
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

33

Sentence Boundary Disambiguation: A User Friendly
Approach

 Pritam Singh Negi
Department of Computer Science

H.N.B. Garhwal University
Srinagar Garhwal, India

 M.M.S. Rauthan
Department of Computer Science

H.N.B. Garhwal University
Srinagar Garhwal, India

H.S. Dhami
Head, Department of Mathematics

Kumoan University, Nainital

ABSTRACT
In the present work we have developed an algorithm based on

maximum entropy and stop word removal modules, which works
with almost 99% accuracy and have established supremacy over
the existing paragraph breaker software developed by Text
Mining Group, School of Computer Science, Manchester
University, United Kingdom .

Keywords: Sentence Boundary, Information retrieval, Evaluation.

1. INTRODUCTION
Sentence Boundary Disambiguation (SBD) has received increased

attention in recent years as a way to enrich speech recognition
output for better readability and improved demonstrations in
many applications of Natural Language Processing, like: Parsing,
Information Extraction, Machine Translation, POS tagging and
Document Summarization. Among the most relevant works, we
can cite the names of Berger (1996), Palmer & Hearst (1997),
Mikheev (2000), Manning & Schutze (2002), Kiss & Strunk
(2006), Xuan et al (2007), Siminski (2007) and Gillick (2009)

etc. to mention only a few.
 We know that sentence is a sequence of words ending with
a terminal punctuation, such as „.‟,‟?‟, ‟!‟ etc. Most sentences use
a period at the end. However, sometimes a period can be
associated with an abbreviation, such as ”Mr. or mr, U.S.A., Ph.
D., M. Sc. etc.” or can represent a decimal point in a number like
102.53. In all these cases, it is a part of an abbreviation or a
number. We cannot delimit a sentence because the period has a
different meaning here and therefore there arises an ambiguity in

breaking the sentence. To establish the task of sentence boundary
disambiguation for a given document there are certain necessary
conditions those are very important when breaking a sentence
boundary disambiguation.
 In this paper we have made an attempt to provide a system
which can be implemented in any system and can deduce the
sentence boundary with high accuracy. For this purpose, we have
considered the following conditions through which our system

provides the high accuracy for detecting the sentence boundary:

 not to break a sentence when the sentence contains

certain abbreviated words like I.B.M., Ph. D. etc.

 not to break a sentence when the sentence contains
the numeric words in it like "My percentage in post

graduation is 85.00%.”

 not to break a sentence when multiple occurrence
of a sentence terminator in a single word likes

www.google.com.

 take care of the sentences which contains multiple

occurrence of a particular sentence breaking
character (like ?,.,!).

 take care of the sentences which are most common

and where a sentence should not be broken like
Mr., Mrs., Col.

 take care of sentence with the words like etc., e.g.,

i.e.

2. LOGIC AND ALGORITHM
Logic, flow and description of various important algorithms/
functions used in the program and related snapshots for sentence
boundary detection have been given in this paper along with the
calculation of the maximum entropy of the given document. The
logic is solely implemented in C language and performs well with
English text.

(Main Module)

2.1 SENTENCE BOUNDARY DETECTION

The system takes a Text File with English Text which may
contain Alphanumeric Text. First of all, we check the certain
frequent words like (mr., mrs.). For this to happen, process the

text file character by character and create a whole word from that
to write it to the output file (final sentenced document), match this
word (before writing it to another file which one is a actual output
file) with the array which contains frequent occurring words. If
the word matches any of array elements we write the word to the
file without writing any newline character to the file.
 Afterwards the system checks the digits that may arrive in a
document. For this to happen, process the file character by
character and as soon as encounter a digit store it in a temporary

buffer and match its next character if it is a “.” Character then
store this character in the buffer too and match the next character
if it is a space then surely the buffer does not contain a floating
point number and place it to the file without writing any newline
character to the file and if there is any digit after the “.” place the
digits to the buffer till next “.” or “?” or”!” is not arrived and
finally places the contents of buffer to the file.
 Now check the word, which contains the words like

www.google.com. For removing this type of problem first process
the file character by character and then as soon as the character
„w‟ is encountered, stored it in a buffer and checks for next

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

34

character, if it is again „w‟ then store it too in the buffer and check
for another one, if finally get the word „www.‟ traverse the file
contents to the point till the “ “(space) character is not
encountered (because www.google.com) does not have any spaces
in between, and store all contents in a buffer and then finally to a

file. Now check other additional tasks like multiple occurrence of
a sentence terminator to the sentence like (Ohh My
God!!!!!!!!!!!!!). Here, system does not break a sentence in the
first sentence terminator (!) so copy all the terminators in the
buffer and then store them in the file.

(Sentence Boundary Detection Flow chart)

Input: A text file (a document with English text).
Output: An output file (a document with proper sentences.)
Steps: There are following steps:
Step 1: take an array preword[] to store most frequent names

prefixes like Mrs., Mr., col., Dr., Lt., Ph. D., A. D. ,
B. C. etc.

Open a document in read mode (say input document) for reading
and a document in writing mode for writing final output (say
output document).

(Sentence Boundary Detection Module)

Step 2: while(End of document is not reached)
 Do
 Process the document
 character by character

 Now check the following:

Step 2a: Check for Sentences Containing Abbreviations
If the word document contains any abbreviations like
G.W.Bush then we check that if these sentences start
with uppercase letter and follow by a „.‟ then continue
this process till the space character is encountered.

This word is not part of sentence boundary and is
written to the file without writing any newline
character to the file.

Step2b: Check for sentence containing any word prefixes. If the
word contains any digit process the document character by
character and if any digit is found in a word then we store it in a
temporary buffer and process next character. If this character is a

“.” then store this in temporary buffer and proceed next. If it
again is a digit then through a loop traverse file till a space
character is encountered and store it in temporary buffer and do
not place any newline character to the file.

c= getchar(frp);
int i=0;
if(isdigit(c))

 Tempbuf[i++]=c;

 Proceed to next char
 C=getc(frp);

If this char is a “.”, store it in tempbuf.
Tempbuf[i++]=c;
And then check next char.
C=fget(frp);
If (c!=‟.‟)

Then the tempbuf does not contain any

floating-point digit and check for the case
(uppercase or lowercase for c), if c is of type
upper then place a newline char to the file.

Else
write the content of tempbuf to the file
without writing any newline character to the
file.

 Else
Then the tempbuf contain floating point digit. And

we check for the next space character by traversing
through a while loop:

While(c!=‟ ‟)
Do

Tempbuf[i++]=c; and then place the content
of tempbuf to the file without writing any
newline character to the file.

EndDo

}
Store each character on a buffer till a whole word is not
formed. Say this word is stored in a temporary
buffer(tempbuf). If this word (tempbuf) matches with
the word contained in preword[] array.

 If(!strcmp(tempbuf,preword))
 Then

This word is not a part of sentence boundary

and writes it to the file without writing any
newline character to the file.

 fwrite(tempbuf,outputdocument);
Else

This word is a part of sentence boundary and
places a newline character to the output
document.

 EndElse

 Endif

Start

Enter input and

output file names

Hard

Disk

Input

File

Sentence

Boundary
disambiguation

Output

File

Hard

Disk

End

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

35

Step2.c. Check for the sentences containing the word like
www.google.com. For this traverse the file character by character
and check as soon as the character „w‟ or ‟W‟ is encountered.

If(c==‟w‟||c==‟W‟)
Then store the char to the buffer and proceed next

Tempbuf[i++]=c;
 C=fget(frp);
If it is again a „w‟ or „W‟ then store the char to the buffer and
proceed next

Tempbuf[i++]=c;
 C=fget(frp);
If it is again a „w‟ or „W‟ then store the char to the buffer and
proceed next

Tempbuf[i++]=c;
 C=fget(frp);
If it is a „.‟ Then we have encountered a word www. And we
proceed through till we encounter any space character.

While(c!=‟ „)
do
Tempbuf[i++]=c;
EndDo

And write final output to the file without writing any newline
character to the file.
EndDo

This is the algorithm for sentence boundary disambiguation
algorithm and work with an accuracy of 99% approx. The 1%
erroneous results are due to the versatility of the English language
and due to the use of words in different manner by different

peoples while writing their documents. For example some people
may proceed their name only by Mr instead of Mr. So a problem
may arise by sentence boundary algorithm here.

2.2 MAXIMUM ENTROPY
For finding more and more accurate result our implementation of

sentence boundary disambiguation algorithm uses the
mathematical model known as Maximum Entropy Model. It finds
the total occurrences of periods, question marks and exclamation
marks and also finds actual sentence breaking occurrences of
periods, question marks and exclamation marks. Then it applies
some mathematical formulae to produce a result known as
Entropy of the sentence. This help in improving the precision and
recall of the searching of the document.

(Maximum Entropy Module)

In this module we take an input document as input which is

preprocessed by sentence boundary module and check for the
occurrence of total number of dots, actual sentence breaking dots,
question marks and actual sentence breaking question marks, total
exclamation mark and actual exclamation marks in the given
document and then find the entropy for each (.,?,!) in the
document and save the result in the another document.
 Enter the name of the file where the text is saved which

comes after running the sentence boundary algorithm to the

actual document.

 Enter the file name where the output will be saved and open
this file into write mode.

 Now check how many question marks („?‟) available on the
document and how many question mark define the actual
sentence boundary.

 Similarly check it for „.‟ and exclamation („!‟) marks.

(Maximum Entropy Flow chart)

Now find the probability of the Sentences that end with dot
with the help of following formulae:

 dot_prob(SB)+dot_prob(NSB)=1

if(ad>0&&cd>0) where cd= Total Dots and

ad= Actual Sentence Boundary In Dots

 {
 dot_prob_for_SB = ad/cd;
 dot_prob_for_NSB = (1.0-dot_prob_for_SB);
 }
 Then calculating the entropy of dot sentence boundary with

the help of formulae H(P)=-

 Entropy_for_dot
= - ((dot_prob_for_SB* log(dot_prob_for_SB)) +

(dot_prob_for_NSB*log(dot_prob_for_NSB))
Probability of Dot as Sentence Boundary = dot_prob_for_SB
Probability of Dot as not a Sentence Boundary =

dot_prob_for_NSB
 Entropy for Dot = entropy_for_dot

 Similarly found the probablity of the Sentences that end with
question mark.

 if(aq>0 && cq>0) where aq= Total question marks and

 cq= Actual question marks
 {

 ques_prob_for_SB=aq/cq;
 ques_prob_for_NSB=(1.0-ques_prob_for_SB);
 }
 Then calculating the entropy of question mark sentence

boundary with the help of formulae H(P)=-

 Entropy_for_ques
=-((ques_prob_for_SB*log(ques_prob_for_SB))
+(ques_prob_for_NSB*log(ques_prob_for_NSB))

 Probablity of Question Marks as Sentence Boundary

Start

Enter input

and output file

names

Hard

Disk

Input

File

Maximum

Entropy Model

Implementation

Output

File

Hard

Disk

End

http://www.google.com/

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

36

 = ques_prob_for_SB
Probablity of Question Marks not as a Sentence Boundary
=ques_prob_for_NSB

 Now found the probability of the Sentences that end with
exclamation mark. The probability for SB and NSB will be

same because exclamation mark may be sentence punctuation
or not.

 if(ae>0&&ce>0) where ae= Total exclamation marks

 and ce= Actual exclamation marks
 {

 excl_prob_for_SB=ae/ce;
 excl_prob_for_NSB=(1.0f-excl_prob_for_SB);
 }

Then calculating the entropy of exclamation mark sentence
boundary with the help of formulae H(P)=-

Entropy_for_excl
=-((excl_prob_for_SB*log(excl_prob_for_SB))
+(excl_prob_for_NSB*log(excl_prob_for_NSB))

 Probability of Exclamation Mark as Sentence Boundary
 = excl_prob_for_SB
 Probability of Exclamation Dot as not a Sentence Boundary
 = excl_prob_for_NSB
 Entropy For Exclamation Mark = entropy_for_excl

2.3 STOP WORD REMOVAL
This module has been used to carry certain most frequently used
words like (“a”, ”the”, ”an”, ”are” etc.), since a search using one
of these terms is likely to retrieve almost every item in the

database regardless of its relevance, so their discrimination value
is low.

(Removing stop words from document flow chart)

Furthermore, these words make up a large fraction of the text of
most documents, the ten most frequently occurring words in
English typically account for 20 to 30 percent of the tokens in a
document. Neglecting such words from consideration early in
automatic indexing speed processing, saves huge amounts of

space in indexes and does not damage retrieval effectiveness. A
list of words filtered out during automatic indexing is called
stopword list or a negative directory. Our algorithm successfully
removes about 512 stopwords stored in a file.

(Stop Word Removal Module)

Enter the name of the file For StopWords Removal.

 Enter the file name where the output will be saved and open
this file into write mode.
Create a file in which all the stopwords are present.
Now compare stop words one by one to whole document.
If stop words found then remove it from the actual document
and store it to output document.

In the stopwords removal module, we have taken only 512

stopwords, while there are more than 700 stopwords and we can
easily add remaining stopwords into the program.

3. COMPARISON
When we compare our system with the sentence and paragraph
breaker software, which one has been developed by Scott Piao
member of Text Mining Group, School of Computer Science,
Manchester University, UK., we observe as under:

 Test mining group software has been developed in

JAVA language and our system is developed in C
language.

 Test mining group software is available online and one

can work with it only when the Internet is working on
that computer where the software is working. Our
system can also be developed for Internet with more
accuracy.

 Previous software can break the sentences on most
common uses word like mr., mrs. etc which one is not

an actual sentence breaking position but our system can
break the sentence in its actual position.

 Previous software cannot break the sentences when only

one character is found before the “.” in place of a word
but our system can recognize the end position and break
the sentence in its actual position.

4. CONCLUSION
We have presented a system for sentence boundary detection of
English text. In this system we have attempted to create an open
source software tool and the experimental results show that the
approach can achieve a high accuracy. With the help of this
system anyone can detect sentence boundary of a given text

Start

Enter input
and output

file names

Hard

Disk

Input

File

Stop words

Removal

Output

File

Hard

Disk

End

http://personalpages.manchester.ac.uk/staff/scott.piao/

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

37

document. This work shall have applications in Information
Retrieval System because without breaking a text document into
sentences, there is no meaning of applying text operations on the
document, and therefore we cannot retrieve relevant (according to
query) information from the document.

This work removes all the problems that occur in sentence
boundary disambiguation. It finds actual sentence ending for the
given text documents paragraphs.

5. REFERENCES:
[1] Berger A. 1996. A Brief Maxent Tutorial. http://www-

2.cs.cmu.edu/~aberger/maxent.html.

[2] Gillick Dan (2009) Sentence boundary detection and the
problem with the U.S.(2009) Proceeding of the NAACL
HLT2009:Association for computational linguistics, (short
papers),241-244.Boulder,Colorado.

[3] Kiss T. and Strunk J.(2006) Unsupervised multilingual
sentence boundary detection, Computational linguistics,
32(4), 485-525.

[4] Manning, C.D. and Schütze, H. (2002) Foundations of
statistical natural language processing. The MIT Press,
Cambridge/London.

[5] Mikheev, A. (2000). Tagging Sentence Boundaries. In
Proceedings of the NAACL, pp 264-271, Seattle, WA.

[6] Palmer, D.D. & Hearst, M.A. (1997). Adaptive
Multilingual Sentence Boundary Disambiguation.
Computation Linguistics, 23(2), 241-269.

[7] Siminski Krzysztof (2007) Sentence boundary

verification in Polish text, Computer recognition systems 2,
Advances in soft computing, Springer, Vol.45/2007,493-499.

[8] Weijian, Xuan, Watson, Stanley J. and Meng Fan
(2007) Tagging sentence bares to Biomedical literature,
Computational linguistics and Intelligent text processing,
Lect. Notes in Computer Science, Springer, No.7,
Vol.4394/2007, 186-195.

http://www-2.cs.cmu.edu/~aberger/maxent.html
http://www-2.cs.cmu.edu/~aberger/maxent.html

