
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.7, October 2010

12

A New Iterative Threshold Decoding Algorithm for One

Step Majority Logic Decodable Block Codes

M. Lahmer
High School of Technologies
Km5, Route gouray B.P:3103

Toulal Meknes - Morroco

M. Belkasmi
National Institute of Computer Sciences and Systems

Analysis (ENSIAS)
B.P 713 – ENSIAS AGDAL

 RABAT-Morroco

ABSTRACT

The performance of iterative decoding algorithm for one-step

majority logic decodable (OSMLD) codes is investigated. We

introduce a new soft-in soft-out of APP threshold algorithm

which is able to decode theses codes nearly as well as belief

propagation (BP) algorithm. However the computation time of

the proposed algorithm is very low. The developed algorithm can

also be applied to product codes and parallel concatenated codes

based on block codes. Numerical results on both AWGN and

Rayleigh channels are provided. The performance of iterative

decoding of parallel concatenated code (17633,8595) with rate

0.5 is only 1.8 dB away from the Shannon capacity limit at a

BER of 10-5.

General Terms

Information theory and Coding, Signal Processing.

Keywords

One step majority logic decodable codes, OSMLD,

iterative threshold decoding, parallel concatenated block

codes, product codes.

1. INTRODUCTION
TURBO codes or LDPC codes are currently the most effective

solution for Forward Error-Correction (FEC) in applications

requiring either high code rates (R > 0.8), very low error floors,

or low-complexity decoders able to operate at several hundreds

of megabits per second and even higher. Practical implications of

theses codes are numerous namely 3G wireless phones, Digital

Video Broadcasting (DVB) systems, or Wireless Metropolitan

Area Networks (WMAN). Turbo decoding relies on the exchange

of probabilistic messages (the so-called extrinsic information)

between two soft-input soft-output (SISO) decoders for the

component convolutional codes. However, for concatenated

schemes with block component codes, the computational

complexity of trellis-based SISO decoding algorithms is often

high. This has led to look for new SISO decoding algorithms

with low complexity and high performance, e.g., [2]-[4]. These

algorithms calculate extrinsic information using classical

decoders such as Chase algorithm in [2], ordered statistics

decoding algorithm in [4] and Hartmann/Rudolph algorithm in

[3]. In this perspective we present a new iterative decoding

algorithm based on a SISO extension form of threshold algorithm

[8]. The proposed algorithm is attractive for three reasons: (1) It

can be simply implemented; (2) the decoding delay is short; and

(3) it has good performances. The use of the threshold algorithm

in iterative decoding was introduced for the first time by Svirid

[7] but for convolutional codes. Our iterative decoding process

follows that given by Pyndiah in [2]. However, instead of using

an extension of Chase algorithm on BCH codes, we will apply an

extension of Massey algorithm on one step majority logic

decodable (OSMLD) codes. On the other hand Lucas et al. [3]

introduce an iterative decoding algorithm for several families of

codes (e.g. OSMLD codes) but they use an approximation of

Hartmann/Rudolph algorithm. This paper is focused on iterative

decoding of OSMLD codes.

The organization of the paper is as follows. In Section 2, the

basic concept of SISO Threshold decoding algorithm is

introduced. In Section 3, we describe iterative decoding

algorithm. Section 4 is dedicated to simulation results of BER

performance for different parallel concatenated codes based on

OSMLD codes.

2. SOFT-IN/SOFT-OUT THRESHOLD

DECODINGAGE SIZE

2.1 One Step Majority Logic Codes
Consider an (n, k) linear code C with parity-check matrix H.

The row space of H is an (n, n-k) cyclic code, denoted by C┴,

which is the dual code of C, or the null space of C. For any

vector v in C and any vector w in C┴, the inner product of v and

w is zero.

Now suppose that a code vector in C is transmitted over a binary

symmetric channel. Let e (e1, e2, .…, en) and R (r1, r2, …, rn) be

the error vector and the received binary vector respectively. Then

R = v + e. For any vector w in the dual code C┴, we can form the

following linear sum of the received digits:

p

n

p

p wrA

1

Which is called a parity-check sum. Using the fact that <w,v>=0,

we obtain the following relationship between the check sum A

and error digits in e:

p

n

p

p weA

1

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.7, October 2010

13

Suppose that there exist J vectors in the dual code C┴, which

have the following properties:

1. The j
th

 component of each vector wi is a 1

2. For i j there is at most one vector whose ith component is a

1

These J vectors are said to be orthogonal on the jth digit position.

We call them orthogonal vectors. Now, let use form J parity-

check sums from these J orthogonal vectors,

For each i in {1,.., J}
j

jp

pi eeA

we see that the error digit ej is checked by all the check sums

above. Because of the second property of the orthogonal vectors,

any error digit other than ej is checked by at most one check sum.

These J check sums are said to be orthogonal on the error digit e j.

If all the error digits in the sum Ai are zero for i j, the value of

Ai is equal to ej. Based on this fact, the parity-check sums

orthogonal on ej can be used to estimate ej, or to decode the

received digit rj.

Table 1 shows some examples of OSMLD codes that can be

decoded with the proposed SISO decoder described above. In this

table we used the abbreviations DSC for Difference Set Cyclic

codes, EG for Euclidean Geometry codes and BCH for Bose

Chaudhuri and Hocquenghem codes. The EG codes used in this

study are 0-order and, for an extensive description of projective

geometry codes and Euclidean geometry can be found in [10].

Table 1. Set of OSMLD Codes

N k J dmin Rate code

7 3 3 4 0.42 DSC

15 7 4 5 0.46 BCH

21 11 5 6 0.52 DSC

63 37 8 9 0.58 EG

73 45 9 10 0.61 DSC

255 175 16 17 0.68 EG

273 191 17 18 0.69 DSC

819 447 15 16 0.54 OSMLD

1057 813 33 34 0.76 DSC

4161 3431 65 66 0.82 DSC

16513 14325 129 130 0.86 DSC

2.2 Majority Logic Decoding Principle
The error digit ej is decoded as 1 if at least one-half of the check

sums orthogonal on ej, are equal to 1; otherwise, ej is decoded as

0 like majority rule. When C is a cyclic code, each ei can be

decoded simply by cyclically permuting the received word r into

the buffer store.

Example: let us consider the (7,3) code, which is the short code

in difference set codes class (see Table 1). This code is specified

by the perfect difference set P={0, 2, 3} of order 2. From this

prefect set, we can form the following three check sums

orthogonal on e7:

A1 = e4 + e5 + e7

A2 = e2 + e6 + e7

A3 = e1 + e3 + e7

The If a simple error e=(000001) occur, than we have A1 = A2 =

A3 = 1. If a double error occur, as an example e7=1 and one value

of e1, ..., e6 is equal to 1, then two values of Ai are 1. So we can

say that :

- e7=1 if only and if at least 2 values of Ai are 1

- e7=0, otherwise.

2.3 Soft-input Soft-output Threshold

Decoding
Threshold decoding is simply the logical extension to soft

decisions of majority decoding. Soft-out decoding algorithm

when applied to OSMLD codes is stated as follows:

Let us consider a transmission of block coded binary symbols

{0,1} using a BPSK modulation over AWGN channel, the

decoder soft output for the jth bit position of a given soft input

1 2 nR(r , r ,.., r) is defined as:

j

j

j

P(c 1/ R)
LLR ln

P(c 0 / R)
 (1)

where
1 2 nC(c ,c ,...,c) is the transmitted codeword. The hard

decision vector corresponding to the received vector r is denoted

by H(h1, h2, ..., hn).

For a code with J orthogonal parity check equations, (1) can be

expressed as:

j i

j

j i

P(c 1/ B
LLR ln

P(c 0 / B

 (2)

where
iB , i=1...J are obtained from the orthogonal parity check

equations on the jth bit as follows:

The term B0 is defined to be B0 = hj. Each of the
i

B i=1,..,J is

computed by dropping the term hj from the ith orthogonal parity

equation. Thus, each of the Bi can be written as:

in

i j ik

k 1

B c e (3)

Where ike is the kth error term in the ith parity check equation

excluding ej (in is the total number of terms in the ith orthogonal

parity equation without
j

c).

By applying BAYES rule, (2) becomes

i j j

j

i j j

P(B / c 1) P(c 1)
LLR ln

P(B / c 0) P(c 0)
 (4)

Since the parity check equations are orthogonal on the j th symbol

the individual probabilities
i jP(B / c 1 or 0) are all independent

and (4) can be rewritten as

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.7, October 2010

14

J
i j j

j
i 0

i j j

P(B / c 1) P(c 1)
LLR ln ln

P(B / c 0) P(c 0)

 (5)

Assume that the transmitted symbols are equally likely to be 0 or

1, and thus the last term in (5) is null. As a result, we obtain

J
i j 0 j

j
i 1

i j 0 j

P(B / c 1) P(B / c 1)
LLR ln ln

P(B / c 0) P(B / c 0)

 (6)

According to [9], (6) can be expressed as

J

j 0 0 i i
i 1

LLR (1 2B)w (1 2B)w (7)

where the value of (
i1 2B) is equal to +1 or –1 and iw is a

weighting term proportional to the reliability of the ith

orthogonal parity check. It is easy to show that:

s
0 0 j

0

4E
(1 2B)w r

N

 (8)

and

i

i

n

ik
k 1

i n

ik
k 1

1 tanh(L / 2)
w ln

1 tanh(L / 2)

 (9)

where ik represents the kth element of the ith parity equation and

ik

s

ik
r

N

E
L

0

4
. (10)

Thus the soft output can be split into two terms, namely into a

normalized version of the soft input jr and an extrinsic

information
jE representing the estimates made by the

orthogonal bits on the current bit
jc . Hence (7) becomes

s
j j j

0

4E
LLR r E

N
 (11)

We make the following notations:

s
c

0

4E
L

N
, (12)

which is called the reliability value of the channel.

The algorithmic structure of the SISO threshold decoding can be

summarized as follows:

For each nj ,..,1

Compute the terms
iB and iw , i 1,..,J

Calculate
0B and

0W

Compute the extrinsic information
jE

The Soft-output is obtained by:
j c j jLLR L r E

2.4 Modifications for Rayleigh fading channel
For our algorithm to be applicable in wireless

environment, their performance on fading channels must

be examined. In the channel model we use, each received

bit rj can be expressed as:

j j j j
ˆr a c n (13)

In this representation, jĉ is a BPSK symbol associated to

the transmitted bit cj, and nj is an AWGN. The Rayleigh

variable aj is generated as
2 2

j j j
a x y (14)

where xj and yj are zero mean statistically independent

Gaussian random variables each having a variance 2. We

consider the power normalized to one as
2 22 1
j

E a (15)

which give a variance of 0.5 for Gaussien variables.

On the Rayleigh fading channel, the availability of

channel side information is the key issue in determining

the necessary modification for the iterative threshold

decoding algorithm. The threshold decoding algorithm has

to be modified slightly by changing equation (12) which

define the reliability value of the channel by

0

4
s

c j

E
L a

N
 (16)

3. ITERATIVE THRESHOLD DECODING

3.1 Iterative Threshold Decoding of OSMLD

codes
Iterative decoding process (see Fig. 1) can be described as

follows: In the first iteration, the decoder only uses the channel

output as input, and generates extrinsic information for each

symbol. In subsequent iterations, a combination of extrinsic

information and channel output is used as input

Fig. 1: The block diagram of the qth iteration.

The soft input respectively the soft output of the qth iteration is

given by:

R(q) R (q)E(q) (17)

1
c

LLR(q) L R(q) E(q) (18)

where R represent the received data, E(q) is the extrinsic

information computed by the previous iteration. In our procedure

we use a fixed value 1/J for the parameter (q) and this for all

iterations. The value chosen for (q) reacts as an average of all

J estimators which contribute in the computation of Ej.

SISO-

Threshold

Decoder

)(qE

)(q

R

)(qR

)1(qLLR

)1(qE

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.7, October 2010

15

3.2 Iterative Threshold Decoding of product

codes
The developed algorithm can also be applied to product codes

and parallel concatenated codes based on block codes. Let us

consider two linear block codes C1 having parameters

(
1n ,

1k ,
1d) and C2 having parameters (

2n ,
2k ,

2d) where

in ,
ik and

id (i =1,2) stand for codeword length, number of

information bits and minimum Hamming distance respectively. It

is assumed that the information symbols are the first 1k symbols

of C1 and the first 2k symbols of C2. The product code

1 2PC C C is an (
212121 ,, ddkknn) code whose

codeword’s are constructed by encoding 21 kk information

symbols with code C1 and the resulting
2 1

k n symbols with C2

(see Fig. 2).

A parallel concatenated block (PCB) code can be

constructed by a parallel concatenation of block codes. The

PCB code is a PC but without the checks on checks part

(see Fig. 2). The rate of product code PC and PCB codes

are given respectively by

1 2
PC

1 2

k k
R

n n

 and

1 2
PCB

1 2 1 1 2 2

k k
R

(n n) [(n k) (n k)
 .

The major disadvantage of the parallel concatenated code is the

loss in minimum distance. It is only
1 2

1(d d) compared to

1 2
1d d for the product code.

Fig. 2 : Construction of a Product code

The decoding procedure of product code is performed by

cascading elementary decoders (rows and columns). On receiving

matrix [R], the first decoder performs the soft decoding of the

rows (or columns) using as input matrix [R]. Soft Input / Soft

Output decoding is performed using the new proposed algorithm.

Tables 2 show some examples of constructed product and PCB

codes by using codes in table 1.

Table 2 Set of PC and PCB codes based on OSMLD Codes

Constructed code Component

code (C
1
)

Component

code (C
2
)

Rate

PCB (161,49) BCH (15,7) BCH (15,7) 0.30

PCB (341,121) DSC (21,11) DSC (21,11) 0.35

PCB (1295,495) DSC (21,11) DSC (73,45) 0.38

PCB (3293, 1369) EG(63,37) EG(63,37) 0,41

PCB (4545,2025) DSC (73,45) DSC (73,45) 0.45

PCB (17633,8595) DSC (73,45) DSC (273,191) 0.48

PCB (67805, 36481) DSC(273,191) DSC(273,191) 0.53

PC (1533,495) DSC(21,11) DSC(73,45) 0.32

PC (4095,1337) BCH (15,7) DSC(273,191) 0.32

PC (3969,1369) EG (63,37) EG (63,37) 0,34

PC (5329,2025) DSC(73,45) DSC(73,45) 0.37

PC (19929, 8595) DSC(73,45) DSC(273,191) 0.43

4. SIMULATION RESULTS

This section considers simulation results and analysis for some

OSMLD codes, product codes and parallel concatenated blocks

codes. We would like to notify that for all our simulations we

have used a minimal residual error bit of 200 and residual error

block of 30. We have used a number of iterations such that there

is no significantly more gain by more iteration. The performance

improves with each iteration in all simulation results presented.

4.1 Performances of OSMLD codes
Figure 3 depicts the performance of iterative decoding of (1057,

813) DSC code with rate 0.76. We can see that the performance

improves with each iteration. The first iteration show the

performances of classical threshold decoding [8].

Fig.3 : BER performance of (1057, 813) code on AWGN channel

Figure 4 shows the frame error rate (FER) performance of

(73,45), (273,191), (819,447) and (1057,813) codes on both

AWGN and Rayleigh fading channel. As it can be seen the slope

of the frame-error rate (FER) curve is as steep as for the

Gaussian channel. It is worth mentioning that the number of

1 1.5 2 2.5 3 3.5 4 4.5 5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (dB)

B
E

R

iter (1)

iter (2)

iter (4)

iter (8)

iter (15)

Checks

On

Checks

1k

2k
Information symbols

 Checks symbols

Checks

symbols n2

n1

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.7, October 2010

16

iterations needed for Rayleigh fading channel is about the same

as for the AWGN channel.

4.2 Normal or Body Text
Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times Roman in

which these guidelines have been set. The goal is to have a 9-

point text, as you see here. Please use sans-serif or non-

proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not available,

try the font named Computer Modern Roman. On a Macintosh,

use the font named Times. Right margins should be justified,

not ragged.

Fig. 4: FER performance of (73,45), (273, 191), (819, 447) and

(1057,813) codes on AWGN and Rayleigh fading channels

OSMLD codes are LDPC(Low Density Parity Check) codes and

can be decoded by belief propagation (BP) algorithm [11]. BER

Performance of iterative decoding for (73,45) and (273,191)

codes are shown and compared to those of BP[11] in Figure 5. As

it can be seen our results are worse by 0.2 dB at BER 10-5. This

coding gain is negligible compared to the required complexity

(see Table 3).

Table 3 shows simulation time to decode 1000 frame of (73, 45),

(273,191), (819,447) and (1057, 813) codes with our algorithm

and BP algorithm using 15 iterations (by using a computer with

Pentium 4, 3.06 GHz). We can observe that as the code length

increases the computational time complexity of BP increases

compared to that of our iterative decoding algorithm.

4.3 Performances of product codes
This section considers simulation results and analysis for

some PC and PCB codes, all of which use one step

majority logic decodable (OSMLD) component codes (see

Table 2).

In Fig.6, we present the simulation results for the (4545, 2025)

PCB code of rate 0.45 constructed from (73, 45) DSC code. We

can see that the improvement is great for the first iterations and

is negligible after the 16th iteration. Here we recognize the Turbo

effect.

In Fig.7, we present a comparison between our simulation results

and results published in [3] for the (4545, 2025) PCB code.

Although they use a modified Gaussian channel with a tanh

function modulation, their results are worse by 0.6 dB at a BER

of 10-4.

The Fig. 8 shows that performance results after 50 iterations for

the (17633,8595) PCB code is only 1.8 dB away from the

Shannon capacity limit at a BER of 10-5.

In Fig.9, we present the simulation results for the (1533,495)

asymmetric PC code of rate 0.32 constructed from (21, 11) and

(73, 45) DSC code. As can be seen, performance increases with

each iteration.

Fig. 5: Performance of (73,45) and (273,191) in comparison

with BP on AWGN channel

Table 3 : Comparison in terms of time computation and error

performances

Codes Our

algorithm

BP

algorithm

Gain of BP

at BER=10-5

(73,45) 4[s] 23[s] 0.2 dB

(273,191) 58[s] 300[s] 0.2 dB

(1057,813) 801[s] 13000[s] 0.45 dB

Fig. 6 Performance of iterative decoding of the (4545,2025)

code on AWGN channel

The curves in Fig.10 present the simulation results for the

(1253,495), (4545,2025) PCB codes and (5329,2025) PC. The

PC is compared to two PCB codes. In the first case, the PC is

compared to the PCB code constructed from the same component

codes ((73, 45) DSC code). As envisaged, the PC outperforms

the PCB code. In the second case, the PC is compared to a PCB

code with same rate. As can be seen, the PC is better than PCB

code. It seems that contrary to the PCB codes, product codes

doesn’t have error floor. Furthermore, product codes are better

than PCB codes for larger SNR.

0 1 2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

F
E

R

(73,45)-5iter

(273,191)-8iter

(819,447)-15iter

(1057,813)-15iter

Rayleigh

Gauss

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

(73,45)-5iter

(73,45)-BP,50iter

(273,191)-8iter

(273,191)-BP,50iter

1 1.5 2 2.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

iteration (1)

iteration (2)

iteration (4)

iteration (8)

iteration (16)

iteration (20)

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.7, October 2010

17

In Fig.11, we present a comparison between our simulation

results for (1533, 495) product code and results published in [12]

for convolutional turbo code of rate 1/3 using 16 states. We can

observe that product code have worse performance at low SNR

compared to convolutional code, whereas at SNR> 4.3 dB, the

product code are better.

Fig. 7 : Performance of iterative decoding of the PCB(4545,

2025). The BER of the Lucas et al.[3] algorithm is given as

reference.

Fig. 8 : Performance of the (17633,8595) PCB code compared to

Shannon capacity limit

Fig. 9 : Performance of iterative decoding of the (1533, 495)

product code on AWGN channel

Fig. 10 : Performance of iterative decoding of the

PC(5329,2025),PCB(4545,2025) and PCB(1253,495) codes

Fig. 11: Performance of iterative decoding of the (1533, 495)

product code on Rayleigh fading channel

1 1.5 2 2.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (dB)

B
E

R

(4545,2025) Lucas

(4545,2025) 20iter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

PCB(17633,8595) R=0.48

Shannon Capatity Limit R=0.48

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

iteration-1

iteration-2

iteration-4

iteration-8

iteration-16

iteration-32

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

(1253, 495)-iter-8

(4545, 2025)-iter-8

(5329, 2025)-iter-8

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.7, October 2010

18

5. CONCLUSION
In this paper we have presented a new iterative threshold

decoding algorithm for simple codes, product codes and parallel

concatenated block codes based on one-step majority logic

decodable codes. We use an extension of Massey’s algorithm [8]

as a Soft input/ Soft-output component decoder. The structure of

our iterative decoder follows the model of Pyndiah [2] with some

modifications. This algorithm has been tested on several codes

based on OSMLD codes and good performances have been

obtained over the Gaussian and Rayleigh fading channels. It is

interesting to extend this iterative decoding algorithm on quasi-

cyclic and multi-step majority logic decodable codes.

6. REFERENCES
[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near

Shannon limit error-correcting coding and decoding :

Turbo-codes (1),” IEEE Int. Conf. on Comm. ICC’93,

Geneva, May 1993, pp. 1064-1071.

[2] R. Pyndiah, “Near-Optimum Decoding of Product Codes:

Block Turbo Codes,” IEEE Trans. Commun., Aug. 1998,

Vol. 46, N° 8, pp. 1003-1010.

[3] R. Lucas, M. Bossert and M. Breitbach, “On Iterative

Soft-Decision Decoding of Linear Binary Block Codes and

Product Codes, “ IEEE Journal on selected areas in

communications, February 1998, Vol.

[4] M. P. C. Fossorier and S. Lin. “Soft-Input Soft-Output

Decoding of Linear Block Codes Based on Ordered

Statistics,” Proc. 1998 IEEE Global Telecomm. Conf.

(GLOBECOM’98), Sydney, Australia Nov. 1998. pp.

2828-2833,

[5] J. Hagenauer, E. Offer, and L. Papke, “iterative decoding

of binary block and convolutional codes,” IEEE Trans.

Inform. Theory, Mar. 1996, Vol. 42, pp. 429-446.

[6] R. Lucas, M. P. C. Fossorier, Yu Kou, and Shu Lin,

“Iterative Decoding of One-Step Majority Logic Decodable

Codes Based on Belief Propagation,“ IEEE Trans.

Commun, June 2000, VOL. 48, NO. 6, pp.931-937.

[7] Yuri V. Svirid and Sven Riedel, “Threshold Decoding of

Turbo-Codes,” IEEE Int. Symposium on Information

Theory, 1995, pp. 39.

[8] J.L Massey, “Threshold Decoding,” Cambridge, Ma,

M.I.T. Press, 1963.

[9] C. Clark and B. Cain, “Error-Correction Coding for digital

communications,” Plenum Press, 1981.

[10] S. Lin and D. J. Costello, “Error Control Coding,

Fundamentals and Applications,” Englewood Cliffs, NJ:

Prentice-Hall, 1983.

[11] R. Lucas, M. P. C. Fossorier, Yu Kou, and Shu Lin,

“Iterative Decoding of One-Step Majority Logic Decodable

Codes Based on Belief Propagation,“ IEEE Trans.

Commun, June 2000, VOL. 48, NO. 6, pp.931-937

[12] S. A. Barbulescu, “Iterative decoding of turbo codes and

other concatenated codes,” thesis, University of South

Australia, Februry 1996, pp 869-870.

