
International Journal of Computer Applications (0975 – 8887)  
Volume 7– No.7, October 2010 

27 

 

Entropy Weighting Genetic k-Means Algorithm for 
Subspace Clustering 

Anil Kumar Tiwari 
Disha College of Information 

Technology 
Raipur, CG-INDIA 

 

Lokesh Kumar Sharma 
Rungta College of Engineering and 

Technology 
Bhilai, CG - INDIA 

 

 G. Rama Krishna 
K. L. University 

Vijayawada, AP - INDIA 
 

 

ABSTRACT 

This paper presents a genetic k-means algorithm for clustering 
high dimensional objects in subspaces. High dimensional data 

faces data sparsity problem.  In this algorithm, we present the 
genetic k-means clustering process to calculate a weight for each 
dimension in each cluster and use the weight values to identify the 
subsets of important dimensions that categorize different clusters. 
This is achieved by including the weight entropy in the objective 
function that is minimized in the k-means clustering process. 
Further, the use of genetic algorithm ensure for converge to the 
global optimum.  The experiments on UCI data has reported that 

this algorithm can generate better clustering results than other 
subspace clustering algorithms.   
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1. INTRODUCTION 
The ever-growing repository of data in almost all fields  
contribute significantly towards future decision making provided 
appropriate knowledge discovery mechanisms are applied for 
extracting, hidden but potentially useful information embedded in 
the data [4][9]. A knowledge-discovery system employs a wide 
class of machine learning algorithm to explore the relationships 
among tuples and characterize the nature of relationships that 
exist between them. Classification and clustering are two most 

commonly encountered knowledge discovery techniques that are 
applied to extract knowledge. Classificatory analysis refers to a 
set of supervised learning algorithms, which study pre -classified 
data sets in order to extract rules for classification. Clustering on 
the other hard refers to unsupervised learning algorithms which 
aim is to partition a given set of data elements into homogeneous 
groups called clusters. Clustering is one of the principal     
techniques applied for mining data arising from many fields some 

of which are banking or medical informatics. Information retrieval 
in bio-informatics lack of any prior knowledge about the 
distribution of the data points makes the problem more complex. 

 One of the initial and most frequently cited k-means algorithm 
states the process reasonably efficiently in the sense of class 
variance, corroborated to some extent by Mathematical Analysis 
and practical experience [4]. Also the k-means procedure is easily 
programmed and is computationally economical, so that it is 
feasible to process very large samples on a digital computer. 

SYNCLUS algorithm is used for variable weighting in k-means 
clustering and extension of weighting in k-means clustering is 
developed to find optimal variable weights for ultra metric and 
additive tree fitting [9]. However these two algorithms are time 

consuming [9]. Modha, et al [1] explored the new approach by 
minimizing the ratio of the average within-cluster distortion over 
the average between-cluster distortion to achieve minimizing the 
optimal variables weights. Friedman and Meulman [3] proposed a 
new method by assigning the weight for each variable in each 
cluster to obtain the suitable weighting variables. Jing et al [5] 

recently proposed a novel approach by adding a new step to k-
means. The new step iteratively updates variable weights based on 
the current partition of data by a weighting calculation formula. 
Unfortunately, all of the above algorithms do not consider the 
drawbacks of k-means:  

(i) k-Means converge to a local optimum. In other words, all the 
algorithms in the above cannot achieve a global optimum. 

(ii) The initial parameters influence the results of k-means. 

In this paper, we combine genetic algorithm (GA) with k-means 
to select the best k value using entropy weighting. Since GA 
explores the space more thoroughly than k-means, the new 
algorithm (the genetic k-means algorithm) converges to a global 
optimum.  

In the next section, we present related work on genetic cluster 
algorithm and entropy weighting cluster. Section 3 presents 
proposed algorithm. Section 4 contains experiment and result 

analysis. Finally we conclude our work on section 5. 

2. RELATED WORK 
Krishna and Murty [4] combined the features of k-means 
clustering algorithm and genetic algorithm and developed genetic 
k-means algorithm (GKA) GA finds a globally optimal partition 

of a given data into a specified number of clusters. GA’s used 
earlier in clustering employ either an expressive cross over 
operator to generate valid child chromosomes from parent 
chromosomes or a costly fitness function or both. To circumvent 
these expressive operations, here k- Means operator is defined and 
used in GKA as a search operator instead of crossover. Biased 
mutation operator specific to clustering called distance based 
mutation is used in GKA. Using finite Markov Chain theory GKA 

converges to global optimum. 

Fast genetic k-means algorithm (FGKA)[7] is inspired by genetic 
k-means algorithm  and developed with some improved feature 
over GKA. FGKA is faster than GKA [7]. 

Lu et al[8] proposed Incremental Genetic k-means Algorithm 
(IGKA). The main idea of IGKA is to calculate objective value 
total within cluster variation (TWCV) and the cluster centered 
incrementally whenever the mutation probability is small. IGKA 
inherits the salient feature of FGKA of always covering to the 

global optimum. 
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Entropy weighting is used in k-means algorithm by or subspace 
clustering of high dimension sparse data by Jing et al in 2007[5]. 
Data sparsity problems are faced in clustering high dimensional 
data [5]. In this algorithm, k-Means clustering process is extended 
to calculate a weight for each dimension in each cluster and use 

the weight values to identify the function that is minimized in k-
Means clustering process. An additional step is added to the k-
means clustering process to automatically compute the weights of 
all dimensions in each cluster. 

High dimensional data [5] is a phenomenon in real world data 
mining applications. Text data is a typical example. In text 
mining, a text document is viewed as a set of pairs <ti ,fi>, where ti  
is a term or word, and fi  is a measure of  ti , for example the 

frequency of ti in the document. The total number of unique terms 
in a text data set represents the number of dimensions, which is 
usually in thousands. High- dimensional data occurs in business as 
well. In retail companies, for effective supplier relationship 
management (SRM), suppliers are often categorized in groups 
according to their business behavior data is high dimensional 
because thousands of attributes are used to describe the supplier’s 
behavior, including product items, ordered amounts, order 

frequencies, product quality, and so forth. 

Sparsity is an accompanying phenomenon of high dimensional 
data. In text data, documents related to a particular topic, for 
instance sport, are categorized by one subset of terms. The term 
describing sport may not occur in the documents describing 
music. This implies that fi is zero for the subset of terms in the 
documents describing music and vice versa. Such situation also 
occurs in supplier categorization. A group of suppliers are 

categorized by the subset of product items supplied by the 
suppliers. Other suppliers who did not supply product items have 
zero order amounts for them in the behavior data. 

Clearly, clustering of high dimensional sparse data requires 
special treatment. This type of clustering methods is referred to as 
subspace clustering, aiming at finding clusters from subspace of 
data instead of the entire data space. In a subspace clustering, each 
cluster is a set of objects identified by a subset of dimensions and 
different subsets of dimensions and different clusters are 

represented in different subsets of dimensions.   

3. ENTROPY WEIGHTING GENETIC k-

MEANS ALGORITHM (EWGKM) 
The main objective of the clustering algorithm under 
consideration is to partition a collection of n given patterns; each 
pattern is a vector of dimension d, into K groups such that this 
partition minimizes the TWCV, which is defined as follows.  

wik  =  1,   if  ith pattern belongs  to kth cluster,   

 wik  =  0,    otherwise 

Then, the matrix w = [wij ] has the properties that  

wij   {0,1} and                                        (1) 

In this section we use entropy weighting concept adopted from 
EWKM algorithms given by Jing et al 2007 [5] in Genetic k-

means algorithm. Here we consider that the weight of a dimension 
in a cluster represents the probability of contribution of that 
dimension in forming the cluster. The entropy of the dimension 
weights represents the certainty of dimensions in the identification 
of a cluster. Therefore, we modify the objective function by 

adding the weight entropy term to it so that we can simultaneously 
minimize the within cluster dispersion and maximize the negative 
weight entropy to stimulate more dimensions to contribute to the 
identification of clusters. In this way we can avoid the problem of 
identifying cluster by few dimensions in spare data.                                                                                                       

   (2) 

Subject to 

 

 

Minimization of S in above objective function we use. 

 

Where  

The positive parameter  controls the strength of the incentive for 

clustering a more dimension for minimizing S we take  and  
fixed and Cij is updated using. 

                                        (3) 

Above is independent of the parameter  and the dimension 

weights ik. 

3.1 Coding 
Here the search space of all W matrices that satisfy (1) A natural 
way of coding such W into a string sw, is to consider a 
chromosome of length n and allow each allele in the chromosome 
to take values from {1,2, …. K}. In this case, each allele 
corresponds to a pattern and its value represents the cluster 

number to which the corresponding pattern belongs. This is 
possible because (refer to eq. (1)) for all i, wik =1 for only one k. 
GKA maintains a population of such strings. 

3.2 Initialization 
The initial population P(0) is selected randomly. Each allele in the 
population can be initialized to a cluster number randomly 
selected from the uniform distribution over the set {1,…, K}. In 

this case, we may end up with illegal strings, strings representing 
a partition in which some clusters are empty, with some nonzero 
probability. This is avoided by assigning p, the greatest integer 
which is less than n/K, randomly chosen data points to each 
cluster and the rest of the points to randomly chosen clusters. 

3.3 Selection 
The selection operator randomly selects a chromosome from the 

previous population according to the distribution given by 
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Where F(si) represents fitness value of the string si in the 
population and is defined in the next paragraph. We use the 
roulette wheel strategy for this random selection. 

Solutions in the current population are evaluated based on their 
merit to survive in the next population. This requires that each 

solution in a population be associated be associated with a figure 
of merit or a fitness value. In the present context, the fitness value 
of a solution string sw depends on the total within-cluster variation 
S (W). Since the objective is to minimize S(W), a solution string 
with relatively small square error must have relatively high fitness 
value. There are many ways to defining such a fitness function. 

We use the   -truncation mechanism for this purpose. Let 

.)()(),( cfswfswgWSswf  where 

f  and  denote the average value and standard deviation of 

f(sw) in the current population, respectively c is  constant between 
1 and 3. Then, the fitness value of sw, F(sw), is given by. 

otherwise

swifgswg
sF w

,0

0)(),(
)(

 

3.4 Mutation 
Mutation changes an allele value depending on the distances of 

the cluster centroids from corresponding data point. It may be 
recalled that each allele corresponds to a point and its value 
represents the cluster to which the data point belongs. An operator 
is defined such that the probability of changing an allele value to a 
cluster number is more if the corresponding cluster center is closer 
to the data point. To apply the mutation operator to the allele sw (i) 
corresponding to pattern xi, let dj = d(xi, cj) be the Euclidean 
distance between xi and cj. Then, the allele is replaced with a 
value chosen randomly from the following distribution: 

 

where cm is a constant usually 1  and jj dd maxmax . In 

case of a partition with one or more than one singleton clusters, 
the cm is introduced because; we need pj to be nonzero for all j to 
prove the convergence of GKA. It forces cm to be strictly greater 
than 1.  

Above mutation may result in the formation of empty clusters 

with a nonzero probability. It may be noted that smaller the 
number of clusters, larger the SE measure: so empty clusters must 
be avoided. A quick way of detecting the possibility of empty 
cluster formation is check whether the distance of the data xi from 
its cluster center Csw(i) is greater than zero. It be noted that dsw(i) =0

 even in the case of non-singleton clusters were in the data point 
and the center of the cluster are the same. Thus, an allele is 
mutated only when dsw(i) > 0. The strings that represent K 

nonempty clusters are called legal strings; otherwise, they are 
called illegal strings. Each allele in a chromosome is mutated as 
described above with a probability pm, called mutation 
probability. A pseudo-code of the operator is given below. 

Mutation (sw) 

{for i = 1 to n 

{if (drand( ) < Pm) 

{Calculate cluster centers, cj’s, 

corresponding to sw; 

for j = 1 to K, dj = d(xi,cj); 

if (dsw(i)> 0) 

{dmax = max {d1, d2, ... dk} 

for j = 1 to K, 

 

 

 

sw(i)= a number, randomly selected from 

{1, 2, ..., K} according to the  

distribution {p1, p2, ..., pk}; 

          }  } } } 

(drand( ) returns a uniformly distributed random number in the 
range [0, 1]). 

3.5 k-Means Operator 
The algorithm with the above selection and mutation operators 
may take more time to converge, since the initial assignments are 
arbitrary and the subsequent changes of the assignments are 
probabilistic. Moreover, the mutation probability is forced to 
assume a low value because high values of Pm lead to oscillating 
behavior of the algorithm. To improve this situation, a one-step k-
means algorithm, named k-Means operator (KMO), is introduced. 

Let sw be a string. The following two steps constitute KMO on sw 
which yields   

1. Calculate cluster centers using (3) for the given matrix W; 

2. Reassign each data point to the cluster with the nearest cluster 
center. 

There is a penalty to be paid for the simplicity of this operator. 
The resulting string may represent a partition with empty clusters, 
i.e. KMO may result in illegal strings. We convert illegal strings 

to legal strings by creating desired number of new singleton 
clusters. This is done by placing in each empty cluster a pattern x 
from the cluster C with the maximum within-cluster variation 
(refer to eq. (2)) x is the farthest from the cluster center of the 
cluster C. We chose to do as above because this technique is 
found to be effective and computationally less expensive. 

3.6 EWGKA 
To start with, the initial population is generated as mentioned 
above and the subsequent populations are obtained by the 
application of selection, KMO over the previous population. The 
algorithm is terminated when the limit on the number of 
generations is exceeded. 

4. EXPERIMENT AND RESULT 

ANALYSIS 
We implemented our proposed clustering technique Java 
language. Our experiments were conducted on a P-IV system with 

2.2 Hz CPU and 1 GB RAM. We experiment our clustering 
algorithm on some standard data sets. These data were taken from 
the UCI repository [10]. In this paper result analysis on data set 
Text Data is reported. For each set of the parameters (N, Pm, 
Gmax), It is ran 100 times. In these tests, we choose a wide range 
of the mutation probability, and we observed that the average 
clustering accuracy of algorithm is above 88% and the number of 
correct clustering is at least 49 out of 100. Because of the limit of 

K

i

jm

jm

j

ddc

ddc
jiswp

1

max

max
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the number of generations, the algorithm stops before achieving 
the global optimum in some cases. 

We experimented on text data applying algorithms EWGKA, 
EWKM, PROCLUS [5] and HARP. We observed that EWKM 
outperformed PROCLUS and HARP. EWGKA shows good 

accuracy as EWKM with global optimum convergence. The 
reason is that other clustering algorithm with sparse problem for 
high-dimensional data adopted an approximation process to 
minimize their objective functions so that some raw information 
may be missed. The clustering accuracy of the two hard subspace 
clustering algorithm PROCLUS dropped quickly as the sparsity 
increased. Our observation shows that GEWKM is better in 
clustering complex data, such as sparse data. 

5. CONCLUSTION 
The algorithm EWGKM benefits from the advantages of both 
genetic algorithm (GA) and k-means. Since GA searches the 
space more thoroughly than k-means, the genetic k-means 
algorithm will not be trapped in a local optimum. Here we used 

weight entropy to minimize the within cluster dispersion and 
maximize the negative weight entropy in the clustering process 
this way we get more dimensions to make a contribution to 
identification of each cluster. The problem of identifying cluster 
by few sparse dimensions can be avoided. 
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