
International Journal of Computer Applications (0975 – 8887)
Volume 7– No.8, October 2010

14

Penn Treebank-Based Syntactic Parsers for South
Dravidian Languages using a Machine Learning Approach

Antony P J
Research Scholar

CEN Department, Amrita Vishwa
Vidyapeetham University, Coimbatore,

Tamil Nadu, India

Nandini. J. Warrier
Assistant Professor

CSE Department, Amrita Vishwa
Vidyapeetham University, Coimbatore,

Tamil Nadu, India

Dr. Soman K P
Professor and Head

CEN Department, Amrita Vishwa
Vidyapeetham University, Coimbatore,

Tamil Nadu, India

ABSTRACT

With the availability of limited electronic resources, development
of a syntactic parser for all types of sentence forms is a
challenging and demanding task for any natural language. This
paper presents the development of Penn Treebank based statistical

syntactic parsers for two South Dravidian languages namely
Kannada and Malayalam. Syntactic parsing is the task of
recognizing a sentence and assigning a syntactic structure to it. A
syntactic parser is an essential tool used for various natural
language processing (NLP) applications and natural language
understanding. The well known grammar formalism called Penn
Treebank structure was used to create the corpus for proposed
statistical syntactic parsers. Both the parsing systems were trained

using Treebank based corpus consists of 1,000 Kannada and
Malayalam sentences that were carefully constructed. The
developed corpus has been already annotated with correct
segmentation and Part-Of-Speech (POS) information. We have
used our own POS tagger generator for assigning proper tags to
each and every word in the training and test sentences. The
proposed syntactic parser was implemented using supervised
machine learning and probabilistic context free grammars (PCFG)

approaches. Training, testing and evaluations were done by
support vector method (SVM) algorithms. From the experiment
we found that the performance of our systems are significantly
well and achieves a very competitive accuracy.

Keywords

Penn Treebank, Dravidian Languages, Syntactic Parser, Part-Of-
Speech, Support Vector Methods

1. INTRODUCTION
Syntactic parsing of sentences is considered to be an important
intermediate stage for semantic analysis in natural language

processing (NLP) application such as information retrieval (IR),
information extraction (IE) and question answering (QA). The
study of structure of sentence is called syntax and it attempts to
describe the grammatical order in a particular language in term of
rules which detail an underlying structure and a transformational
process. Syntax provides rules to put together words to form
components of sentence and to put together these components to
form meaningful sentences [1]. In natural language processing,
syntactic parsing or more formally syntactic analysis is the

process of analyze and determine the structure of a text which is
made up of sequence of tokens with respect to a given formal
grammar. Because of the substantial ambiguity present in the
human language, whose usage is to convey different semantics, it
is much difficult to design the features for natural language
processing tasks. The main challenge is the inherent complexity of

linguistic phenomena that makes difficult to represent the
effective features for the target learning models.

Literature shows that the rule based grammar refinement process
is extremely time consuming and difficult and failed to analyze
accurately a large corpus of unrestricted text. Hence, most modern
parsers are based on statistical or at least partly statistical, which
allows the system to gather information about the frequency with
which various constructions occur in specific contexts. Any

statistical approach requires the availability of aligned corpora
which are: large, good-quality and representative.

Probabilistic context free grammars (PCFG), maximum entropy
techniques, and neural networks based learning are some of the
approaches that have proven their efficiency for parsing and other
natural language processing. The researchers have to agree on the
grammar that is to be used for analyzing the syntactic structure in
natural language parsing. For some parsing systems use lexical

functional grammar called NP-complete grammar. Head-driven
phrase structure grammar is another linguistic formalism which
has been popular in the parsing community. A less complex
grammar formalism called Penn Treebank structure is much
popular in the field of natural language syntactic analysis.

Penn Treebank corpora have proved their value both in linguistics
and language technology all over the world. At present a lot of
research has been done in the field of Treebank based probabilistic

parsing successfully. The main advantage of Treebank based
probabilistic parsing is its ability to handle the extreme ambiguity
produced by context-free natural language grammars. Information
obtained from the Penn Treebank corpora has challenged the
intuitive language study for various natural language processing
purposes [2]. South Dravidian languages are morphologically rich
in which a single word may carry different sorts of information.
The different morphs composing a word may stand for, or indicate

a relation to other elements in the syntactic parse tree. There for it
is a challenging task to the developers in terms of the status of the
orthographic words in the syntactic parse trees.

In this paper we propose a Penn Treebank based probabilistic
syntactic parsers for two South Dravidian languages namely
Kannada and Malayalam. The proposed supervised machine
learning systems are implemented using support vector
algorithms. Parts of speech tagging is an important stage in the
syntactic parsing model and we have used our own POS tagger

models [3][4] for assigning tags to each and every words in the
sentence.

2. LITERATURE SURVEY
A series of statistical based parsers for English are developed by
various researchers namely: Charniak-1997, Collins-2003, Bod et

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.8, October 2010

15

al. - 2003 and Charniak and Johnson- 2005 [5][6]. All these
parsers are trained and tested on the standard benchmark corpora
called Wall Street Journal (WSJ). A probability model for a
lexicalised Probabilistic Context Free Grammar (PCFG) was
developed by Charniak in1997. In the same time Collins also

describes three generative parsing models, where each model is a
refinement on the previous one, and achieving improved
performance. In 1999 Charniak introduced a much better parser
called maximum-entropy parsing approach. This parsing model is
based on a probabilistic generative model and uses a maximum-
entropy inspired technique for conditioning and smoothing
purposes. In the same period Collins also present a statistical
parser for Czech using the Prague Dependency Treebank. The

first statistical parsing model based on a Chinese Treebank was
developed in 2000 by Bikel and Chiang. A probabilistic Treebank
based parser for German was developed by Dubey and Keller in
2003 using a syntactically annotated corpus called „Negra‟. The
latest addition to the list of available Treebank is the „French Le
Monde‟ corpus and it was made available for research purposes in
May 2004. Ayesha Binte Mosaddeque & Nafid Haque wrote
Context Free Grammar (CFG) for 12 Bangla sentences that have

taken from a newspaper [7]. They used a recursive descent parser
for parsing the CFG.

Comparing with foreign languages, a very little work has done in
the area of natural language processing for Indian languages. B.M.
Sagar, Shobha G and Ramakanth Kumar P. worked on Solving the
Noun Phrase and Verb Phrase Agreement in Kannada Sentences
[8]. Bala sundara Raman L, Ishwar S, Sanjeeth Kumar
Ravindranath, implemented Natural Language constructs for

„Venpa‟ class of Tamil Poetry using Context Free Grammar [9].
G.V. Singh and D.K. Lobiyal, attempted to check the grammar for
Hindi sentences with compound, conjunct or complex verb
phrases [10]. Selvam M, Natarajan. A M, and Thangarajan R
implemented a structural parsing of Tamil using phrase structure
hybrid language model for almost 700 sentences [11]. AUKBC-
NLP team under the supervision of Professor Rajendran S
prepared a morphological parser and a shallow parser for Tamil
[12]. To the best of our knowledge apart from these there is not

much research literature available for development in
computational processing of Indian languages at present.

3. SOUTH DRAVIDIAN LANGUAGES
Among the four major South Dravidian languages such as
Kannada, Malayalam, Tamil and Telugu are having almost 40, 35,

70 and 71 million speakers respectively [13]. These languages
have their own independent scripts and long documented
histories. Verbs have a negative as well as an affirmative voice.
Gender classification is made on the basis of rank instead of sex,
with one class including beings of a higher status and the other
beings of an inferior status. Nouns are declined, showing case and
number. In South Dravidian languages a great use is made of
suffixes with nouns and verbs. Also all these four Dravidian

languages have their own alphabets, related to the Devanagari
alphabet used for Sanskrit. Even though Kannada and Malayalam
are languages of rich in historical literary, they are resource poor
when viewed through the prism of computational linguistics [14].
In this paper most of the descriptions are based on Kannada and
Malayalam languages.

3.1 Structure of South Dravidian languages
Unlike English language Kannada and Malayalam are syntax of

relatively free word order language [15]. This can be easily

illustrated with the example „India defeated Pakistan in Lahore‟ as
shown in table 1.

Table 1. Word order in Kannada and Malayalam languages

Case Kannada Malayalam

Case 1

 .

C´y]mInkvXms\ emtlmdnÂ
tXmÂ]n¨p.

Case 2

 .

]mInkvXms\ C´y emtlmdnÂ
tXmÂ]n¨p.

Case 3

 .

C´y emtlmdnÂ]mInkvXms\
tXmÂ]n¨p

Case 4

 .

emtlmdnÂ C´y]mInkvXms\
tXmÂ]n¨p

In all the cases, the subjects are „ ‟ (bhArata) and „C´y‟

(inthya) , the objects are ‟ ’ (pAkistAna) and „]mInkvXm³‟

(pAkisthAn) and the locative is „ ‟, „emtlmÀ‟(lAhOr). From

the above example, it is clear that word order does not determine
the functional structure in South Dravidian languages and permits

scrambling. But normally South Dravidian languages follow
Subject-Object-Verb orders in contradiction with English

language..

3.2 Complexity and Ambiguity
The highly agglutinative languages like Kannada and Malayalam,
nouns and verbs get inflected. Many times we need to depend on
syntactic function or context to decide upon whether the particular
word is a noun or adjective or adverb or post position [3][4]. This
leads to the complexity in Kannada and Malayalam syntactic
parsing. A noun may be categorized as common, proper or
compound. Similarly, verb may be finite, infinite, gerund or

contingent. Contingent is a special form of verb found only in
Kannada and not found in other Dravidian languages. Other parts
of speech were also divided into their own subcategories. Parts-of
–speech ambiguity is the another important issue that have to be
carefully analyse while designing a syntactic parser.

Table 2. Ambiguity in Kannada and Malayalam languages

Case Kannada Malayalam

Case 1

 .

 (Seete deepada batti
badalisidaLu)

(avan kAli tozhuthil
janichu)

Case 2

 .

(baaviya neeru batti
hooyittu)

t]m¡äv Imen Bbn

(pOcket kAli Ayi)

For example, Kannada word „ ‟ (batti) and the Malayalam

word „ in the following sentences in table 2 gives

different parts of speech. The words ‘ „(batti) and

„ are nouns in the first case whereas in the second

case these words act as verbs. Also, the parts of speech are not

just the noun, pronoun, verb and adverb. There are clearly many

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.8, October 2010

16

more categories and sub-categories.While developing the
syntactic parsers we have taken all the above factors into
consideration.

3.3 PNG and Tense Markers
The Person–Noun-Gender (PNG) and the tense marker
concatenated to the verb stems are the two important aspect of
verb morphology in South Dravidian languages. Usually in South
Dravidian languages, verbs follow the regular pattern of
suffixation. PNG markers play an important role in word
formation except in Malayalam. Depends on the noun case

associated with noun phrase (NP), the PNG marker of
corresponding verb in the verb phrase (VP) may change.

4. SYNTACTIC PARSING
Syntactic analysis is the process of analyzing a text or sentence
that is made up of a sequence of words called tokens, and to

determine its grammatical structure with respect to a given
grammatical rules.

4.1 Syntactic Tree Structure
The different parts-of-speech tags and phrases associated with a
sentence can be easily illustrated with the help of a syntactic

structure. Figure 1 below shows the output syntactic tree structure
produced by a syntactic parser for the Kannada input sentence

 ‟ Rama threw the ball‟.

Figure 1. Syntactic tree structure

For a given sentence, the corresponding syntactic tree structure
conveys the following information.

4.1.1 Part-of-Speech-Tags
The syntactic trees help in identifying the tags of all the words in
a given sentence as shown in table 3.

4.1.2 Identification of Phrases
The syntactic tree also helps in identifying the various phrases and

the organization of these phrases in a sentence. In the above
example there are two phrases as shown in table 3.

4.1.3 Useful Relationship
The syntactic tree structure also helps in identifying the
relationships between different phrases or words. Indirectly it
identifies the relationship between different functional parts like
subject, object, and verb in a sentence. In the given example, the

subject part is , object is and the verb is . Given

a rule S ->NP VP in the above example, the NP (noun phrase) is
the subject of the verb within the VP (verb phrase). In this case „

 ‘ (rAma) is the subject of ‘ ‘ (esedanu). Similarly the

rule VP ->NP VP indicates an object-verb relationship. In our

example „ ’ (ceMDu) is the object of verb „ ‘ (esedanu).

Table 3. Example: Parts-of-speechs and Phases in a sentence

Parts-of-speech Phrases

Node

 (Word)

Tag Phrase Name of
Phrase

NNP

 Noun phrase

NN

Verb phrase

VF

5. BRACKETING GUIDELINES FOR

KANNADA PENN TREEBANK CORPUS
Penn Treebank corpora have proved their value both in linguistics
and language technology all over the world. Information obtained
from the Penn Treebank corpora has challenged the intuitive

language study for various natural language processing purposes
[16]. The main effort for developing a Penn Treebank based
corpus is to representing the text in the form of a „Treebank‟,
where tree structures represent syntactic structures of phrases and
sentences. This is followed by an application of a parsing model
to the resulting Treebank. There for with the availability of
Treebank of annotated sentences it is easy to develop natural
language syntactic parser and other NLP application tools. Our

effort is to create well balanced Treebank based corpus with
almost all possible inflections. We have created a corpus with all
types of sentences, some of which are illustrated as follow:

5.1 Simple Declarative Sentence

Consider a simple declarative sentence (rama

ceMDannu esedanu „ Rama threw the ball’). The figure 2 shows
an example for the „Penn tree syntax‟ and the figure 1 shows the
corresponding parse tree for this sentence.

(S (NP (NNP) (VP (NN) (VF))) (. .))

Figure 2. Penn Treebank format of a Declarative sentence.

5.2 Imperative Sentences

 (S (NP (NNP SBJ) (VP (NN) (VF))) (! !))

[SBJ throw the ball !]

Figure 3. Penn Treebank format of an Imperative sentence

Figure 4. Parse tree for the figure 3.

.

.

NP

VP NNP

VF NN

S

S

! NP

! VP NNP

VF NN

SBJ

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.8, October 2010

17

Imperatives are formed from the root of the verb and usually
given a null subject-SBJ, as shown in figures 3 and 4. Unlike
Malayalam, depends on the type of noun case that is associated
with the SBJ, the PNG markers associated with the Kannada verb
also changes.

5.3 Compound Sentences
The relationship of conjoining in Kannada may be any one of: (i)

additive indicated by „ ‟(mattu) or „ಊ‟(U) (ii) alternative

indicated by „ಅಥವ‟ (adhava) or „ ‟(illalillave) and (iii)

adversative indicated by „ ‟(Adare). Coordination may be take

place either at phrase or clause level. Figures 5 and 6 illustrate an
example of Treebank format and parse tree for a compound
sentence Coordinated at phrase level.

(S (NP (NN) (NN))

(VP (NN) (VP (ADV) (VF))) (. .))

[Girls and boys threw and caught the ball]

Figure 5. Penn Treebank format of a compound
 sentence coordinated at phrase level.

Figure 6. Parse tree for the figure 5.

6. SUPPORT VECTOR METHODS
SVM is a machine learning algorithm for binary classification,
which has been successfully applied to a number of practical
problems, including NLP. SVM is based on strong mathematical

foundations and results in simple yet very powerful algorithms.In
their basic form, a SVM learns a linear hyperplane that separates
the set of positive examples from the set of negative examples
with maximal margin[17][18]. The SVMs‟ superiority over other
classifiers is its ability to maximize the margin between classes.
This learning bias has proved to have good in terms of
generalization bounds for the induced classifiers. The linear
separator is defined by two elements: a weight vector „w‟ and a
bias „b‟ which stands for the distance of the hyperplane to the

origin. The classification rule of a SVM is based on the equations
(1) and (2).

Being „x’ the example to be classified. In the linearly separable
case, learning the maximal margin hyperplane (w, b) can be stated

as a convex quadratic optimization problem with a unique
solution: minimize ||w||, subject to the constraints as indicated by
the equation (3), one for each training example:

7. CONTEXT FREE GRAMMARS (CFG)
Context-free grammars, sometimes called a phrase structure

grammar play a central role in the description of natural
languages. In general a CFG [19] is a set of recursive rewriting
rules called productions that are used to generate patterns of
strings and it consists of the following components:

 A finite set of terminal symbols ().

 A finite set of non-terminal symbols (NT).

 A finite set of productions (P).

 A start symbol (S).
Consider an example for simple declarative sentence

 (rAmu ceMDannu esedanu). The components and

the derivation of this sentence using CFG are shown in table 4.
The tag assigned to each of the word is based on the POS tagger
generator on table 6.

Table 4. Example: Context free grammar (CFG)

Production

Rules (P)

Derivation of Sentence

Derivation Rule used

S →NP VP

NP →NNP

VP→NP VP

NP→ NN

VP→VF

NNP→

NN→

VF→

S →NP VP

S →NNP VP

S → VP

S → NP VP

S → NN VP

S → VP

S → VF

S →

S →NP VP

NP →NNP

NNP→

VP→NP VP

NP→ NN
NN→

VP→VF

VF→

Start Symbol: S, Terminal Symbols (): { , , },

Nonterminal Symbols (NT): {S, NP, VP, NNP, NN, VF}

8. PROBABILISTIC CONTEXT FREE

GRAMMAR (PCFG)
The problem of CFG is that it misses the probabilistic model
which is needed in order to disambiguate between parses. A

Probabilistic Context Free Grammar (PCFG) is a probabilistic
version of a CFG where each production has a probability [20].
Probabilities of all productions rewriting a given non-terminal
must add to 1, defining a distribution for each non-terminal. The
simplest way to gather statistical information about a CFG is to
count the number of times each production rule is used in a corpus
containing parsed sentences. This count is used in order to
estimate the probability of each rule being used. In our case, we

estimate the rules probabilities using the relative frequency of the
rule in the training set. For a generic rule “A → B C”, this means
that every time we find the symbol A, it can be substituted with
the symbol B and C. Its conditional probability is defined as in
equation (4):

Once we have the probability of the production rules in a PCFG,
the probability of a parse tree for a particular sentence can easily
be calculated by multiplying the probabilities of the rules that
built its sub-trees. The advantage of PCFG based syntactic parser

S

. VP NP

NP NP NP NP

 NP NP

.

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.8, October 2010

18

model is that, for any two or more different sentences that have
same pos tag sequence, but have different syntactic tree structure,
then the sentence structure that has more probability would be
considered or correctly parsed.

Table 5. Example: Probability context free grammar (PCFG)

Derivation of Sentence Probability of
rule used

Derivation Rule used

S →NP VP

S →NNP VP

S → VP

S → NP VP

S → NN VP

S → VP

S → VF

S →

S →NP VP

NP →NNP

NNP→

VP→NP VP

NP→ NN

NN→

VP→VF

VF→

1.000

0.050

0.030

0.015

0.025

0.010
0.015
0.015

Table 5 shows the total probability derivation of our previous

sentence (rAmu ceMDannu esedanu) ‟Rama

threw the ball‟. Total probability for derivation of sentence is
calculated by multiplying the probabilities used to derive the
sentence.

Total probability = 1.0 * 0.05 * 0.030 * 0.015 * 0.025 * 0.010 *
0.015 * 0.015

9. INSIDE-OUTSIDE ALGORITHMS (IOA)
Similar to the HMM‟s forward and backward algorithm,

probability of nodes in a PCFG parse forest as the product of the
inside and outside probabilities (IO probability) for the node Ni
[21]. This can be easily understand by considering an example, for
the grammar rule „NP → DET NN’ over the input „the man’. The
corresponding node‟s IO probability is equal to the probability of
all derivations which include the „NP →DET NN’ category over
this subset of the input. For production i→ jk, the probability of
the rule is determined using the equation (5):

Consider a CFG grammar G as a tuple {NT, , P, R}, where NT

and elements represent the set of nonterminal and terminal

symbols of the grammar respectively. The element P represents
the set of production rules, while R represents the nonterminal
category that is considered the top grammar category. For given
input sequence of terminals of the grammar {a1, ...aT }, we
denote e(s, t, Ni) and f (s, t, Ni) are the inside and outside

probabilities respectively for a node Ni, that spans input items as
to at inclusively.

Figure 7. The inside (e) and outside (f) regions for node Ni)

Figure 7 illustrates the corresponding nodes in the parse forest
used when calculating the inside and outside probabilities for Ni.
Nonleaf nodes in the figure represent NT categories, and Nr is the
root node whose category r is in the set R. Leaf nodes represent S
categories of the grammar, that is, the input sequence {a1, ...aT }.

9.1 Inside Probability
The inside probability e(s, t, Ni) represents the probability of sub-
analyses that are rooted with mother category i for this sentence
over the word span s to t. Each production is of the form i → jk

Figure 8. Inside probabilities for node Ni.

where each set of daughter nodes Nj and Nk span from as to ar
and ar+1 to at, respectively. Figure 8 illustrates this structure for
node Ni. Inside probability of each node corresponds to the
product of all CFG rules that are applied to create the sub-analysis
as shown in equation 6.

9.2 Outside Probability
On the other hand the outside probability Ni, f (s, t, Ni), for a node
Ni is calculated using all the nodes for which the node is a
daughter (sub-analysis). This calculation includes the inside
probability of the other daughter nodes of which Ni is a member.
This means, category i could appear in two different settings:
j→ik or j→ki, as shown in figure 9.

Figure 9. Outside probabilities for node Ni

The outside probability of Ni is calculated using the outside
probability of the mother node (Nj) multiplied by the product of
inside probabilities of the daughters other than Ni i.e. Nk. In each
instance when Ni is a daughter of a node, the outside probability f
(s, t, Ni) for a given sentence is calculated using the equation (7).

10. IMPLEMENTATION
The proposed statistical syntactic parser for Kannada and
Malayalam were based on Probabilistic Context free grammar
(PCFG) and implemented using supervised machine learning
approach with SVM algorithms. PCFG is basically a context free
grammar (CFG) with probabilities associated with each rule,

f

e

s … r r+1 …. t 1 …. …. T

s… t t+1.r
r

r ..s-1 s …t ..T 1.. ..T 1..

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.8, October 2010

19

indicating how probable a production rule is. The SVM learning
algorithm is used to create trained model which is used to identify
the syntactic tree structure of new test sentences. When a sentence
is given to be parsed, initially the pos tag of the words in the
sentence is found out using Amrita pos tagger. In the subsequent

steps the SVM classifier, using Inside-Outside Algorithm to find
out the most probable parse structure of the given sentence.

10.1 Architecture of Proposed Syntactic

Parser for Dravidian Languages
The architecture of the proposed syntactic parser is shown in
figure 10.

Figure 10. Architecture of Proposed Syntactic Parsing System

The proposed syntactic parser model consists of the following
steps:

1. Creating training set of sentences.
2. POS Tagging the training sentences.
3. Format the syntactic structure of the training sentences.
4. Training the system using svm_cfg_learn module of

SVM.

5. Testing the system with parser model created in the
previous step using svm_cfg_classify module of SVM.

6. Display the output of input test sentence in syntactic
tree form using Tree Viewer.

In any statistical system, the corpus creation is a major task which

consumes considerable time. The first three steps in the proposed
system were used to create the Treebank based corpus. A brief
description of each of these steps is as follow:

10.1.1 Creating training set of sentences
The proposed Kannada and Malayalam Treebank corpora consist
of 1,000 random diverse Kannada and Malayalam sentences.
These sentences were carefully constructed by taking care of
various factors for generating good corpora.

10.1.2 POS Tagging the training sentences
The next step was to assign parts-of speech tags to each and every
word in the sentences using the POS tagger model. Parts-of
speech tagging is an important stage in our Treebank based
syntactic parsing approach. We have used our own POS tagger for
assigning proper tags to each and every word in a sentence. POS
tagger plays an important role in Natural language applications

like speech recognition, natural language parsing, information
retrieval and information extraction. We have developed statistical
part-of-speech Taggers for Kannada and Malayalam languages
using SVM algorithms based on Amrita tagset. These pos taggers
were used for assigning syntactic tags to the words in the training
and testing sentences. Table 6 shows the set of parts-of-speech
syntactic tags that were used in our corpus for generating the
syntactic parser. More detailed information on the POS tagset and

guidelines concerning its uses are found in [3][4].

Table 6. Kannada POS tagset

Tag Description Example [Meaning in English]

<NN> Noun (huDuga) [boy]
<NNC> Compound

Noun
 (ettina banDi)

<NNP> Proper Noun (karnataka)
<NNPC>

Compound
Proper Noun

 (Abdul kalam)

<CRD> Cardinals (ondu) [one]
<ORD> Ordinals (ondane) [first]
<PRP> Pronoun (avanu) [he]
<ADJ> Adjective [beautiful]
<ADV> Adverb [speedly]
<VNAJ> Verb Nonfinite

Adjective
 [the boy who came]

<VNAV> Verb Nonfinite
Adverb

[came and went back]

<VBG> Verbal Gerund (baruva) [coming]
<VBC> Verb

Contingent
 (baruvEnu)[might come]

<VF> Verb Finite (baredenu) [wrote]
<VAX> Auxiliary Verb [was + ing]
<VINT> Verb Infinite (nODalu) [to see]

Input

Tokenize

Output

SVM

Train data
manually

Merged
Model

Features

Lexicon
(Dictionary)

Kannada POS Tagger Model

Creating Training
Set of Data

POS Tagging of
Training Data

Treebank Corpus
Creation

Training the
Corpus using

svm_cfg_learn

Syntactic

Parser
Model

svm_cfg
_classify

POS Tagging
of Input
Sentence

Test
Input

Sentenc
e

Parsed
Output

Sentence

Tree
Viewer

Corpus Creation

Syntactic Parse Tree of
Parsed Output Sentence

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.8, October 2010

20

<CNJ> Conjunction (mattu) [and]
<CVB> Conditional

Verb
 (nODidare) [if see]

<QW> Question
Words

 (Eke) [why]

<COM> Complimentizer (enba) [s , es]
<NNQ> Quantity Noun (swalpa) [litte]
<PPO> Post Position ತನಕ (tanaka) [till]
<DET> Determiner ಆ (A)
<INT> Intensifier (tunbA) [very]
<ECH> Echo Words (appi tappi) [by mistake]
<EMP> Emphasis (matra) [only]
<COMM

>
Comma ,

<DOT> Dot .
<QM> Question Mark ?
<RDW> Reduplication

Words
ಪಟಪಟ (paTa paTa) [continuously]

10.1.3 Format the syntactic structure of the training
sentences
The next step was to find out the syntactic structure of each and
every sentence in the corpus manually by resolving various
ambiguities and dependencies. The proposed statistical corpus
was based on well known Penn Treebank corpora, so that the

syntactic format of each and every training sentence manually
created. The sentences in the training corpus were divided into
various phrases and phrases are further divided to one or more
words as described in the section 5.

10.1.4 Training the system using svm_cfg_learn
SVMcfg is a flexible and extensible tool for learning models in a
wide range of domains. SVMcfg is an implementation of the
Support Vector Methods (SVM) algorithm for learning a weighted
context free grammar. The weight of an instantiated rule can
depend on the complete terminal sequence, the span of the rule,
and the spans of the children trees. Another important property of
the SVMcfg is easy to add attributes that reflect the properties for

the particular domain at hand. The SVMcfg mainly consists of
two modules called learning module namely svm_cfg_learn and
classification module namely svm_cfg_classify. These modules
are used respectively for learning and classification for a set of
data.

SVMcfg uses the learning module called svm_cfg_learn for
learning the training corpus. The usage of this module is much
like the svm_light module and the syntax is as follow:

svm_cfg_learn -c 1.0 train.data model

Which train SVM on training set train.data and output the learned
grammar to the two model files called model.svm and
model.grammar by setting the regularization parameter C to 1.0.
In the proposed systems, 238 and 234 different rules were
extracted for Kannada and Malayalam from the training data of
1000 sentences. Since the svm_cfg_leran module utilized the
probabilistic context free grammar formalism, the module also

finds out the probabilities of each and every rule as explained in
section 8. Testing the system using svm_cfg_classify
The trained model created in the previous step was used to predict
the syntactic tree structure of new test sentences. The test file
containing the test sentences were given to the POS tagger model

to assigning syntactic tags to each and every word in the sentence.
The result of the POS tagger was given to the svm_cfg_classify.
Svm_ cfg_classify analyze the syntactic structure of test sentences
by referring the model files that were created by svm_cfg_learn.
Svm_ cfg_classify module makes predictions about the syntactic
structure of test sentences based on probabilistic context free
grammar formalism and inside-outside algorithms. Both PCFG
and IOA are explained in the sections 8 and 9. The syntax of

svm_cfg_classify is as follow:
svm_cfg_classify test.data model predictions

For all test examples in test.data, the predicted parse trees are
written to a file called predictions.

10.1.5 Display the output using Tree Viewer
NLP or Linguistic researchers who work in syntax often want to
visualize parse trees or create linguistic trees for analyzing the
structure of a language. The syntactic parse tree of the test
sentence is created and displayed by using „Syntax Tree Viewer‟
software developed using Java language. Figure 11 shows the

output screen shot for a test sentence „

’ (nAnu oMdu patra bareyutta iddEne-I am writing a letter).

Figure 11. Output Screenshot

11. EVALUATION AND RESULT
Even though we have developed a small sized corpus with 1000
distinguished sentences, the result obtained was well promising
and encouraging. The performance of the system was evaluated
using svm_cfg_classify module and the incorrect outputs were
noticed. On contrast to the rule based approach, the systems

performance was considerably increased by adding the input
sentences to the training corpus whose corresponding outputs
were incorrect during testing and evaluation. The graph in figure
12 shows the performance of proposed syntactic parser. We
trained the systems with corpus size of 250, 500, 750 and 1000
sentences respectively. Performances of the systems were
evaluated with the same set of 100 distinguished sentences that
were out of corpus. From the experiment we found that the

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.8, October 2010

21

performances of our systems are significantly well and achieves
very competitive accuracy by increasing the corpus size.

Figure 12. Performance Graph

12. CONCLUSION
From our experience we have noted that development in natural

language processing for Indian languages like Kannada and
Malayalam are very slow. The main reason for this includes non-
availability of large scale data resources and also due to the
inherent complexities of the language. The performance of the
proposed syntactic parser models can improved by incorporating
more syntactical information by increasing more and more
sentence types and well-formed large corpus. We are working
towards to generate full fledged syntactic parsers for all the South

Dravidian languages. In future we can also use these syntactic
parsers for tree to tree translation. This will be very useful for
bilingual machine translation from English to South Dravidian
languages. To the best of our knowledge this is the first attempt of
computationally constructing statistical based syntactic parser
models for Kannada and Malayalam languages.

13. ACKNOWLEDGMENTS
We acknowledge our sincere gratitude to Prof. M
Shankaranarayana Bhat (Head of Kannada department and
Principal, Junior College, Sampaje, Coorg, Karnataka, India) and
Dr. Muralidhar (Professor, Malayalam Department, Govt. Victoria
College, Calicut University, Kerala, and India.) for their excellent
support to generate well organized Kannada and Malayalam

corpora. We also express our gratitude to Mr. Shivapratab
Gopakumar (Assistant. Professor, CEN, AMRITA Vishwa
Vidyapeetham, Coimbatore, India) and Mr. Ajith V P (Research
Associate, CEN, AMRITA Vishwa Vidyapeetham, Coimbatore,
India) for their valuable support and encouragement for
developing these prototype versions of Penn Treebank based
syntactic parsers for Kannada and Malayalam languages.

14. REFERENCES
[1] Roxana Girju, (2004), “Introduction to Syntactic Parsing”.

[2] Niladri Sekhar Dash, (2004), “Present Indian Need”,
Language Corpora.

[3] Antony P J. & Soman K P, (2010) “Kernel Based Part of
Speech Tagger for Kannada”, International Conference on
Machine Learning and Cybernetics 2010, ICMLC 2010,
Qingdao, Shandong, China.

[4] Antony P J, Santhanu P Mohan & Soman K P, (2010), “SVM
Based Parts Speech Tagger for Malayalam”, International
Conference on-Recent Trends in Information,

Telecommunication and Computing (ITC 2010), Kochi,
Kerala, India.

[5] Reut Tsarfaty Yoav Goldberg, “Word-Based or Morpheme-
Based? Annotation Strategies for Modern Hebrew Clitics”.

[6] Abhishek Arun, (2004), “Statistical Parsing of the French
Treebank”, A thesis for Master of Science, Cognitive Science
and Natural Language, School of Informatics, University of
Edinburgh.

[7] Ayesha Binte Mosaddeque & Nafid Haque, (2004),
“Context-Free Grammar for Bangla”, Bangla, Dhaka,
Bangladesh.

[8] B.M. Sagar, Shobha G & Ramakanth Kumar P , (2009),
“Solving the Noun Phrase and Verb Phrase Agreement in
Kannada Sentences ”, International Journal of Computer
Theory and Engineering , Vol. 1, No. 3, 1793-8201.

[9] Bala Sundara Raman L, Ishwar S, & Sanjeeth Kumar
Ravindranath , (2003), “ Context Free Grammar for Natural
Language Constructs – An implementation for Venpa Class

of Tamil Poetry ”, I6th International Tamil Internet
Conference and Exhibition, Tamil Internet 2003,
Chennai,India.

[10] G.V. Singh & D.K. Lobiyal , (1994), “A Computational
Grammar For Hindi Verb Phrase ”, IEEE transactions.

[11] Selvam M, Natarajan. A M, and Thangarajan R, (2008),

“Structural Parsing of Natural Language Text in Tamil Using
Phrase Structure Hybrid Language Model”, International
Journal of Computer, Information, and Systems Science, and
Engineering.

[12] www.languageinindia.com Vol 6 : 8 August, 2006.

[13] B. A. Sharada (2002), “Transformation of Natural Language
into Indexing Language: Kannada - A Case Study”, Ph.D.
Dissertation, Language in India- Strength for Today and
Bright Hope for Tomorrow.

[14] T.N. Vikram & Shalini R Urs, (2007), “Development of
Prototype Morphological Analyzer for the South Indian
Language of Kannada”, Lecture Notes In Computer Science:
Proceedings of the 10th international conference on Asian
digital libraries: looking back 10 years and forging new
frontiers. Vol. 4822/2007, 109-116.

[15] K Narayana Murthy, “Computer Processing of Kannada
Language”, University of Hyderabad.

[16] V Tredinnick, (1995), “Bracketing Guidelines for Treebank
II Style Penn Treebank Project”.

[17] Jes´us Gim´enez & Llu ı́s M`arquez, (2006), “SVMTtool:
Technical manual”, v1.3.

[18] V.N. Vapnik, (1998), “Statistical Learning Theory : J.Wiley
& Sons”, Inc. New York.

[19] Andrew McCallum , (2007), “Introduction to Natural
Language Processing”, Lecture 5: Context Free Grammars.

[20] Qaiser Abbas, Nayyara Karamat & Sadia Niazi, (2002),
“Development of Tree-bank Based Probabilistic Grammar
for Urdu Language”, International Journal of Electrical &
Computer Sciences IJECS. Vol: 9 No: 9.

[21] Rebecca F. Watson, (2009), “Optimizing the speed and
accuracy of a Statistical GLR Parser”, Technical Report,
University of Cambridge.

0

20

40

60

0 500 1000 1500

A
cc

u
ra

cy
 %

No.of Sentences

