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ABSTRACT  
This paper attempts to examine the optimality of LDPC codes for 
compression of nonuniform source with Slepian-Wolf coding 
using density evolution technique. The primary goal is to evaluate 
the performance of LDPC codes with reference to turbo codes (in 
SF-ISF setup). The appreciable difference between LDPC and 
turbo codes is also discussed in this paper. The threshold values 
obtained from the density evolution technique indicate that the 

conditional entropy H(X/Y) is nearly constant with source 
distribution. This feature is useful in calculating the threshold 
values for any given source distribution analytically. This special 
feature is true for only LDPC codes. Several well known LDPC 
codes, both regular and irregular are critically analyzed using 
density evolution technique. This analysis reveals that the 
capacity approaching LDPC codes with respect to error correction 
codes do indeed approach the Slepian-Wolf bound for nonuniform 

sources as well. The threshold values show that the nonuniform 
source can be compressed to near about 0.01bits/sample away 
from Slepian-Wolf bound even for highly decorrelated side 
information. 
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1. INTRODUCTION 

The Slepian-Wolf theorem [1] is generally applied to uniformly 
distributed binary sources to exploit the correlation between two 
sources. This is also known as distributed source coding (DSC) or 
compression of binary sources with side information. 
Predominantly the main aim of the distributed source coding is to 
exploit the correlation between two sources which are physically 
separated and do not communicate with each other, but acquire 
(or sense) correlated data. The classic instances of these type 
situations arise in sensor networks, video surveillance applications 

etc.,  As the sources cannot communicate with each other, there is 
no way to exploit the correlation at the encoder side. However, the 
decoder has access to both sources, it would be possible for the 
decoder to make use of this correlation. This problem was 
theoretically addressed way back in 1970s [1], [2]. Thirty years 
after the discovery of Slepian-Wolf theorem, practical distributed 
source coding schemes using channel codes have appeared in 
literature [3]. The encoding of channel codes is simpler while 

decoding is more complicated. This paradigm of source coding 
with channel codes results in low complexity encoder and 

transfers most of the computational load to decoder. (In traditional 
source coding, generally source encoder is several times more 
complex than the decoder). This exchange of computational 

complexities find applications in low complexity video and image 
encoding such as wireless communications, satellite imaging etc.,  
 
According to Slepian-Wolf theorem, two binary sources X and Y 
can be compressed lossless with the bit rates equal to Rx and Ry 
respectively as long as the below conditions are satisfied. 
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where H(X/Y) and H(Y/X) are conditional entropies and H(X, Y) 
is the joint entropy. It is generally expected that the binary data to 
Slepian-Wolf encoder is correlated and the binary sources 
themselves are non-redundant (the probability of occurrence of ‟0‟ 
and ‟1‟ is same). Hence the research efforts in DSC are 
concentrated around the exploitation of correlation between the 
sources rather than the source redundancy. But in real life, this 

may not always be true and input to Slepian-Wolf encoder may 
contain some redundant data. For instance, binary data sources, 
such as raw facsimile images, textual data and engineering 
drawings are highly nonuniform and contain large amount of 
redundancy. For example, uncompressed binary images such as 
facsimile images have the source probability around P(X = 0) = 
0.96 [4]. In such situations the source redundancy need to be 
removed by employing some binary data compression algorithms 

before the Slepian-Wolf coding is applied. This may spoil the 
source correlation with side information. This problem may be 
tackled in two ways: i) by finding a source code (or a channel 
code) which can exploit both source redundancy and correlation 
with side information, ii) by applying entropy coding techniques 
on the Slepian-Wolf compressed bit stream. A combined scheme 
was applied in [5] using turbo-binning followed by variable-
length syndrome sequences. Besides turbo codes, distributed 

arithmetic codes are also applied for nonuniform sources in [6], 
[7].  
 
In [5] the authors tried to optimize turbo codes [8] for nonuniform 
sources and found that the optimized turbo codes are not adequate 
for approaching Slepian-Wolf bound and there is a considerable 
gap (0.3574 from SW bound) between achievable compression 
and Slepian-Wolf bound. 

In order to reduce the gap they have proposed a variable length 
coding (entropy coding) on the turbo bin-indices. This approach 
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still leaves the gap to capacity as much as 0.1444 bits/symbol for 
highly nonuniform sources. The authors of [5] have felt that a one 
step approach to compute the variable length syndromes/bin-
indices is difficult. Motivated by this shortcoming in turbo codes, 
we have investigated the effectiveness of LDPC codes for 

nonuniform sources. 
 
This paper demonstrates the suitability and optimality of LDPC 
syndrome codes for distributed source coding of nonuniform 
sources using density evolution. Both regular and irregular LDPC 
codes are evaluated and threshold values are determined for 
different source distributions. 
 

The paper is organized as follows. The encoding and decoding of 
nonuniform sources are presented briefly in Section 2. Section 3 
describes the density evolution for nonuniform sources and finds 
the threshold values for several capacity approaching LDPC codes. 
A critical comparison of turbo and LDPC codes for nonuniform 
sources is presented in Section 4.  Finally Section 5 concludes the 
paper. 
 

2. ENCODING AND DECODING OF 

NONUNIFORM SOURCES 
 
Given the input vector x of length n, the syndrome vector s is an 
encoder output and is given by 

Hxs  

where H is a m x n LDPC matrix. In LDPC syndrome sequence 
decoding for nonuniform sources, the source distribution is 
incorporated while initializing the edges originating from variable 
nodes (or bit nodes) of the bipartite graph [10] as derived in (4). 

The side information is modeled as an 
output of an equivalent binary symmetric channel (BSC). 
We now define the following terms 
q = Crossover probability of the equivalent BSC channel modeled 
for side information 
p0  = Source distribution, i.e P(X = 0) 
u = Log-likelihood ratio (LLR) value of the channel information 

q

q
u
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v  = a-priori LLR value 
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Li,0 = Initial LLR value of ith variable node  
 

Let xi, yi  {0, 1} be the realization of the nonuniform source X 

(to be compressed) and side information Y respectively. The 
subscript „i‟ denotes that they also belong to ith variable node. The 
edges emanating from variable nodes are initialized with  
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where q = P(X   Y ) < 0.5 

 
Here, the term log(p0/(1-p0) in (4) comes naturally from the Bayes 
rule and it is zero for uniform source. The rest of decoding 
algorithm is same as that of [9] and omitted for the sake of brevity. 
The block diagram of LDPC encoding and decoding of syndrome 

sequence is shown in Fig. 1. 

 
Figure 1 LDPC Encoder and Decoder with Syndrome Coding 
 

3. DENSITY EVOLUTION OF LDPC 

CODES FOR NONUNIFORM SOURCES 

IN SLEPIAN-WOLF CODING 
 
Density evolution [11] is a powerful tool to quickly determine the 
asymptotic behavior of LDPC codes for different channel and 
noise conditions. It evaluates the way in which the probability 
density function (pdf) of the variable nodes evolves with iterations 
for a given degree distribution [10]. The density evolution 

analysis starts with an initial pdf, which depends on the channel 
condition and a-priori information. 
 
In this paper, we have used discretized density evolution [12], [13] 
to determine the threshold 1  values (q*) for some best known 
LDPC codes for compression of nonuniform sources under DSC 
paradigm. The density evolution analysis helps in evaluating and 
comparing different LDPC codes by estimating how far they are 
from optimal. 

 

3.1 Slepian-Wolf Bounds for Nonuniform 

Sources 
Slepian-Wolf bound is a theoretical limit, which specifies the 
achievable lowest bit rate for lossless compression of a source X 
with another correlated source Y available at decoder as a lossless 
side information. In DSC paradigm, a code is said to be optimal 
when the bit rate approaches Slepian-Wolf bound. The density 
evolution thresholds are compared with the Slepian-Wolf bounds. 
The Slepian-Wolf bound H(X/Y) is given by 

 

H(Y)Y)H(X,H(X/Y)          (5) 

assuming  

)X/Y()Y/X( xyPyxP  

we get 

                                                
1 worst case channel condition for which the error free 

communication is possible 
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where G(.) is defined as  

)(log)( 2 xxxG  

and  

))1()1((HH(Y) 002 pqpq  

where H2(.) is a binary entropy function and is given by 

)1(log)1()(log)( 222 xxxxxH  

 

3.2 Discretized Density Evolution 
In this section, we explore the suitability and optimality of 
existing LDPC codes for nonuniform sources through density 
evolution technique. In density evolution, the pdf of LLR 
messages2 are being exchanged between the variable and check 
nodes in bipartite graph instead of LLR messages itself as in the 
decoding algorithm. In practice, the numerical computation of 
density evolution is carried out using a quantized pdf of LLR 
messages. This quantized version of density evolution is known as 

discretized density evolution. This discretization maintains the 
symmetry of the messages around zero.  
 
The discretization function Q(w) of LLR message w is defined as 
follows[12], [13]. 
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where  is the quantization interval and ,   are ‟floor‟ 

and ‟ceil‟ operators respectively. According to [13] the discretized 
density evolution is given by 
 

l

uu

l

u ppp *
0
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   (7) 

where 
0up is the quantized initial probability mass function (pmf), 

l is the iteration number, 
l

up  is the quantized pmf at lth iteration 

and 
)0(

up has all mass at 0. Further, (.) and (.) defines the 

degree distribution of LDPC codes. The detailed discussion of 

discretized density evolution algorithm is described in [12], [13]. 
 
 
 

3.3 Initial probability distribution function 
While initializing the variable nodes for LDPC decoding the 
information about the source distribution (a-priori LLR value) is 
added to channel information (see (4)). Hence, in density 
evolution the probability density function of the channel 

                                                
2 LLR values and LLR messages are used interchangeably 

information is convolved with a-priori probability density 
function. 

In discretized density evolution, the source distribution 0p  is 

fixed and the threshold q* for a given degree distribution is 
determined. Let Pq(x) be the probability density function of a BSC 
channel with crossover probability q and is given by [11] 
 

)()1()()( uxquxqxPq  

 

Similarly the pdf of source distribution  )(
0

xPp
 is given by 
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and the initial pdf, P0(x), for LDPC decoder is given by 
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where  denotes discrete convolution. The discretized version of 

this P0(x) is used as a initial probability mass function in (7), i.e, 

))(( 00
xPQpu

 

 

3.4 Specification of LDPC codes analyzed 

 

Regular Codes 
The details of the regular LDPC codes [11] analyzed in this paper 
are tabulated in Table 1. The code parameters and threshold 
values are also tabulated in Table 1. The symbols dv and dc 
indicate the column and row weights of the regular LDPC matrix, 

*(BF) is the threshold when decoded with bit-flipping algorithm 

and *(BP) is the threshold for belief propagation decoding for 

BSC channel. Further, * indicates the threshold of the code 

under AWGN channel. The channel capacities for BSC and 
BIAWGN (Binary Input Additive White Gaussian Noise) 

channels are represented by opt and opt respectively. These 

threshold values indicate the relative performance the codes in 
different channel conditions and with different decoding 
algorithms 

 

Irregular Codes 
The degree distribution of irregular LDPC codes [14] analyzed in 
this paper are given in Table 2. As the code rate is equal to R = 
1/2, the bit rate comes out to be 0.5 bits/sample. In the last row of 

Table 2,  * indicates the threshold of the code under AWGN 

channel. The Gapawgn   is the difference between opt = 0.9787 (for 

1/2 rate codes) [14, pp:623] and *. 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 7– No.8, October 2010 

4 

 

 
 

 

 
 

3.5 Details of Discretized Density Evolution 

and Threshold Values (q*) 

 
The discretized density evolution was carried out with 10 bit 
precision and LLR bounds taken from -25 to +25. With this LLR 
bounds the LLR values which fall below -25 are accounted at -25 
and similarly the LLR values above +25 are accounted at +25 for 
calculation of evolving probability density functions of variable 
nodes. A probability of error less than 10−6 is taken as lossless and 
threshold values are estimated. We found that a 10 bit precision 

( = 0.04883) for discretization of LLR messages is a good trade-

off between computational complexity and accuracy of the 

threshold values obtained. The threshold values for the regular 
and irregular LDPC codes given in Table 1 and 2 respectively are 
determined with these parameters and are tabulated in Table 3 and 
4. The ‟Gap‟ in the tables indicates the difference between the bit 
rate of the compressed data and the Slepian-Wolf bound, H(X/Y ), 
given by (5) with q = q*.  
 
In some cases, even when q = 0.5, the probability of error falls 
below 10−6. When q = 0.5 the side information is completely 

decorrelated with the source being compressed and u = 0 from (2). 

Hence side information has no role to play in decoding according 
to (4). This condition is shown as „---„ in tables.  
 

3.6 Discussion on LDPC Thresholds and 

Comparison with Turbo Codes 

 

There are some striking differences between the performance of 
LDPC and turbo codes with respect to nonuniform sources. We 
have reported the turbo coding results from [5] in Table 5 for 
comparison purpose. This table shows that the attainable q 
(equivalent to q* in LDPC codes) for different source 
distributions for (31, 23) turbo code with bit rate fixed at 0.667 
bits/sample. The Gap A, B and C refers to gap between Slepian-
Wolf bound and bit rate of (i) „Berrou‟s code + fixed length bin-

indices‟, (ii) „optimal code + fixed length bin-indices‟ and (iii) 
„optimal code + variable length bin-indices‟ respectively. It is 
clear from the Table 5 that the attainable q is almost constant with 
source distribution with both Berrou‟s code [8] and optimized 
turbo code (designed by the authors of [5] for non-uniform 
sources). It implies that the turbo code performance is invariant to 
the source distribution. Hence, variable bin indices are necessary 
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to exploit the redundancy left in the turbo binning scheme as 
proposed in [5]. In case of LDPC codes, it is apparent from the 
Tables 3 and 4, that the q* varies with the source distribution. 
More the non-uniformity of the source, more is the simulation 

threshold. The larger value of q* indicates that the code can 
tolerate weakly correlated side information. A significant thing to 
be noted (unlike, in case of turbo codes), the entropy H(X/Y) of 
nonuniform source with side information is almost constant when 
the LDPC codes are used optimally i.e., at threshold values. Since 
we have used a 10bit quantization, the H(X/Y) appears to be 
constant only upto two digits after decimal point. We conjecture 
that, if infinity precision is used, the H(X/Y) will be a constant.  

 
Conjecture 1: At threshold values of LDPC codes, the conditional 
entropy H(X/Y) is constant with source distribution of X, when X 
is coded with LDPC syndrome sequence with the lossless side 
information Y. 
 
One nice application of this property is that, this result can be 
used to find the thresholds (q*) at different source distributions. It 

is sufficient to perform only one density evolution analysis at 
some source distribution to find the corresponding q* and find the 
value of H(X/Y). 
 
Example 1: Assume that a threshold value q0* is found through 
density evolution at some source distribution, px0 = P(X = 0) with 
infinity precision. The conditional entropy H(X/Y) can be 
expanded as  
 

)(H)(H)(HH(X/Y) 0

*

00 yx pqp     (8) 

where  
*

00

*

000 )1()1()0Y( qpqpPp xxy
 

Now, we would like to find the threshold value ( *

1q ) at some other  

source distribution say px1. The following equation can be solved 

for 
*

1q using Newton-Raphson method. 

)X/Y(H)(H)(H)(H 1

*

11 yx pqp   (9) 

where  
*

11

*
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and H(X/Y) is known form (8). 
 
From the above discussion, it is clear that the LDPC codes will 
adapt to source distribution and an optimally used LDPC code 
(i.e., at threshold values) can achieve the Slepian-Wolf bound 
without any further entropy coding. Now it is curious to know, 
why LDPC codes respond to source distribution, while turbo 
codes are immune. This aspect is discussed in Section 4. 
 

4. DISCUSSION ON TURBO AND LDPC 

CODES FOR NONUNIFORM SOURCES 
Generally in distributed source coding, turbo codes are used in 
syndrome former (SF) and inverse syndrome former (ISF) setup 
to achieve maximum compression and are compatible with 
syndrome sequence coding of LDPC codes for comparison 
purpose. The SF-ISF formation is shown in Fig. 2, where the side 
information and an arbitrary sequence from the coset (represented 

by the syndrome former) are added. The added sequence ( ĉ ) 

forms a corrupted codeword and enters into the conventional 

turbo decoder for error correction decoding. Assuming that the 
turbo decoder corrects all the errors, we add the corrected 
codeword to the arbitrary sequence from the ISF to recover the 
original sequence (i.e., x). In turbo decoder the constituent 
decoders exchange the extrinsic information back and forth. The 
extrinsic information of one decoder is used as a priori 

information to the other constituent decoder. Let )()(

, j

l

exti uL  be the 

extrinsic information of jth bit from ith decoder at lth iteration. 

Similarly, let )()(

, j

l

appi uL be a priori information to jth bit in ith 

decoder (i  {1, 2}).  

 

)()(),()( )1(

,1

)(
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For nonuniform source distribution, a modification was suggested 

in [5] to the above equations as follows. 
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where p0 is the source distribution and the term log(p0/(1-p0))  is 
included in every iteration to account for nonuniform source 
distribution. This inclusion is questionable, and we emphasis more 

on this point in the next paragraph.  
 
The arbitrary sequence from ISF, a member of the coset generally 
do not to have the same source distribution as input sequence x. 
Further, the input to the turbo decoder is XOR of ISF sequence 
and side information. Hence, the source distribution of the input to 
the system and the input to the turbo decoder are generally 
different. For example, assume that ISF gives an arbitrary 

sequence equal to that of input sequence. Also assume that the 
side information is also equal to the input. In this scenario, 
irrespective of input sequence, all zero sequence will be the input 
to turbo decoder. This simple example shows that it is not possible 
to estimate the source distribution of input to the turbo decoder in 
SF-ISF setup. But in [5] authors, suggested to include the 
information about the source distribution in a priori term for each 
constituent decoder as per (11) and (12). As already emphasized, 
the source distribution doesn‟t reflect in the input to the turbo 

decoder and hence the inclusion of the term, log(p0/(1-p0)), in 
iterative decoding is not justified. Because of this reason the turbo 
coding performance is invariant to source distribution and has no 
effect on ’attainable q‟. This is readily evident from the Table 5.  
 

 

 
Figure 2 Turbo Encoder and Decoder with SF-ISF 
 

In case of LDPC codes, the encoding and decoding in error 
correction setup and syndrome coding setup are very much similar. 
In DSC, generally a non-zero syndrome is sent to decoder, 
whereas in error correction the syndrome is always zero. In LDPC 

decoding for error correction, each bit in the codeword is decoded 

and information bits are extracted from the decoded codeword. 
The LDPC decoder does not distinguish between information bits 
and parity bits, whereas the turbo decoder clearly distinguishes the 
parity bits from information bits. In LDPC decoding we can 
naturally incorporate the source distribution for each bit in the 
codeword as shown in Sec 2. In turbo decoding, the extrinsic 
information for source bits are only computed and passed to the 
other constituent decoder as a priori information. But in SF-ISF 

setup, both source and parity bit positions constitute the input. So 
we cannot truly incorporate the source distribution for each input 
bit in the SF-ISF turbo decoder. 
 

5. CONCLUSION 
In this paper, the LDPC codes are analyzed for compression of 
nonuniform sources under Slepian-Wolf coding using density 
evolution technique. Threshold values for several capacity 
approaching LDPC codes were determined through discretized 
density evolution technique at different source distributions. 
These threshold values show that, the performance of the capacity 
approaching LDPC codes is close to Slepian-Wolf bound. From 
Table 3 and 4 we find that, for a given LDPC code, the 

conditional entropy H(X/Y) is nearly constant with source 
distribution probabilities (p0). Hence, we can analytically 
determine the q* for a given p0 without going through density 
evolution technique. From this observation, we may state that as 
the non-uniformity of the source distribution increases, the 
dependence on side information (i.e., larger value of q*) decreases 
for extraction of the source information at decoder. The proposed 
method is a one step approach, in the sense that it does not require 
entropy coding on syndrome sequence as it is necessary for turbo 

binning scheme. 
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