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ABSTRACT 

With the availability of limited electronic resources, development 
of a syntactic parser for all types of sentence forms is a 
challenging and demanding task for any natural language. This 
paper presents the development of Penn Treebank based statistical 

syntactic parsers for two South Dravidian languages namely 
Kannada and Malayalam. Syntactic parsing is the task of 
recognizing a sentence and assigning a syntactic structure to it. A 
syntactic parser is an essential tool used for various natural 
language processing (NLP) applications and natural language 
understanding. The well known grammar formalism called Penn 
Treebank structure was used to create the corpus for proposed 
statistical syntactic parsers. Both the parsing systems were trained 

using Treebank based corpus consists of 1,000 Kannada and 
Malayalam sentences that were carefully constructed. The 
developed corpus has been already annotated with correct 
segmentation and Part-Of-Speech (POS) information. We have 
used our own POS tagger generator for assigning proper tags to 
each and every word in the training and test sentences. The 
proposed syntactic parser was implemented using supervised 
machine learning and probabilistic context free grammars (PCFG) 

approaches. Training, testing and evaluations were done by 
support vector method (SVM) algorithms. From the experiment 
we found that the performance of our systems are significantly 
well and achieves a very competitive accuracy.  

Keywords 
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1. INTRODUCTION 
Syntactic parsing of sentences is considered to be an important 
intermediate stage for semantic analysis in natural language 

processing (NLP) application such as information retrieval (IR), 
information extraction (IE) and question answering (QA). The 
study of structure of sentence is called syntax and it attempts to 
describe the grammatical order in a particular language in term of 
rules which detail an underlying structure and a transformational 
process. Syntax provides rules to put together words to form 
components of sentence and to put together these components to 
form meaningful sentences [1]. In natural language processing, 
syntactic parsing or more formally syntactic analysis is the 

process of analyze and determine the structure of a text which is 
made up of sequence of tokens with respect to a given formal 
grammar. Because of the substantial ambiguity present in the 
human language, whose usage is to convey different semantics, it 
is much difficult to design the features for natural language 
processing tasks. The main challenge is the inherent complexity of 

linguistic phenomena that makes difficult to represent the 
effective features for the target learning models. 

Literature shows that the rule based grammar refinement process 
is extremely time consuming and difficult and failed to analyze 
accurately a large corpus of unrestricted text. Hence, most modern 
parsers are based on statistical or at least partly statistical, which 
allows the system to gather information about the frequency with 
which various constructions occur in specific contexts. Any 

statistical approach requires the availability of aligned corpora 
which are: large, good-quality and representative. 

Probabilistic context free grammars (PCFG), maximum entropy 
techniques, and neural networks based learning are some of the 
approaches that have proven their efficiency for parsing and other 
natural language processing. The researchers have to agree on the 
grammar that is to be used for analyzing the syntactic structure in 
natural language parsing. For some parsing systems use lexical 

functional grammar called NP-complete grammar. Head-driven 
phrase structure grammar is another linguistic formalism which 
has been popular in the parsing community. A less complex 
grammar formalism called Penn Treebank structure is much 
popular in the field of natural language syntactic analysis. 

Penn Treebank corpora have proved their value both in linguistics 
and language technology all over the world. At present a lot of 
research has been done in the field of Treebank based probabilistic 

parsing successfully. The main advantage of Treebank based 
probabilistic parsing is its ability to handle the extreme ambiguity 
produced by context-free natural language grammars. Information 
obtained from the Penn Treebank corpora has challenged the 
intuitive language study for various natural language processing 
purposes [2]. South Dravidian languages are morphologically rich 
in which a single word may carry different sorts of information. 
The different morphs composing a word may stand for, or indicate 

a relation to other elements in the syntactic parse tree. There for it 
is a challenging task to the developers in terms of the status of the 
orthographic words in the syntactic parse trees. 

In this paper we propose a Penn Treebank based probabilistic 
syntactic parsers for two South Dravidian languages namely 
Kannada and Malayalam. The proposed supervised machine 
learning systems are implemented using support vector 
algorithms. Parts of speech tagging is an important stage in the 
syntactic parsing model and we have used our own POS tagger 

models [3][4] for assigning tags to each and every words in the 
sentence. 

2. LITERATURE SURVEY 
A series of statistical based parsers for English are developed by 
various researchers namely: Charniak-1997, Collins-2003, Bod et 
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al. - 2003 and Charniak and Johnson- 2005 [5][6]. All these 
parsers are trained and tested on the standard benchmark corpora 
called Wall Street Journal (WSJ). A probability model for a 
lexicalised Probabilistic Context Free Grammar (PCFG) was 
developed by Charniak in1997. In the same time Collins also 

describes three generative parsing models, where each model is a 
refinement on the previous one, and achieving improved 
performance. In 1999 Charniak introduced a much better parser 
called maximum-entropy parsing approach. This parsing model is 
based on a probabilistic generative model and uses a maximum-
entropy inspired technique for conditioning and smoothing 
purposes. In the same period Collins also present a statistical 
parser for Czech using the Prague Dependency Treebank. The 

first statistical parsing model based on a Chinese Treebank was 
developed in 2000 by Bikel and Chiang. A probabilistic Treebank 
based parser for German was developed by Dubey and Keller in 
2003 using a syntactically annotated corpus called „Negra‟. The 
latest addition to the list of available Treebank is the „French Le 
Monde‟ corpus and it was made available for research purposes in 
May 2004. Ayesha Binte Mosaddeque & Nafid Haque wrote 
Context Free Grammar (CFG) for 12 Bangla sentences that have 

taken from a newspaper [7]. They used a recursive descent parser 
for parsing the CFG. 

Comparing with foreign languages, a very little work has done in 
the area of natural language processing for Indian languages. B.M. 
Sagar, Shobha G and Ramakanth Kumar P. worked on Solving the 
Noun Phrase and Verb Phrase Agreement in Kannada Sentences 
[8]. Bala sundara Raman L, Ishwar S, Sanjeeth Kumar 
Ravindranath, implemented Natural Language constructs for 

„Venpa‟ class of Tamil Poetry using Context Free Grammar [9]. 
G.V. Singh and D.K. Lobiyal, attempted to check the grammar for 
Hindi sentences with compound, conjunct or complex verb 
phrases [10]. Selvam M, Natarajan. A M, and Thangarajan R 
implemented a structural parsing of Tamil using phrase structure 
hybrid language model for almost 700 sentences [11]. AUKBC-
NLP team under the supervision of Professor Rajendran S 
prepared a morphological parser and a shallow parser for Tamil 
[12]. To the best of our knowledge apart from these there is not 

much research literature available for development in 
computational processing of Indian languages at present. 

3. SOUTH DRAVIDIAN LANGUAGES 
Among the four major South Dravidian languages such as 
Kannada, Malayalam, Tamil and Telugu are having almost 40, 35, 

70 and 71 million speakers respectively [13]. These languages 
have their own independent scripts and long documented 
histories. Verbs have a negative as well as an affirmative voice. 
Gender classification is made on the basis of rank instead of sex, 
with one class including beings of a higher status and the other 
beings of an inferior status. Nouns are declined, showing case and 
number. In South Dravidian languages a great use is made of 
suffixes with nouns and verbs. Also all these four Dravidian 

languages have their own alphabets, related to the Devanagari 
alphabet used for Sanskrit. Even though Kannada and Malayalam 
are languages of rich in historical literary, they are resource poor 
when viewed through the prism of computational linguistics [14]. 
In this paper most of the descriptions are based on Kannada and 
Malayalam languages. 

3.1 Structure of South Dravidian languages 
Unlike English language Kannada and Malayalam are syntax of 

relatively free word order language [15]. This can be easily 

illustrated with the example „India defeated Pakistan in Lahore‟ as 
shown in table 1. 

Table 1. Word order in Kannada and Malayalam languages 

Case Kannada Malayalam 

 
Case 1 

  

 . 

C´y ]mInkvXms\ emtlmdnÂ 
tXmÂ]n¨p. 

 
Case 2 

  

 . 

]mInkvXms\ C´y emtlmdnÂ 
tXmÂ]n¨p. 

 
Case 3 

  

 .  

C´y emtlmdnÂ ]mInkvXms\ 
tXmÂ]n¨p 

 
Case 4 

  

 . 

emtlmdnÂ C´y ]mInkvXms\ 
tXmÂ]n¨p 

In all the cases, the subjects are „ ‟ (bhArata) and „C´y‟ 

(inthya) , the objects are ‟ ’ (pAkistAna) and „]mInkvXm³‟ 

(pAkisthAn) and the locative is „ ‟, „emtlmÀ‟(lAhOr). From 

the above example, it is clear that word order does not determine 
the functional structure in South Dravidian languages and permits 

scrambling. But normally South Dravidian languages follow 
Subject-Object-Verb orders in contradiction with English 

language.. 

3.2 Complexity and Ambiguity 
The highly agglutinative languages like Kannada and Malayalam, 
nouns and verbs get inflected. Many times we need to depend on 
syntactic function or context to decide upon whether the particular 
word is a noun or adjective or adverb or post position [3][4]. This 
leads to the complexity in Kannada and Malayalam syntactic 
parsing. A noun may be categorized as common, proper or 
compound. Similarly, verb may be finite, infinite, gerund or 

contingent. Contingent is a special form of verb found only in 
Kannada and not found in other Dravidian languages. Other parts 
of speech were also divided into their own subcategories. Parts-of 
–speech ambiguity is the another important issue that have to be 
carefully analyse while designing a syntactic parser.  

Table 2. Ambiguity in Kannada and Malayalam languages 

Case Kannada Malayalam 

 

Case 1 

   . 

 (Seete deepada batti 
badalisidaLu)   

( avan kAli tozhuthil 
janichu) 

 

Case 2 

   . 

(baaviya neeru batti 
hooyittu) 

 
t]m¡äv Imen Bbn 

( pOcket kAli Ayi) 

For example, Kannada word „ ‟ (batti) and the Malayalam 

word „  in the following sentences in table 2 gives 

different parts of speech. The words ‘ „(batti) and 

„  are nouns in the first case whereas in the second 

case these words act as verbs. Also, the parts of speech are not 

just the noun, pronoun, verb and adverb. There are clearly many 
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more categories and sub-categories.While developing the 
syntactic parsers we have taken all the above factors into 
consideration. 

3.3 PNG and Tense Markers 
The Person–Noun-Gender (PNG) and the tense marker 
concatenated to the verb stems are the two important aspect of 
verb morphology in South Dravidian languages. Usually in South 
Dravidian languages, verbs follow the regular pattern of 
suffixation. PNG markers play an important role in word 
formation except in Malayalam. Depends on the noun case 

associated with noun phrase (NP), the PNG marker of 
corresponding verb in the verb phrase (VP) may change.  

4. SYNTACTIC PARSING 
Syntactic analysis is the process of analyzing a text or sentence 
that is made up of a sequence of words called tokens, and to 

determine its grammatical structure with respect to a given 
grammatical rules.  

4.1 Syntactic Tree Structure 
The different parts-of-speech tags and phrases associated with a 
sentence can be easily illustrated with the help of a syntactic 

structure. Figure 1 below shows the output syntactic tree structure 
produced by a syntactic parser for the Kannada input sentence 

   ‟ Rama threw the ball‟.  

 

 
 
 

 
 
 
 
 
 
 

Figure 1. Syntactic tree structure 

For a given sentence, the corresponding syntactic tree structure 
conveys the following information. 

4.1.1 Part-of-Speech-Tags 
The syntactic trees help in identifying the tags of all the words in 
a given sentence as shown in table 3. 

4.1.2 Identification of Phrases 
The syntactic tree also helps in identifying the various phrases and 

the organization of these phrases in a sentence. In the above 
example there are two phrases as shown in table 3. 

4.1.3 Useful Relationship 
The syntactic tree structure also helps in identifying the 
relationships between different phrases or words. Indirectly it 
identifies the relationship between different functional parts like 
subject, object, and verb in a sentence. In the given example, the 

subject part is , object is  and the verb is . Given 

a rule S ->NP VP in the above example, the NP (noun phrase) is 
the subject of the verb within the VP (verb phrase). In this case „ 

 ‘ (rAma) is the subject of ‘  ‘ (esedanu). Similarly the 

rule VP ->NP VP indicates an object-verb relationship. In our 

example „ ’ (ceMDu) is the object of verb „  ‘ (esedanu). 

Table 3. Example: Parts-of-speechs and Phases in a sentence 

Parts-of-speech Phrases 

Node  

 (Word)  

Tag Phrase Name of 
Phrase 

 
NNP 

 Noun phrase 
 

 
NN  

  

 
Verb phrase 

 
VF 

5. BRACKETING GUIDELINES FOR 

KANNADA PENN TREEBANK CORPUS 
Penn Treebank corpora have proved their value both in linguistics 
and language technology all over the world. Information obtained 
from the Penn Treebank corpora has challenged the intuitive 

language study for various natural language processing purposes 
[16]. The main effort for developing a Penn Treebank based 
corpus is to representing the text in the form of a „Treebank‟, 
where tree structures represent syntactic structures of phrases and 
sentences. This is followed by an application of a parsing model 
to the resulting Treebank. There for with the availability of 
Treebank of annotated sentences it is easy to develop natural 
language syntactic parser and other NLP application tools. Our 

effort is to create well balanced Treebank based corpus with 
almost all possible inflections. We have created a corpus with all 
types of sentences, some of which are illustrated as follow: 

5.1  Simple Declarative Sentence 

Consider a simple declarative sentence   (rama 

ceMDannu esedanu „ Rama threw the ball’). The figure 2 shows 
an example for the „Penn tree syntax‟ and the figure 1 shows the 
corresponding parse tree for this sentence. 

(S (NP (NNP  ) (VP (NN ) (VF  ))) (. .)) 

Figure 2. Penn Treebank format of a Declarative sentence. 

5.2  Imperative Sentences 

 (S (NP (NNP SBJ) (VP (NN ) (VF  ))) (! !)) 

[SBJ throw the ball !] 

Figure 3. Penn Treebank format of an Imperative sentence 

 

 

 

 

 

 

 

 

 

Figure 4. Parse tree for the figure 3. 

. 

. 

NP 

VP NNP 

VF NN 

  

 

 

S 

S 

! NP 

! VP NNP 

VF NN 

 

 

 

 

SBJ 
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Imperatives are formed from the root of the verb and usually 
given a null subject-SBJ, as shown in figures 3 and 4. Unlike 
Malayalam, depends on the type of noun case that is associated 
with the SBJ, the PNG markers associated with the Kannada verb 
also changes. 

5.3 Compound Sentences 
The relationship of conjoining in Kannada may be any one of: (i) 

additive indicated by „ ‟(mattu) or „ಊ‟(U) (ii) alternative 

indicated by „ಅಥವ‟ (adhava) or „ ‟(illalillave) and (iii) 

adversative indicated by „ ‟(Adare). Coordination may be take 

place either at phrase or clause level. Figures 5 and 6 illustrate an 
example of Treebank format and parse tree for a compound 
sentence Coordinated at phrase level. 

(S (NP (NN ) (NN ))  

(VP (NN ) (VP (ADV ) (VF ))) (. .)) 

[Girls and boys threw and caught the ball] 

Figure 5. Penn Treebank format of a compound 
                sentence coordinated at phrase level. 

 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 6. Parse tree for the figure 5. 

6. SUPPORT VECTOR METHODS 
SVM is a machine learning algorithm for binary classification, 
which has been successfully applied to a number of practical 
problems, including NLP. SVM is based on strong mathematical 

foundations and results in simple yet very powerful algorithms.In 
their basic form, a SVM learns a linear hyperplane that separates 
the set of positive examples from the set of negative examples 
with maximal margin[17][18]. The SVMs‟ superiority over other 
classifiers is its ability to maximize the margin between classes. 
This learning bias has proved to have good in terms of 
generalization bounds for the induced classifiers. The linear 
separator is defined by two elements: a weight vector „w‟ and a 
bias „b‟ which stands for the distance of the hyperplane to the 

origin. The classification rule of a SVM is based on the equations 
(1) and (2). 

  

                                            

Being „x’ the example to be classified. In the linearly separable 
case, learning the maximal margin hyperplane (w, b) can be stated 

as a convex quadratic optimization problem with a unique 
solution: minimize ||w||, subject to the constraints as indicated by 
the equation (3), one for each training example: 

                          

7. CONTEXT FREE GRAMMARS (CFG) 
Context-free grammars, sometimes called a phrase structure 

grammar play a central role in the description of natural 
languages. In general a CFG [19] is a set of recursive rewriting 
rules called productions that are used to generate patterns of 
strings and it consists of the following components: 

 A finite set of terminal symbols ( ).  

 A finite set of non-terminal symbols (NT).  

 A finite set of productions (P). 

 A start symbol (S).  
Consider an example for simple declarative sentence  

  (rAmu ceMDannu esedanu). The components and 

the derivation of this sentence using CFG are shown in table 4. 
The tag assigned to each of the word is based on the POS tagger 
generator on table 6. 

Table 4. Example: Context free grammar (CFG) 

Production 

Rules (P) 

Derivation of Sentence 

Derivation Rule used 

S →NP VP 

NP →NNP 

VP→NP VP 

NP→ NN 

VP→VF 

NNP→  

NN→  

VF→  

S →NP VP 

S →NNP VP 

S →  VP 

S →  NP VP 

S →  NN VP 

S →   VP 

S →   VF 

S →    

S →NP VP 

NP →NNP 

NNP→  

VP→NP VP 

NP→ NN 
NN→ 

 

VP→VF 

VF→  

Start Symbol: S, Terminal Symbols ( ): { , , }, 

Nonterminal Symbols (NT): {S, NP, VP, NNP, NN, VF} 

8. PROBABILISTIC CONTEXT FREE 

GRAMMAR (PCFG)  
The problem of CFG is that it misses the probabilistic model 
which is needed in order to disambiguate between parses. A 

Probabilistic Context Free Grammar (PCFG) is a probabilistic 
version of a CFG where each production has a probability [20]. 
Probabilities of all productions rewriting a given non-terminal 
must add to 1, defining a distribution for each non-terminal. The 
simplest way to gather statistical information about a CFG is to 
count the number of times each production rule is used in a corpus 
containing parsed sentences. This count is used in order to 
estimate the probability of each rule being used. In our case, we 

estimate the rules probabilities using the relative frequency of the 
rule in the training set. For a generic rule “A → B C”, this means 
that every time we find the symbol A, it can be substituted with 
the symbol B and C. Its conditional probability is defined as in 
equation (4): 

  

Once we have the probability of the production rules in a PCFG, 
the probability of a parse tree for a particular sentence can easily 
be calculated by multiplying the probabilities of the rules that 
built its sub-trees. The advantage of PCFG based syntactic parser 

S 

. VP NP 

NP NP NP NP 

   NP NP 

  

. 
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model is that, for any two or more different sentences that have 
same pos tag sequence, but have different syntactic tree structure, 
then the sentence structure that has more probability would be 
considered or correctly parsed. 

Table 5. Example: Probability context free grammar (PCFG) 

Derivation of Sentence Probability of 
rule used 

Derivation Rule used 

S →NP VP 

S →NNP VP 

S →  VP 

S →  NP VP 

S →  NN VP 

S →   VP 

S →   VF 

S →    

S →NP VP 

NP →NNP 

NNP→  

VP→NP VP 

NP→ NN 

NN→  

VP→VF 

VF→  

 

1.000 

0.050 

0.030 

0.015 

0.025 

0.010 
0.015 
0.015 

 

Table 5 shows the total probability derivation of our previous 

sentence    (rAmu ceMDannu esedanu) ‟Rama 

threw the ball‟. Total probability for derivation of sentence is 
calculated by multiplying the probabilities used to derive the 
sentence. 

Total probability = 1.0 * 0.05 * 0.030 * 0.015 * 0.025 * 0.010 * 
0.015 * 0.015 

9. INSIDE-OUTSIDE ALGORITHMS (IOA) 
Similar to the HMM‟s forward and backward algorithm, 

probability of nodes in a PCFG parse forest as the product of the 
inside and outside probabilities (IO probability) for the node Ni 
[21]. This can be easily understand by considering an example, for 
the grammar rule „NP → DET NN’ over the input „the man’. The 
corresponding node‟s IO probability is equal to the probability of 
all derivations which include the „NP →DET NN’ category over 
this subset of the input. For production i→ jk, the probability of 
the rule is determined using the equation (5): 

  

Consider a CFG grammar G as a tuple {NT, , P, R}, where NT 

and  elements represent the set of nonterminal and terminal 

symbols of the grammar respectively. The element P represents 
the set of production rules, while R represents the nonterminal 
category that is considered the top grammar category. For given 
input sequence of terminals of the grammar {a1, ...aT }, we 
denote e(s, t, Ni) and f (s, t, Ni) are the inside and outside 

probabilities respectively for a node Ni, that spans input items as 
to at inclusively.  

 

 

 

 

 

 

Figure 7. The inside (e) and outside (f) regions for node Ni) 

Figure 7 illustrates the corresponding nodes in the parse forest 
used when calculating the inside and outside probabilities for Ni. 
Nonleaf nodes in the figure represent NT categories, and Nr is the 
root node whose category r is in the set R. Leaf nodes represent S 
categories of the grammar, that is, the input sequence {a1, ...aT }. 

9.1 Inside Probability 
The inside probability e(s, t, Ni) represents the probability of sub-
analyses that are rooted with mother category i for this sentence 
over the word span s to t. Each production is of the form i → jk 

 

 

 

 

 

 

 

Figure 8. Inside probabilities for node Ni. 

where each set of daughter nodes Nj and Nk span from as to ar 
and ar+1 to at, respectively. Figure 8 illustrates this structure for 
node Ni. Inside probability of each node corresponds to the 
product of all CFG rules that are applied to create the sub-analysis 
as shown in equation 6.  

  

9.2 Outside Probability 
On the other hand the outside probability Ni, f (s, t, Ni), for a node 
Ni is calculated using all the nodes for which the node is a 
daughter (sub-analysis). This calculation includes the inside 
probability of the other daughter nodes of which Ni is a member. 
This means, category i could appear in two different settings: 
j→ik or j→ki, as shown in figure 9. 

 

 

 

 

 

 

Figure 9. Outside probabilities for node Ni 

The outside probability of Ni is calculated using the outside 
probability of the mother node (Nj) multiplied by the product of 
inside probabilities of the daughters other than Ni i.e. Nk. In each 
instance when Ni is a daughter of a node, the outside probability f 
(s, t, Ni) for a given sentence is calculated using the equation (7). 

  

10. IMPLEMENTATION 
The proposed statistical syntactic parser for Kannada and 
Malayalam were based on Probabilistic Context free grammar 
(PCFG) and implemented using supervised machine learning 
approach with SVM algorithms. PCFG is basically a context free 
grammar (CFG) with probabilities associated with each rule, 

 

f 

 

 

e 

 

  

s      …       r   r+1    ….     t 1 …. …. T   

 

  

 

  

s… t t+1.r 
r 

r ..s-1 s …t ..T   1.. ..T 1.. 
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indicating how probable a production rule is. The SVM learning 
algorithm is used to create trained model which is used to identify 
the syntactic tree structure of new test sentences. When a sentence 
is given to be parsed, initially the pos tag of the words in the 
sentence is found out using Amrita pos tagger. In the subsequent 

steps the SVM classifier, using Inside-Outside Algorithm to find 
out the most probable parse structure of the given sentence. 

10.1 Architecture of Proposed Syntactic 

Parser for Dravidian Languages 
The architecture of the proposed syntactic parser is shown in 
figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 10. Architecture of Proposed Syntactic Parsing System 

The proposed syntactic parser model consists of the following 
steps: 

1. Creating training set of sentences.  
2. POS Tagging the training sentences.  
3. Format the syntactic structure of the training sentences. 
4. Training the system using svm_cfg_learn module of 

SVM. 

5. Testing the system with parser model created in the 
previous step using svm_cfg_classify module of SVM. 

6. Display the output of input test sentence in syntactic 
tree form using Tree Viewer. 

In any statistical system, the corpus creation is a major task which 

consumes considerable time. The first three steps in the proposed 
system were used to create the Treebank based corpus. A brief 
description of each of these steps is as follow: 

10.1.1 Creating training set of sentences 
The proposed Kannada and Malayalam Treebank corpora consist 
of 1,000 random diverse Kannada and Malayalam sentences. 
These sentences were carefully constructed by taking care of 
various factors for generating good corpora. 

10.1.2 POS Tagging the training sentences 
The next step was to assign parts-of speech tags to each and every 
word in the sentences using the POS tagger model. Parts-of 
speech tagging is an important stage in our Treebank based 
syntactic parsing approach. We have used our own POS tagger for 
assigning proper tags to each and every word in a sentence. POS 
tagger plays an important role in Natural language applications 

like speech recognition, natural language parsing, information 
retrieval and information extraction. We have developed statistical 
part-of-speech Taggers for Kannada and Malayalam languages 
using SVM algorithms based on Amrita tagset. These pos taggers 
were used for assigning syntactic tags to the words in the training 
and testing sentences. Table 6 shows the set of parts-of-speech 
syntactic tags that were used in our corpus for generating the 
syntactic parser. More detailed information on the POS tagset and 

guidelines concerning its uses are found in [3][4]. 

Table 6. Kannada POS tagset 

Tag Description Example [Meaning in English ] 

<NN> Noun  (huDuga) [ boy ] 
<NNC> Compound 

Noun 
  (ettina banDi) 

<NNP> Proper Noun  ( karnataka) 
<NNPC> 
 

Compound 
Proper Noun 

  (Abdul kalam) 

<CRD> Cardinals  (ondu) [ one ] 
<ORD> Ordinals  (ondane ) [ first ] 
<PRP> Pronoun  (avanu) [ he ] 
<ADJ> Adjective  [ beautiful ] 
<ADV> Adverb  [ speedly ] 
<VNAJ> Verb Nonfinite 

Adjective 
 [the boy who came ] 

<VNAV> Verb Nonfinite 
Adverb 

[came and went back ] 

<VBG> Verbal Gerund  (baruva ) [ coming ] 
<VBC> Verb 

Contingent 
 (baruvEnu)[ might come ] 

<VF> Verb Finite  (baredenu) [ wrote ] 
<VAX> Auxiliary Verb  [ was + ing ] 
<VINT> Verb Infinite  (nODalu) [ to see ] 

Input 

 

Tokenize 

 

Output 

 

SVM 

 

Train data 
manually 

 

Merged 
Model 

 

Features 

 

Lexicon 
(Dictionary) 

 

Kannada POS Tagger Model 

 

Creating Training 
Set of Data 

 

POS Tagging of 
Training Data 

Treebank Corpus 
Creation 

 

Training the 
Corpus using 

svm_cfg_learn 
 

Syntactic 

Parser 
Model 

 

svm_cfg
_classify 

 

POS Tagging 
of Input  
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<CNJ> Conjunction  (mattu) [ and ] 
<CVB>  Conditional 

Verb 
 (nODidare) [ if see ] 

<QW> Question 
Words 

 (Eke) [ why ] 

<COM> Complimentizer  (enba) [ s , es ] 
<NNQ> Quantity Noun  (swalpa) [ litte ] 
<PPO> Post Position ತನಕ (tanaka) [ till ] 
<DET> Determiner ಆ (A) 
<INT> Intensifier  (tunbA) [ very ] 
<ECH> Echo Words  (appi tappi) [ by mistake ] 
<EMP> Emphasis  (matra) [ only ] 
<COMM

> 
Comma , 

<DOT> Dot . 
<QM> Question Mark ? 
<RDW> Reduplication 

Words 
ಪಟಪಟ (paTa paTa) [continuously] 

10.1.3 Format the syntactic structure of the training 
sentences 
The next step was to find out the syntactic structure of each and 
every sentence in the corpus manually by resolving various 
ambiguities and dependencies. The proposed statistical corpus 
was based on well known Penn Treebank corpora, so that the 

syntactic format of each and every training sentence manually 
created. The sentences in the training corpus were divided into 
various phrases and phrases are further divided to one or more 
words as described in the section 5. 

10.1.4 Training the system using svm_cfg_learn  
SVMcfg is a flexible and extensible tool for learning models in a 
wide range of domains. SVMcfg is an implementation of the 
Support Vector Methods (SVM) algorithm for learning a weighted 
context free grammar. The weight of an instantiated rule can 
depend on the complete terminal sequence, the span of the rule, 
and the spans of the children trees. Another important property of 
the SVMcfg is easy to add attributes that reflect the properties for 

the particular domain at hand. The SVMcfg mainly consists of 
two modules called learning module namely svm_cfg_learn and 
classification module namely svm_cfg_classify. These modules 
are used respectively for learning and classification for a set of 
data. 

SVMcfg uses the learning module called svm_cfg_learn for 
learning the training corpus. The usage of this module is much 
like the svm_light module and the syntax is as follow: 

svm_cfg_learn -c 1.0 train.data model 

Which train SVM on training set train.data and output the learned 
grammar to the two model files called model.svm and 
model.grammar by setting the regularization parameter C to 1.0. 
In the proposed systems, 238 and 234 different rules were 
extracted for Kannada and Malayalam from the training data of 
1000 sentences. Since the svm_cfg_leran module utilized the 
probabilistic context free grammar formalism, the module also 

finds out the probabilities of each and every rule as explained in 
section 8. Testing the system using svm_cfg_classify 
The trained model created in the previous step was used to predict 
the syntactic tree structure of new test sentences. The test file 
containing the test sentences were given to the POS tagger model 

to assigning syntactic tags to each and every word in the sentence. 
The result of the POS tagger was given to the svm_cfg_classify. 
Svm_ cfg_classify analyze the syntactic structure of test sentences 
by referring the model files that were created by svm_cfg_learn. 
Svm_ cfg_classify module makes predictions about the syntactic 
structure of test sentences based on probabilistic context free 
grammar formalism and inside-outside algorithms. Both PCFG 
and IOA are explained in the sections 8 and 9. The syntax of 

svm_cfg_classify is as follow:  
svm_cfg_classify test.data model predictions 

For all test examples in test.data, the predicted parse trees are 
written to a file called predictions. 

10.1.5 Display the output using Tree Viewer 
NLP or Linguistic researchers who work in syntax often want to 
visualize parse trees or create linguistic trees for analyzing the 
structure of a language. The syntactic parse tree of the test 
sentence is created and displayed by using „Syntax Tree Viewer‟ 
software developed using Java language. Figure 11 shows the 

output screen shot for a test sentence „     

’ (nAnu oMdu patra bareyutta iddEne-I am writing a letter). 

 
Figure 11. Output Screenshot 

11. EVALUATION AND RESULT 
Even though we have developed a small sized corpus with 1000 
distinguished sentences, the result obtained was well promising 
and encouraging. The performance of the system was evaluated 
using svm_cfg_classify module and the incorrect outputs were 
noticed. On contrast to the rule based approach, the systems 

performance was considerably increased by adding the input 
sentences to the training corpus whose corresponding outputs 
were incorrect during testing and evaluation. The graph in figure 
12 shows the performance of proposed syntactic parser. We 
trained the systems with corpus size of 250, 500, 750 and 1000 
sentences respectively. Performances of the systems were 
evaluated with the same set of 100 distinguished sentences that 
were out of corpus. From the experiment we found that the 
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performances of our systems are significantly well and achieves 
very competitive accuracy by increasing the corpus size.  

 

Figure 12. Performance Graph 

12. CONCLUSION 
From our experience we have noted that development in natural 

language processing for Indian languages like Kannada and 
Malayalam are very slow. The main reason for this includes non-
availability of large scale data resources and also due to the 
inherent complexities of the language. The performance of the 
proposed syntactic parser models can improved by incorporating 
more syntactical information by increasing more and more 
sentence types and well-formed large corpus. We are working 
towards to generate full fledged syntactic parsers for all the South 

Dravidian languages. In future we can also use these syntactic 
parsers for tree to tree translation. This will be very useful for 
bilingual machine translation from English to South Dravidian 
languages. To the best of our knowledge this is the first attempt of 
computationally constructing statistical based syntactic parser 
models for Kannada and Malayalam languages. 
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