 2006.

[10] S. Hettich and S. D. Bay, The UCI KDD Archive
[http://kdd.ics.uci.edu] Invine, CA: University of California,
Department of Information and Computer Science.

