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ABSTRACT 

The performance of iterative decoding algorithm for one-step 

majority logic decodable (OSMLD) codes is investigated. We 

introduce a new soft-in soft-out of APP threshold algorithm 

which is able to decode theses codes nearly as well as belief 

propagation (BP) algorithm. However the computation time of 

the proposed algorithm is very low. The developed algorithm can 

also be applied to product codes and parallel concatenated codes 

based on block codes. Numerical results on both AWGN and 

Rayleigh channels are provided. The performance of iterative 

decoding of parallel concatenated code (17633,8595) with rate 

0.5 is only 1.8 dB away from the Shannon capacity limit at a 

BER of 10-5. 
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1. INTRODUCTION 
TURBO codes or LDPC codes are currently the most effective 

solution for Forward Error-Correction (FEC) in applications 

requiring either high code rates (R > 0.8), very low error floors, 

or low-complexity decoders able to operate at several hundreds 

of megabits per second and even higher. Practical implications of 

theses codes are numerous namely 3G wireless phones, Digital 

Video Broadcasting (DVB) systems, or Wireless Metropolitan 

Area Networks (WMAN). Turbo decoding relies on the exchange 

of probabilistic messages (the so-called extrinsic information) 

between two soft-input soft-output (SISO) decoders for the 

component convolutional codes. However, for concatenated 

schemes with block component codes, the computational 

complexity of trellis-based SISO decoding algorithms is often 

high. This has led to look for new SISO decoding algorithms 

with low complexity and high performance, e.g., [2]-[4]. These 

algorithms calculate extrinsic information using classical 

decoders such as Chase algorithm in [2], ordered statistics 

decoding algorithm in [4] and Hartmann/Rudolph algorithm in 

[3]. In this perspective we present a new iterative decoding 

algorithm based on a SISO extension form of threshold algorithm 

[8]. The proposed algorithm is attractive for three reasons: (1) It 

can be simply implemented; (2) the decoding delay is short; and 

(3) it has good performances. The use of the threshold algorithm 

in iterative decoding was introduced for the first time by Svirid 

[7] but for convolutional codes. Our iterative decoding process 

follows that given by Pyndiah in [2]. However, instead of using 

an extension of Chase algorithm on BCH codes, we will apply an 

extension of Massey algorithm on one step majority logic 

decodable (OSMLD) codes. On the other hand Lucas et al. [3] 

introduce an iterative decoding algorithm for several families of 

codes (e.g. OSMLD codes) but they use an approximation of 

Hartmann/Rudolph algorithm. This paper is focused on iterative 

decoding of OSMLD codes.  

The organization of the paper is as follows. In Section 2, the 

basic concept of SISO Threshold decoding algorithm is 

introduced. In Section 3, we describe iterative decoding 

algorithm. Section 4 is dedicated to simulation results of BER 

performance for different parallel concatenated codes based on 

OSMLD codes. 

2. SOFT-IN/SOFT-OUT THRESHOLD 

DECODINGAGE SIZE 

2.1 One Step Majority Logic Codes 
Consider an (n, k) linear code C with parity-check matrix H. 

The row space of H is an (n, n-k) cyclic code, denoted by C┴, 

which is the dual code of C, or the null space of C. For any 

vector v in C and any vector w in C┴, the inner product of v and 

w is zero. 

Now suppose that a code vector in C is transmitted over a binary 

symmetric channel. Let e (e1, e2, .…, en) and R (r1, r2, …, rn) be 

the error vector and the received binary vector respectively. Then 

R = v + e. For any vector w in the dual code C┴, we can form the 

following linear sum of the received digits: 

p

n

p

p wrA

1

 

Which is called a parity-check sum. Using the fact that <w,v>=0, 

we obtain the following relationship between the check sum A 

and error digits in e:  

p

n

p

p weA

1
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Suppose that there exist J vectors in the dual code C┴, which 

have the following properties: 

1. The j
th

 component of each vector wi is a 1  

2. For i j there is at most one vector whose ith component is a 

1  

These J vectors are said to be orthogonal on the jth digit position. 

We call them orthogonal vectors. Now, let use form J parity-

check sums from these J orthogonal vectors, 

For each i in {1,.., J} 
j

jp

pi eeA  

we see that the error digit ej is  checked   by all the check sums 

above. Because of the second property of the orthogonal vectors, 

any error digit other than ej is checked by at most one check sum. 

These J check sums are said to be orthogonal on the error digit e j. 

If all the error digits in the sum Ai are zero for i j, the value of  

Ai is equal to ej. Based on this fact, the parity-check sums 

orthogonal on ej can be used to estimate ej, or to decode the 

received digit rj.  

Table 1 shows some examples of OSMLD codes that can be 

decoded with the proposed SISO decoder described above. In this 

table we used the abbreviations DSC for Difference Set Cyclic 

codes, EG for Euclidean Geometry codes and BCH for Bose 

Chaudhuri and Hocquenghem codes. The EG codes used in this 

study are 0-order and, for an extensive description of projective 

geometry codes and Euclidean geometry can be found in [10]. 

Table 1. Set of OSMLD Codes 

N k J dmin Rate code 

7 3 3 4 0.42 DSC 

15 7 4 5 0.46 BCH 

21 11 5 6 0.52 DSC 

63 37 8 9 0.58 EG 

73 45 9 10 0.61 DSC 

255 175 16 17 0.68 EG 

273 191 17 18 0.69 DSC 

819 447 15 16 0.54 OSMLD 

1057 813 33 34 0.76 DSC 

4161 3431 65 66 0.82 DSC 

16513 14325 129 130 0.86 DSC 

2.2 Majority Logic Decoding Principle 
The error digit ej is decoded as 1 if at least one-half of the check 

sums orthogonal on ej, are equal to 1; otherwise, ej is decoded as 

0 like majority rule. When C is a cyclic code, each ei can be 

decoded simply by cyclically permuting the received word r into 

the buffer store. 

Example: let us consider the (7,3) code, which is the short code 

in difference set codes class (see Table 1). This code is specified 

by the perfect difference set P={0, 2, 3} of order 2. From this 

prefect set, we can form the following three check sums 

orthogonal on e7:  

 

A1 = e4 + e5 + e7 

A2 = e2 + e6 + e7 

A3 = e1 + e3 + e7 

The If a simple error e=(000001) occur, than we have  A1 = A2 = 

A3 = 1. If a double error occur, as an example e7=1 and one value 

of e1, ..., e6 is equal to 1, then two values of Ai are 1. So we can 

say that : 

- e7=1 if only and if at least 2 values of Ai are 1 

- e7=0, otherwise. 

2.3 Soft-input Soft-output Threshold 

Decoding 
Threshold decoding is simply the logical extension to soft 

decisions of majority decoding. Soft-out decoding algorithm 

when applied to OSMLD codes is stated as follows: 

Let us consider a transmission of block coded binary symbols 

{0,1} using a BPSK modulation over AWGN channel, the 

decoder soft output for the jth bit position of a given soft input 

1 2 nR(r , r ,.., r ) is defined as: 

j

j

j

P(c 1/ R)
LLR ln

P(c 0 / R)
                                      (1) 

where 
1 2 nC(c ,c ,...,c )  is the transmitted codeword. The hard 

decision vector corresponding to the received vector r is denoted 

by H(h1, h2, ..., hn). 

For a code with J orthogonal parity check equations, (1) can be 

expressed as: 

j i

j

j i

P(c 1/ B
LLR ln

P(c 0 / B

                                            (2) 

where
iB , i=1...J are obtained from the orthogonal parity check 

equations on the jth bit as follows: 

The term B0 is defined to be B0 = hj. Each of the
i

B  i=1,..,J is 

computed by dropping the term hj from the ith orthogonal parity 

equation. Thus, each of the Bi can be written as: 

in

i j ik

k 1

B c e                                                                          (3) 

Where ike is the kth error term in the ith parity check equation 

excluding ej ( in is the total number of terms in the ith orthogonal 

parity equation without
j

c ). 

By applying BAYES rule, (2) becomes  

i j j

j

i j j

P( B / c 1) P(c 1)
LLR ln

P( B / c 0) P(c 0)
                           (4) 

Since the parity check equations are orthogonal on the j th symbol 

the individual probabilities 
i jP(B / c 1 or 0)  are all independent 

and (4) can be rewritten as 
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J
i j j

j
i 0

i j j

P(B / c 1) P(c 1)
LLR ln ln

P(B / c 0) P(c 0)

                         (5) 

Assume that the transmitted symbols are equally likely to be 0 or 

1, and thus the last term in (5) is null. As a result, we obtain  

J
i j 0 j

j
i 1

i j 0 j

P(B / c 1) P(B / c 1)
LLR ln ln

P(B / c 0) P(B / c 0)

                   (6) 

According to [9], (6) can be expressed as  

J

j 0 0 i i
i 1

LLR (1 2B )w (1 2B )w                                     (7) 

where the value of (
i1 2B ) is equal to +1 or –1 and iw is a 

weighting term  proportional to the reliability of the ith 

orthogonal parity check. It is easy to show that:  

s
0 0 j

0

4E
(1 2B )w r

N

                                                  (8)  

and  

i

i

n

ik
k 1

i n

ik
k 1

1 tanh(L / 2)
w ln

1 tanh(L / 2)

                                     (9) 

where ik represents the kth element of the ith parity equation and  

ik

s

ik
r

N

E
L

0

4
.                                                                  (10) 

Thus the soft output can be split into two terms, namely into a 

normalized version of the soft input jr  and an extrinsic 

information 
jE representing the estimates made by the 

orthogonal bits on the current bit
jc . Hence (7) becomes  

s
j j j

0

4E
LLR r E

N
                                                   (11) 

We make the following notations: 

s
c

0

4E
L

N
,                                                                (12) 

which is called the reliability value of the channel. 

The algorithmic structure of the SISO threshold decoding can be 

summarized as follows: 

For each   nj ,..,1  

Compute the terms 
iB   and iw , i 1,..,J  

Calculate 
0B  and  

0W  

Compute the extrinsic information 
jE  

The Soft-output is obtained by: 
j c j jLLR L r E  

 

2.4 Modifications for Rayleigh fading channel 
For our algorithm to be applicable in wireless 

environment, their performance on fading channels must 

be examined. In the channel model we use, each received 

bit rj can be expressed as: 

j j j j
ˆr a c n                                                            (13) 

In this representation, jĉ is a BPSK symbol associated to 

the transmitted bit cj, and nj is an AWGN. The Rayleigh 

variable aj is generated as 
2 2

j j j
a x y                                                         (14) 

where xj and yj are zero mean statistically independent 

Gaussian random variables each having a variance 2. We 

consider the power normalized to one as 
2 22 1
j

E a                                                         (15) 

which give a variance of 0.5 for Gaussien variables.  

On the Rayleigh fading channel, the availability of 

channel side information is the key issue in determining 

the necessary modification for the iterative threshold 

decoding algorithm. The threshold decoding algorithm has 

to be modified slightly by changing equation (12) which 

define the reliability value of the channel by  

0

4
s

c j

E
L a

N
                                                                        (16) 

3. ITERATIVE THRESHOLD DECODING 

3.1 Iterative Threshold Decoding of OSMLD 

codes 
Iterative decoding process (see Fig. 1) can be described as 

follows: In the first iteration, the decoder only uses the channel 

output as input, and generates extrinsic information for each 

symbol. In subsequent iterations, a combination of extrinsic 

information and channel output is used as input 

 

Fig. 1: The block diagram of the qth iteration. 

The soft input respectively the soft output of the qth iteration is 

given by: 

R(q) R (q)E(q)                                                                 (17) 

1
c

LLR(q) L R(q) E(q )                                                     (18) 

where R represent the received data, E(q) is the extrinsic 

information computed by the previous iteration. In our procedure 

we use a fixed value 1/J for the parameter (q) and this for all 

iterations. The value chosen for (q) reacts as an average of all 

J estimators which contribute in the computation of Ej.  

 

SISO- 

Threshold 

Decoder 

)(qE  

)(q  

R  

)(qR

 
)1(qLLR  

)1(qE  
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3.2 Iterative Threshold Decoding of product 

codes 
The developed algorithm can also be applied to product codes 

and parallel concatenated codes based on block codes. Let us 

consider two linear block codes C1 having parameters 

(
1n ,

1k ,
1d ) and C2 having parameters (

2n ,
2k ,

2d ) where 

in ,
ik and 

id ( i =1,2) stand for codeword length, number of 

information bits and minimum Hamming distance respectively. It 

is assumed that the information symbols are the first 1k symbols 

of C1 and the first 2k symbols of C2. The product code 

1 2PC C C  is an (
212121 ,, ddkknn ) code whose 

codeword’s are constructed by encoding 21 kk information 

symbols with code C1 and the resulting 
2 1

k n symbols with C2 

(see Fig. 2). 

A parallel concatenated block (PCB) code can be 

constructed by a parallel concatenation of block codes. The 

PCB code is a PC but without the checks on checks part 

(see Fig. 2). The rate of product code PC and PCB codes 

are given respectively by  

1 2
PC

1 2

k k
R

n n

 and  

1 2
PCB

1 2 1 1 2 2

k k
R

(n n ) [(n k ) (n k )
 . 

The major disadvantage of the parallel concatenated code is the 

loss in minimum distance. It is only 
1 2

1(d d ) compared to 

1 2
1d d for the product code. 

Fig. 2 : Construction of a Product code 

The decoding procedure of product code is performed by 

cascading elementary decoders (rows and columns). On receiving 

matrix [R], the first decoder performs the soft decoding of the 

rows (or columns) using as input matrix [R]. Soft Input / Soft 

Output decoding is performed using the new proposed algorithm. 

Tables 2 show some examples of constructed product and PCB 

codes by using codes in table 1. 

Table 2 Set of PC and PCB codes based on OSMLD Codes 

Constructed code Component 

code (C
1
) 

Component 

code (C
2
) 

Rate 

PCB (161,49) BCH (15,7) BCH (15,7) 0.30 

PCB (341,121) DSC (21,11) DSC (21,11) 0.35 

PCB (1295,495) DSC (21,11) DSC (73,45) 0.38 

PCB (3293, 1369) EG(63,37) EG(63,37) 0,41 

PCB (4545,2025) DSC (73,45) DSC (73,45) 0.45 

PCB (17633,8595) DSC (73,45) DSC (273,191) 0.48 

PCB (67805, 36481) DSC(273,191) DSC(273,191) 0.53 

PC (1533,495) DSC(21,11) DSC(73,45) 0.32 

PC (4095,1337) BCH (15,7) DSC(273,191) 0.32 

PC (3969,1369) EG (63,37) EG (63,37) 0,34 

PC (5329,2025) DSC(73,45) DSC(73,45) 0.37 

PC (19929, 8595) DSC(73,45) DSC(273,191) 0.43 

4. SIMULATION RESULTS 

This section considers simulation results and analysis for some 

OSMLD codes, product codes and parallel concatenated blocks 

codes. We would like to notify that for all our simulations we 

have used a minimal residual error bit of 200 and residual error 

block of 30. We have used a number of iterations such that there 

is no significantly more gain by more iteration. The performance 

improves with each iteration in all simulation results presented. 

4.1 Performances of OSMLD codes 
Figure 3 depicts the performance of iterative decoding of (1057, 

813) DSC code with rate 0.76. We can see that the performance 

improves with each iteration. The first iteration show the 

performances of classical threshold decoding [8]. 

Fig.3 : BER performance of (1057, 813) code on AWGN channel 

Figure 4 shows the frame error rate (FER) performance of 

(73,45), (273,191), (819,447) and (1057,813) codes on both 

AWGN and Rayleigh fading channel. As it can be seen the slope 

of the frame-error rate (FER) curve is as steep as for the 

Gaussian channel. It is worth mentioning that the number of 
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iterations needed for Rayleigh fading channel is about the same 

as for the AWGN channel. 

 

 

 

4.2 Normal or Body Text 
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Fig. 4: FER performance of (73,45), (273, 191), (819, 447) and 

(1057,813) codes on AWGN and Rayleigh fading channels 

OSMLD codes are LDPC(Low Density Parity Check) codes and 

can be decoded by belief propagation (BP) algorithm [11]. BER 

Performance of iterative decoding for (73,45) and (273,191) 

codes are shown and compared to those of BP[11] in Figure 5. As 

it can be seen our results are worse by 0.2 dB at BER 10-5. This 

coding gain is negligible compared to the required complexity 

(see Table 3). 

Table 3 shows simulation time to decode 1000 frame of (73, 45), 

(273,191), (819,447) and (1057, 813) codes with our algorithm 

and BP algorithm using 15 iterations (by using a computer with 

Pentium 4, 3.06 GHz ). We can observe that as the code length 

increases the computational time complexity of BP increases 

compared to that of our iterative decoding algorithm. 

4.3 Performances of product codes 
This section considers simulation results and analysis for 

some PC and PCB codes, all of which use one step 

majority logic decodable (OSMLD) component codes (see 

Table 2). 

In Fig.6, we present the simulation results for the (4545, 2025) 

PCB code of rate 0.45 constructed from (73, 45) DSC code. We 

can see that the improvement is great for the first iterations and 

is negligible after the 16th iteration. Here we recognize the Turbo 

effect. 

In Fig.7, we present a comparison between our simulation results 

and results published in [3] for the (4545, 2025) PCB code. 

Although they use a modified Gaussian channel with a tanh 

function modulation, their results are worse by 0.6 dB at a BER 

of 10-4. 

The Fig. 8 shows that performance results after 50 iterations for 

the (17633,8595) PCB code is only 1.8 dB away from the 

Shannon capacity limit at a BER of 10-5.  

In Fig.9, we present the simulation results for the (1533,495) 

asymmetric PC code of rate 0.32 constructed from (21, 11) and 

(73, 45) DSC code. As can be seen, performance increases with 

each iteration. 

 

Fig. 5: Performance of  (73,45) and  (273,191) in comparison  

with BP on AWGN channel 

Table 3 : Comparison in terms of time computation and error 

performances 

Codes Our 

algorithm 

BP 

algorithm 

Gain of BP 

at BER=10-5 

(73,45) 4[s] 23[s] 0.2 dB 

(273,191) 58[s] 300[s] 0.2 dB 

(1057,813) 801[s] 13000[s] 0.45 dB 

Fig. 6 Performance of iterative decoding of the (4545,2025) 

code on AWGN channel 

The curves in Fig.10 present the simulation results for the 

(1253,495),  (4545,2025) PCB codes and (5329,2025) PC. The 

PC is compared to two PCB codes. In the first case, the PC is 

compared to the PCB code constructed from the same component 

codes ((73, 45) DSC code). As envisaged, the PC outperforms 

the PCB code. In the second case, the PC is compared to a PCB 

code with same rate. As can be seen, the PC is better than PCB 

code. It seems that contrary to the PCB codes, product codes 

doesn’t have error floor. Furthermore, product codes are better 

than PCB codes for larger SNR. 
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In Fig.11, we present a comparison between our simulation 

results for (1533, 495) product code and results published in [12] 

for convolutional turbo code of rate 1/3 using 16 states. We can 

observe that product code have worse performance at low SNR 

compared to convolutional code, whereas at SNR> 4.3 dB, the 

product code are better. 

Fig. 7 : Performance of iterative decoding of the PCB(4545, 

2025). The BER of the Lucas et al.[3] algorithm is given as 

reference. 

Fig. 8 : Performance of the (17633,8595) PCB code compared to 

Shannon capacity limit 

 

 

 

 

 

 

 

 

 

 

Fig. 9 : Performance of iterative decoding of the (1533, 495) 

product code on AWGN channel 

Fig. 10 : Performance of iterative decoding of the 

PC(5329,2025),PCB(4545,2025)  and PCB(1253,495) codes 

 

 

Fig. 11: Performance of iterative decoding of the (1533, 495) 

product code on Rayleigh fading channel 
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5. CONCLUSION 
In this paper we have presented a new iterative threshold 

decoding algorithm for simple codes, product codes and parallel 

concatenated block codes based on one-step majority logic 

decodable codes. We use an extension of Massey’s algorithm [8] 

as a Soft input/ Soft-output component decoder. The structure of 

our iterative decoder follows the model of Pyndiah [2] with some 

modifications. This algorithm has been tested on several codes 

based on OSMLD codes and good performances have been 

obtained over the Gaussian and Rayleigh fading channels. It is 

interesting to extend this iterative decoding algorithm on quasi-

cyclic and multi-step majority logic decodable codes.   
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