
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

20

Feasibility Analysis and Comparative study of FFT &

Autocorrelation Algorithms

Abhishek Shukla
Department of Embedded System Design,

International Institute of Information Technology,
Pune

 Suraj S. Jibhakate
Department of Embedded System Design,

International Institute of Information Technology,
Pune

ABSTRACT
FFT is one main property in any sequence being used in general.

To find this property of FFT for any given sequence, many

transforms are being used. The major issues to be noticed in

finding this property are the time and memory management.

Two different algorithms are written for calculating FFT and

Autocorrelation of any given sequence. Comparison is done

between the two algorithms with respect to the memory and time

managements and the better one is pointed. Comparison is

between the two algorithms written, considering the time and

memory as the only main constraints. Time taken by the two

transforms in finding the fundamental frequency is taken. At the

same time the memory consumed while using the two algorithms

is also checked. Based on these aspects it is decided which

algorithm is to be used for better results.

General Terms

Transformation, Algorithms, Feasibility analysis,

Comparative study

Keywords

FFT (fast fourier transform), Autocorrelation,

MATLAB, C platform, Time management, Memory

management.

1. INTRODUCTION
FFT is one main property in any sequence being used

in general. To find this property of FFT for any given sequence,

many transforms are being used. The major issues to be noticed

in finding this property are the time and memory management.

The main application of the FFT is in Analysazation of Umbilical

Artery Doppler Signals to Fuzzy Algorithm, correlation analysis

of near field microscopy measurements, synthesis of non-

uniformly spaced arrays. In 1965 there was a remarkable

breakthrough when a technique called the Fast Fourier

Transform or FFT was invented to evaluate the Fourier

Transform. This was much faster, taking a time proportional to N

log(N) which is a lot smaller than u(t). With the FFT available

to calculate the Fourier transform quickly, its applications

became almost unlimited

The autocorrelation function of a random process is

defined as the average value of the product of the value of the

signal sampled at time t1 and the value of the signal sampled at

time t2 (where t2 = t1+dt and dt is an increment of time).

Therefore, for a process described by some value x (where x

could be acceleration or displacement etc.) varying with time t

the autocorrelation function is the average of

x(t)*x(t+dt) for many values of t and many values of dt.

The main application of the autocorrelation is analysis

for interpreting acoustic emission in rock, for the interpretation of

intestinal motility records, structural lineaments in radioactive

sample elements, X-ray diffractionists to help recover the

"Fourier phase information" on atom positions etc.

Comparison is between the two algorithms written,

considering the time and memory as the only main constraints.

Time taken by the two transforms in finding the periodicity is

taken. At the same time the memory consumed while using the

two algorithms is also checked. Based on these aspects it is

decided which algorithm is to be used for better results.

In this paper we have given the description of FFT and

AUTOCORRELATION alogorithm in section 2. Section 3.

consist about the platform used. Section 4 about the

implementation.Section 5 about the result. Section 6 consist of

result.

2. OVERVIEW OF FFT &

AUTOCORRELATION ALGORITHM

There are several methods to find fundamental period of audio

signals. E.g. Fast Fourier Transform, Autocorrelation, FIR filter

method of periodic detection, comb transformation, average

magnitude differential function, zero-crossing detection.

The audio signal samples may be taken from Mp3 player,

Generator (small), Generator (large), Laptop, AC Machine.

These sources are considered so as to obtain different real time

frequencies. These frequencies are used in the algorithm for

testing purpose.

2.1 Fast Fourier Transform (FFT):

The Fast Fourier Transform (FFT) is simply a fast

(computationally efficient) way to calculate the Discrete Fourier

Transform (DFT).

By making use of periodicities in the sines that are multiplied to

do the transforms, the FFT greatly reduces the amount of

calculation required. Here's a little overview.

http://dev.whydomath.org/node/tomography/fft-math.html
http://dev.whydomath.org/node/tomography/fft-math.html
http://dev.whydomath.org/node/tomography/fft-math.html

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

21

Functionally, the FFT decomposes the set of data to be

transformed into a series of smaller data sets to be transformed.

Then, it decomposes those smaller sets into even smaller sets. At

each stage of processing, the results of the previous stage are

combined in special way. Finally, it calculates the DFT of each

small data set. For example, an FFT of size 32 is broken into 2

FFT's of size 16, which are broken into 4 FFT's of size 8, which

are broken into 8 FFT's of size 4, which are broken into 16 FFT's

of size 2 for radix 2.

Fig 2.1 FFT Butterfly signal flow diagram, showing the example

having N= 4.

Here's a slightly more rigorous explanation: It turns out that it is

possible to take the DFT of the first N/2 points and combine

them in a special way with the DFT of the second N/2 points to

produce a single N-point DFT. Each of these N/2-point DFTs can

be calculated using smaller DFTs in the same way. One (radix-2)

FFT begins, therefore, by calculating N/2 2-point DFTs. These

are combined to form N/4 4-point DFTs. The next stage produces

N/8 8-point DFTs, and so on, until a single N-point DFT is

produced.

 The DFT takes N^2 operations for N points. Since at any

stage the computation required to combine smaller DFTs into

larger DFTs is proportional to N, and there are log 2(N).

The total computation is proportional to N * log2 (N). Therefore,

the ratio between a DFT computation and an FFT computation

for the same N is proportional to N / log2 (n). In cases where N

is small this ratio is not very significant, but when N becomes

large, this ratio gets very large. (Every time you double N, the

numerator doubles, but the denominator only increases by 1.)

The "radix" is the size of FFT decomposition. In the example

above, the radix was 2. For single-radix FFT's, the transform size

must be a power of the radix. In the example above, the size was

32, which is 2 to the 5th power.

"Twiddle factors" are the coefficients used to combine results

from a previous stage to form inputs to the next stage. An "in

place" FFT is simply an FFT that is calculated entirely inside its

original sample memory. In other words, calculating an "in

place" FFT does not require additional buffer memory (as some

FFT's do.)

2.2 Autocorrelation:

Autocorrelation is the cross-correlation of a signal with itself.. It

is a mathematical tool for finding repeating patterns, such as the

presence of a periodic signal which has been buried under noise,

or identifying the missing fundamental frequency in a signal

implied by its harmonic frequencies. It is often used in signal

processing for analyzing functions or series of values, such as

time domain signals.

The definition of the autocorrelation between any two time s and

t is:

R(s,t) = (E[(Xt - µt) (Xs-µs)])/(σtσs)

The following plot showing 100 random numbers with a

"hidden" sine function, and an autocorrelation (correlogram) of

the series on the bottom

Fig 2.2 Graph between random numbers (0-100) and ACF

If Xt is a second-order stationary process then the mean μ and the

variance σ2 are time-independent, and further the autocorrelation

depends only on the difference between t and s: the correlation

depends only on the time-distance between the pair of values but

not on their position in time. This further implies that the

autocorrelation can be expressed as a function of the time-lag,

and that this would be an even function of the lag τ = t − s. This

gives the more familiar form

R(т) = E[(Xt-µ) (Xt+т-µ)] / σ
2

N
10 100 1000 106

N2
100 10,000 106 1012

Nlog10N
10 200 3000 6 *106

http://en.wikipedia.org/wiki/Cross-correlation
http://en.wikipedia.org/wiki/Missing_fundamental
http://en.wikipedia.org/wiki/Harmonic
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Signal_%28information_theory%29
http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Correlogram
http://en.wikipedia.org/wiki/Stationary_process
http://en.wikipedia.org/wiki/Even_and_odd_functions

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

22

2.3 Difference Between FFT &

Autocorrelation

The difference between FFT and Autocorrelation is shown in

below table:

Sr. No. FFT Autocorrelation

1

 It‟s frequency

 domain analysis

It‟s a time domain analysis

2

Buffer size depends

on desired frequency

accuracy. Buffer size

increases with higher

accuracy.

Buffer size depends on

previous fundamental

frequency and changes with

same

.

3

Fixed length buffer

is used to achieve

frequency accuracy

of 0.5 Hz

Varying length buffer is

used to compute

fundamental period

4

Usually large size of

buffer is needed.

Buffer size is comparatively

small.

5

Less accurate than

autocorrelation in

computing

fundamental

frequency.

More accurate than FFT in

computing fundamental

frequency.

6

FFT has less number

of computations and

so it is faster.

Autocorrelation FFT has

 more number of

computations and hence it

is computationally slower

3. PLATFORM USED

The platform used for this work is MATLAB & DEV C++.

Audio file recording is also done using Matlab function which

records the sound at defined sampling rate (e.g. 8000 samples

/second). Matlab has functions such as read, write, play, record

.wav files. Plotting of various graphs and evaluating them is very

easy using Matlab. MATLAB is a numerical computing

environment and fourth-generation programming language.

Developed by The MathWorks, MATLAB allows matrix

manipulation, plotting of functions and data, implementation of

algorithms, creation of user interfaces, and interfacing with

programs in other languages. Although it is numeric only, an

optional toolbox uses the MuPAD symbolic engine, allowing

access to computer algebra capabilities. An additional package,

Simulink, adds graphical multidomain simulation and Model-

Based Design for dynamic and embedded systems.

MATLAB ("Matrix Laboratory") was created in the late 1970s

by Cleve Moler, then chairman of the computer science

department at the University of New Mexico. He designed it to

give his students access to LINPACK and EISPACK without

having to learn Fortran. It soon spread to other universities and

found a strong audience within the applied mathematics

community. Jack Little, an engineer, was exposed to it during a

visit Moler made to Stanford University in 1983. Recognizing its

commercial potential, he joined with Moler and Steve Bangert.

They rewrote MATLAB in C and founded The MathWorks in

1984 to continue its development. These rewritten libraries were

known as JACKPAC. In 2000, MATLAB was rewritten to use a

newer set of libraries for matrix manipulation, LAPACK.

DEV C++ is a free integrated development environment (IDE)

distributed under the GNU General Public License for

programming in C and C++. It is bundled with MinGW, a free

compiler. The IDE is written in Delphi.

The project is hosted by Source Forge. Dev-C++ was originally

developed by programmer Colin Laplace. Dev-C++ runs

exclusively on Microsoft Windows.

Bloodshed Dev-C++ is a full-featured Integrated Development

Environment (IDE) for the C and C++ programming languages. It

uses the MinGW port of the GCC (GNU Compiler Collection) as

its compiler. Dev-C++ can also be used in combination with

Cygwin or any other GCC-based compiler.[1]

One additional aspect of Dev-C++ is its use of DevPaks,

packaged extensions on the programming environment with

additional libraries, templates, and utilities. DevPaks often

contain, but are not limited to, GUI utilities, including popular

toolkits such as GTK+, wxWidgets, and FLTK. Other DevPaks

include libraries for more advanced function use.Dev-C++ is

generally considered a Windows-only program. There is also a

Linux version available, but it is in alpha and has not been

updated since July 2002.

4. IMPLEMENTATION

This module computes fundamental frequency of the input audio

signal with frequency resolution of 0.5 Hz. Matlab function fft ()

is used to compute FFT of audio signal which implements Radix

2 algorithm. Output spectrum contains all frequency components

and their harmonics along with noise. Out of all these frequency

components, identification of fundamental period is done using

an algorithm which is discussed in section 4.3

Buffer size depends on the frequency resolution required.

Buffer size = Sampling frequency/ accuracy

Input audio signal has sampling frequency = 8000 samples/sec

and we compute the FFT with frequency resolution 0.5 Hz

.Buffer size required = 8000/ 0.5 = 16,000

FFT implements radix-2 algorithm which requires samples in

power of 2. So total number of samples required to achieve

resolution of 0.5 Hz would be = 2 ^14 = 16384 samples

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/The_MathWorks
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/MuPAD
http://en.wikipedia.org/wiki/Computer_algebra_system
http://en.wikipedia.org/wiki/Simulink
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Cleve_Moler
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/University_of_New_Mexico
http://en.wikipedia.org/wiki/LINPACK
http://en.wikipedia.org/wiki/EISPACK
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/John_N._Little
http://en.wikipedia.org/wiki/Stanford_University
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/The_MathWorks
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/MinGW
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Delphi_programming_language
http://en.wikipedia.org/wiki/SourceForge
http://en.wikipedia.org/wiki/Microsoft_Windows
file:///E:\SECOND%20SEM\abhishek%20shukla%20sir\paper\Dev-C++.htm%23cite_note-0
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/GTK%2B
http://en.wikipedia.org/wiki/WxWidgets
http://en.wikipedia.org/wiki/FLTK
http://freshmeat.net/projects/dev-cpp
http://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

23

4.1 FLOWCHART

The step wise implementation undergone flowchart is as

follows:

4.1.1 Flowchart for Magnitude & Phase

4.1.2 FLOWCHART FOR IMPLEMENTATION OF

AUTOCORELATION

`

START

TAKING A WAVE

GETTING THE SIZE OF WAVE AND ITS

STORING THEM IN VARIABLE SAY „N‟

TAKING ITS AMPLITUDE IN ROUND

FIGURE

ARRANGING THIS VALUES RANDOMELY AND

STORING IN VALUE N2

PRINTING THE SAMPLES UPTO N2 BY STORING THE

VALUE SAY IN VARIABLE “L”

If L=N2?

If N=N2?

PLOT THE WAVES FOR THE DIFFERENT

VALUES OF N AND S

CALCULATE AUTOCORRELATION FOR

DIFFERENT VALUES

EXIT

YES

YES

NO

NO

START

TAKE REQUIRED NUMBER OF

SAMPLES

TAKING THE FFT OF EACH

SAMPLE

TAKING THE ABSOLUTE

VALUE OF FFT

CONVERTING THE PHASE

ANGLE TO DEGREE TO GET A

SMOOTH GRAPH

IF SAMPLES

>REQUIRED

SAMPLES FOR FFT

NO

YES

PLOTTING THE GRAPH OF

SAMPLES, MAGNITUDE AND

PHASE

STOP

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

24

5. RESULT:

The graphical implementation from a given signal is shown

below:

 Fig 5.1 magnitude and phase plot for given input signal From

the above figure the input signal is taken and its magnitude and

phase is plotted.
5.2. IMPLMENTATION OF AUTOCORRELATION

Fig 5.2 shows the implementation of autocorrelation using

MATLAB

6. CONCLUSION

In this paper for performing feasibility analysis, the FFT and

Autocorrelation algorithm has been implemented on two

different platforms i.e. MATLAB & C. by plotting magnitude

and phase graphs for any given input signal and performed both

FFT & autocorrelation algorithms for different input signals &

finally tried to found out the maximum peaks in the signal i.e.

Fundamental frequencies

 Thus after comparing two algorithms i.e. FFT and Auto

Correlation regarding the time constraints and memory

management the FFT algorithm can have maximum number of

samples in minimum time.

7. REFERENCE

1. [paper] matlab implementation of an fft based

algorithm for polynomial plus/minus factorization by

martin hromcık, michael sebek

2. [paper] systematic generation of fpga-based fft

implementations hojin kee, newton petersen, jacob

kornerup, shuvra s. bhattacharyya.

3. [paper] a modified split-radix fft with fewer arithmetic

operations by steven g. johnson* and matteo frigo.

4. [paper] reducing memory references for fft calculation

by mokhtar a. aboleaze, ayman i. elnaggar

5. web resource: [online visited on aug 18,2010]: Pitch

detection using time and freq. domain method

[http://cnx.org/content/m11714/latest].

6. IEEE Oceanic Engineering Societyby ,MacInnes, C.S.

Alameda El Espinel, Lima

7. hojin kee, newton petersen, jacob kornerup, shuvra s.

bhattacharyya,” systematic generation of fpga-based fft

implementations”, in proceedings of the international

conference on acoustics, speech, and signal

processing,las vegas, nevada, march 2008.

8. josé moura, carnegie mellon university” dsp

formatlab™ and labview™ volume ii: discrete

frequencytransforms”, foresterw. isen 2008

9. web resource: [online visited on aug 28,2010]

www.math.tamu.edu/~kfu/chapter10.pptx.

10. web resource: [online source visited on sept 07,2010]

jorg arndt ,”algorithms for programmers”; this

document is online at http://www.jjj.de/fxt/.

http://www.cs.tut.fi/kurssit/SGN-4010/DSP_kertaus_en.pdf

