
International Journal of Computer Applications (0975 – 8887)

Volume 8– No.10, October 2010

16

How to Make AADL Specification More Precise

 M. Benammar

 Department of Computer
 Science, University of Batna,

 Algeria

 F. Belala
Department of Computer Science

Mentouri University
Constantine, Algeria

ABSTRACT

AADL (Architectural Analysis and Design Language) is a textual

and graphical language used to design and analyze software

architecture of embedded real time systems. Many tools and

models provide semantics and precise meaning for AADL

architecture behavior. However, they are not supported by a well

defined formal semantics. This paper suggets Rewriting Logic via

its practical language Maude as an adequate formalism for

modeling behavior concepts in an AADL architectural

description. Besides, RT-Maude system offers a natural support to

execute and prototype real-time object-oriented modules

formalizing AADL architecture behavior composed of several

communicating threads.

General Terms

Formal Methods, Embedded Systems, Software Architecture,

Architecture Description Language (ADL).

Keywords

AADL, Behavioral Annex, Revised Rewriting Logic, Real Time

Maude.

1. INTRODUCTION
In the last decade, software architecture emerged like a central

concept in the software engineering. Its principal characteristic

resides in the fact that it represents a significant abstract model of

the structure and the behavior of software systems. Then, the

problem of ensuring as early as possible the correctness of a

software architecture occupies a great importance in the

development life-cycle of software products. Formal methods

should be used to describe software architectures and express their

dynamic evolution so that one could reason on them. In particular,

Architecture Description Languages (ADL) are formal notations

for software architecture description of a system.

AADL (Architectural Analysis and Design Language) [1] is an

Architecture Description Language which is especially effective

for model-based analysis and specification of complex embedded

real-time systems. It was standardized by the SAE (Society of

Automotive Engineers) in November 2004.

 AADL employs formal modeling concepts for the description of

software/hardware architecture and non functional properties of

real time systems in terms of distinct components and their

interactions. It has the advantage that it assembles within the same

notation the set of information concerning the application

organization and its deployment. However, AADL is focused on

the architectural aspects of the system components and their

connections, but doesn‟t deal directly with their behavioral

aspects. So, specification of system real-time behavior is one of

major concern for AADL.

Some behavioral aspects can be described with the core of the

AADL standard, such as mode change, actual behaviors of

components rely on target source code. Besides, the AADL

behavior annex proposed by IRIT in 2006 [2], is an extension of

AADL which may offer another way to specify the behaviors of

components without expressing them with the target language,

therefore it can support more precise behavioral and timing

analysis. However, it is not supported by a well defined formal

semantics. Thus, the formal reasoning on AADL architecture or

its analysis is far from being possible.

In this paper we propose a formal semantic framework based on

Revised Rewriting Logic to describe the static structure and the

behavior of an AADL architecture. We associate to each AADL

component a mathematical model, represented by a revised

rewrite theory R = (Σ, E, Φ, R), where (Σ, E) is a membership

equational theory describing its static structure, including all the

declared structures on the level of its AADL description. Let us

note that the operators considered in Σ can freeze, in certain cases,

their arguments thanks to the Φ function. The rewrite rules R

describe the component behavior.

As in AADL a thread represents a sequential flow of execution

and it is the only AADL component that can be scheduled, we

illustrate our formalization approach on this fundamental unit of

concurrent execution in AADL.

The AADL Meta model defines a thread component with two

types of declarations: Type (defining its interfaces) and

Implementation (defining its internal structure). Communication

between threads can be realized through dataflow, call to server

subprogram or access to shared variable. These various

connection points are declared in the interface of the

communicating components and are called features. They will be

Ports, Server Subprograms or Data Access depending on the

chosen communication paradigm. Its execution model specifies at

runtime real-time patterns such as dispatch, communication and

timing of components. Thus, the semantics of this component

semantics that remains imprecise and insufficient will be formally

defined using Rewriting Logic and its well-founded language

Maude. Besides, we propose a generic implementation of this

framework using of the object oriented modules of RT-Maude

language (Real Time Maude) [3]. A multiset of objects and

juxtaposed messages, interacting through some rewrite rules, will

offer a natural and precise semantics for the execution model of an

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.10, October 2010

17

architectural composition of threads governed by the

communication mechanisms.

Maude is a declarative language, created by SRI (Stanford

Research Institute) laboratory in the United States, implementing

rewriting logic concepts. RT-Maude is an extension of Maude for

the specification, prototyping and analysis of the real time

systems.

In the remainder of this paper, we first introduce our used basic

concepts of rewriting logic via its practical language Maude and

the architecture description language AADL. Section 3 recalls

some existing attempts for describing AADL architecture

behavior. In section 4, we outline how it is possible to give a

formal semantics for interacting entities (threads) defined by

AADL. Object oriented real time modules of RT-Maude are built

to implement execution model of thread component. Based on a

case study (section 5) illustrating the proposed formalization

approach, we show too how the verification process could be

driven using the LTL model checker of Maude. Finally, we

conclude the paper with constructive remarks and future

perspectives.

2. FUNDAMENTAL CONCEPTS
In this section we give the fundamentals concepts of Maude and

AADL language to facilitate the comprehension of our work. For

more details, the reader can refer to [4] for Maude and [1] for

AADL.

2.1 Maude Language
Rewriting logic, the theoretical basis of this work, is known as

being logic of concurrent change that can deal naturally with state

and with highly non-deterministic concurrent computations [5]. In

this logic the basic axioms are rewrite rules of the form

t  t’ with t and t' expressions in a given language. There are two

complementary readings of a rewrite rule, one computational, and

another logical [6].

Computationally, the rewrite rule t  t’ is interpreted as a local

transition in a concurrent system; that is, t and t’ describe patterns

for fragments of the distributed state of a system, and the rule

explains how a local concurrent transition can take place in a such

system, changing the local state fragment from an instance of the

pattern t to the corresponding instance of the pattern t’.

Logically, the rewrite rule t  t’ is interpreted as an inference

rule, so that we can infer formulas of the form t’ from formulas of

the form t.

The computational and logical viewpoints are not exclusive; they

complement each other and are efficiently used to implement a

wide range of logics and models of computation. So, rewriting

logic has good properties as a general and flexible logical and

semantic framework.

In rewriting logic, a concurrent system is represented by a rewrite

theory (Σ, E, R) describing the complex structure of its states and

the various possible transitions between them. Moreover, the

recent extensions of this logic develop new semantic bases for a

revised version [7] which supports several new characteristics. In

this version of the rewriting logic, a revised rewrite theory is a

four tuple R = (Σ, E, Φ, R) where (Σ, E) is a membership

equational theory, Φ is a function assigning to each operator

f : k1, …., kn  k in Σ the subset Φ(f)  {1, …., n of its frozen

arguments, and R is a set of labeled conditional rewrite rules.

This rewrite rules can be of the form:

  ':': ll
Ll

jj
Jj

ii
Ii

ttswqpifttrX 


Where r is the rule label, all terms (pi , qi , wj , sj , tl , tl
’) are

Σ-terms, and the conditions can be rewrite rules, memberships

equations in (Σ, E), or any combination of both. Given a rewrite

theory R, we say that R implies a formula [t] [t’] if and only if it

is obtained by a finite application of the following deduction

rules:

1. Reflexivity. For each term [t] in TΣ,E(X),][][tt 

Where TΣ,E(X) is a set of Σ-terms with variables.

2. Congruence. For each function fΣn , nN,

   ]',,'[],[

]'[][]'[][

11

11

nn

nn

ttfttf

tttt









3. Replacement. For each rewrite rule

     nn xxtxxtr ,,',,: 11   in R,

        
)]/'('[)]/([

''11

xwtxwt

wwww nn



 

 4. Transitivity.

        
   31

3221

tt

tttt





Theoretical concepts of rewriting logic are implemented through

Maude language, a high-performance declarative language,

supporting both equational and rewriting logic specification of

concurrent systems. It has been influenced by the OBJ3

equational logic language. Besides, Maude has been also used to

develop, program and prototype a wide range of applications.

Maude offers a comprehensive toolkit for the analysis of

specifications, such as LTL model checker, Inductive Theorem

Prover (ITP), Maude Termination Tool, Church Rosser Checker,

Coherence Checker, etc [8].

In general, a Maude program represents a rewrite theory of

rewriting logic, i.e., a signature and a set of rewrite rules.

Computation in this language corresponds to the deduction in

rewriting logic. Consequently, Maude supports three

programming types, functional (functional theory), system

(rewrite theory) and object oriented (object oriented rewrite

theory). Thus, it was used successfully for the specification,

prototyping, and checking of several object oriented applications

[4]. A concurrent system in this case is modeled by a multiset of

objects and juxtaposed messages, where the concurrent

interactions between the objects are governed by rewrite rules. An

object is represented by the term < O : C | a1 : v1 , … , an : vn

>,where O is the object‟s name instance of the class C, ai, i 

1..n, the names of the object‟s attributes, and vi, their

corresponding values.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.10, October 2010

18

The class declaration follows this syntax: class C | a1 : s1 , … ,

an : sn .,where C is a class‟s name and si is the sort of ai attribute.

It is also possible to declare the subclasses and profit from the

heritance concept. The messages are declared by using the key

word msg. The general form of a rewrite rule in Maude‟s object

oriented syntax is:

crl [r] : M1 … Mn < O1 : F1 | at1> … < Om : Fm | atm > => < Oi1 :

F‟i1 | at‟i1 > … <Oik : F‟ik | at‟ik > M1‟ … Mp‟ if Cond .

Where r is the label of the rule, MS, S  1..n, et M’u, u  1..p

are messages, Oi, i  1..m, and Oil, l  1..k, are objects, and Cond

is the rule‟s condition. If the rule is unconditional, we replace the

key word crl by rl and we remove the clause if Cond.

There are two main frameworks in Maude: (1) the Core Maude

interpreter implemented in C++ and providing all of Maude basic

functionalities and (2) the Full Maude, an extension of Maude,

written in Maude itself, that endows the language with an even

more powerful and extensible module algebra than that available

in Core Maude. RT-Maude language belongs to this interpreter.

RT-Maude system [3] is a tool allowing the specification and

analysis of the real times systems. It is particularly appropriate to

the object oriented real time systems. In RT-Maude, an object

oriented real time rewrite theory contains the following features:

 Specification of a data sort Time specifying time

domain, which may be discrete or dense.

 The sort GlobalSystem and a free constructor {_},

denoting that {t} is the whole system in the state t,

 The ordinary rewrite rules model the instantaneous

change

 And a particular rewrite tick rule, having the form

crl [l] : {t} => {t`} in time D if cond, modeling the

advance of a time D in the system whose state is t if a

condition is checked.

RT-Maude language has been already used to simulate and

analyze a set of real time and hybrid systems such as

communication protocols [9], CASH scheduling algorithm [10],

wireless sensor network algorithms [11], the LfP architecture

description language [12], the reconfigurable and time

constrained workflows [13], etc.

2.2 AADL Language
The standard version 1.0 of AADL (Architecture Analysis and

Design Language) was published in November 2004 under SAE

(Society of Automotive Engineers) authority. It is dedicated to the

description of the real time embedded systems. Its advantage is

that it includes within the same notation the whole information

concerning the application organization and its deployment.

AADL describes embedded system architecture using a set of

interconnected components. It is based, like any other ADL, on

the concepts of components connections and configurations.

AADL Components. The abstract declaration of AADL

component is composed of component type and one or more

component implementations. The component type declaration

contains sub clauses representing: the features, the flows, and the

property associations. A component implementation specifies an

internal structure in terms of subcomponents, connections

between the features of those subcomponents, flows across the

subcomponents, modes to represent operational states of the

system, and properties. Several categories of AADL component

exist: threads are the schedulable units for the concurrent

execution, processes represent spaces of virtual addresses, and

systems support the hierarchical organization of the threads and

processes. AADL also describes the execution platform in terms

of processors which support the execution of threads, memory for

the storage of data and code, and bus for the physical

interconnection.

For instance, AADL thread is an active applicative component. Its

implementation conditions are specified as properties: deadline,

dispatch protocol, period, etc. The standard defines four types of

dispatch protocol such as: Periodic (thread being executed with

intervals of times), Aperiodic (thread starts by events invocation),

or Sporadic (thread involves a limit for the rate of sporadic

execution). Threads communicate through data port, event port or

event data port, and/or the data port group.

AADL Connections. Connections specify the patterns of a

control and data flow between different components at runtime. It

is composed of several connections across the subcomponents. It

has an ultimate source and an ultimate destination belonging to

thread or device category of component.

AADL Configurations. AADL configurations of a system are

represented by assemblies of software and hardware components.

A configuration represents a graph of components and connectors.

The connectors for AADL are specified by flows and modes.

Flows indicate that the logical information which binds the out

port (or port group) of departure component named (flow source)

and the in port (or port group) of arrival component (flow sink).

The modes represent the operational states of software, execution

platform, and the compositional components in the modeled

physical system. A change in mode can change the whole of

active components and connections.

3. BEHAVIOR DESCRIPTION IN AADL

ARCHITECTURE
AADL employs formal modeling concepts for the description of

software/hardware architecture and non functional properties of

embedded real time systems in terms of distinct components and

their interactions. AADL language is precisely defined and

stabilized as regards structural aspects. The behavioral aspect is

described in a behavior annex which is not entirely validated.

Also, AADL execution semantics is defined in the standard. But,

this semantics will be improved to adapt it to possible variations

as for instance, target platforms ones.

The behavior description is defined in an appendix that describes

only action sequencing, sending and receiving messages as well as

the temporal events. Operational semantics is defined in the

standard with regard to process and thread management using just

an operational mode and mode transitions. The mode transitions

represent the commutation between system execution

configurations. These can have the effect of activating and

deactivating threads for execution, or still a changing the pattern

of connections between threads, and finally the changes in

component-internal characteristics. Consequently, a thread can be

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.10, October 2010

19

active in a mode and inactive in another, only the active threads

execute their instructions.

Thread behavior semantics is defined in the standard on the basis

of automata representing thread states and the transition between

these states. Figure 1 shows that a thread can be stopped, inactive,

or in activity. An active thread can be waiting for dispatch,

AwaitingDispatch state, or in execution, Compute state.

Figure 1. The state/transition model for AADL thread

Moreover, in the „Compute‟ hierarchical state of this automata,

the thread can have others substates (figure 2) such as Ready

(ready for execution), Running (in execution), or Awaiting-

Resource (be blocked on the access of a resource).

 Figure 2. ‘Compute’ hierarchical state of a thread

At this level of the Compute state, local state changes of the

thread are visible through its configurations when, at runtime, it

receives data and/or events, executes computation and sends

signals (data and/or event) throughout ports. This execution

model does not appear at the level of the thread AADL

description, it has been recently described by some existing

works, but its semantics remains difficult to define with an

adequate level of abstraction [2].

An abrupt work is being done in literature tempting to formalize

AADL architectural description while transforming it to other

models that come with some convenient tools for example: TINA

[14] or CADP [15]. Indeed, some well known formalisms such as

timed automaton [16], Timed Petri Nets (TPN) [17, 18], real time

process algebra (ACSR) [19] or Timed Abstract State Machine

(TASM) [20] are recently used to provide AADL architectural

description formal models. Nevertheless, all these contributions

are restricted to only some AADL concepts formalization and the

thread complex behavior is not formally defined. In this paper we

would like to explore another alternative for describing a well-

defined structure of a thread, its execution model and so its

behavior.

4. A Semantic Model for AADL Architecture
The aim of this paper is to propose an unified semantic

framework, based on object-oriented real-time rewrite theories, to

specify AADL architecture of a real time embedded system. The

proposed model is described in this case, as being a multiset of

juxtaposed objects and messages, where the concurrent

interactions between the objects are governed by rewrite rules.

Thus, we propose a generic set of mapping rules allowing to

abstract the most significant architectural elements of AADL in

the syntax of rewriting logic. Then, we define a formal semantics

of an AADL architecture composed of several communicating

threads. On the one hand, we formalize the structure and the

behavior of these execution concurrent units, and on the other

hand, we formal check the flat execution model of this AADL

architecture. We consider both the flow across declared

connections and the execution properties. The implementation of

this proposed model is achieved thanks to the RT-Maude system

and tools that exist around it.

Table 1. Mapping AADL architectural elements to RT-Maude

object-oriented concepts

Our approach consists in associating to each AADL architectural

element a formal concept of an extended real time rewrite theory

which is implemented as RT-Maude module (see table 1).

According to these mapping rules, each AADL architecture may

have a formal mathematic support represented by a real time

extended rewrite theory R = (Σ, E, Φ, R), where (Σ, E) is a

membership equational theory describing the architecture static

structure. The Σ signature specifies the set of sorts and subsorts,

and the set of the useful operators to describe each clause of its

total description: features, properties, modes, type and

implementation. The set of the E equations contains in addition

the attributes associated to some operators. The Φ function

represents the set of operators considered in Σ which can freeze,

AADL Architectural

Element

RT-Maude Object -Oriented

Concept

AADL Architecture Real-time object-oriented rewrite

theory

Thread component Thread class

Component functional

Interface

PortState sort for IPort and

OPort attributes , File sort for

AccessData, InBufferPort and

OutBufferPort attributes

Thread state ThreadState sort

Thread Configuration Conditional Rewrite rules

Interaction Transmit Message between objects,

instances of thread class

Flow latency Message transmission time

Thread Implementation ThreadImpl class (subclass of

class Thread)

Temporal execution

properties

Time sort for Period and

Execution-time Attributes

Start
 Halted

Threadinit

AwaitMode

ThreadActivate

AwaitDispatch

Thread
Deactivate

Thread
Finalize complete

complete

complete

complete

initDeadline

Compute

Clock-P = 0 and

Clock-C = 0

Ready

Clock-P

Running

Clock-C

Awaiting-resource

Clock-P

Compute-State

resume

preempt

Block on Release

Resource

Unblock on

Release

Resource

T-Pilot-In

Complete

recover

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.10, October 2010

20

in some cases, their arguments. The rewrite rules R describe the

components behavior according to follow-up of their

configurations. Each component category belonging to the

declared AADL architecture will be represented by a special class

of the corresponding real time object oriented rewrite theory. We

are particularly interested in this paper by the thread component

of AADL as it is the fundamental unit of execution. So, it will be

best considered to illustrate and motivate our proposed formal

setting for AADL components.

As shown in table 1 and figure 3, thread type is modeled by the

Thread class, whose attributes are respectively: 1) the functional

interfaces IPort and OPort, 2) data subcomponent, represented as

a buffer, related to each connection port InBufferPort,

OutBufferPort and 3) TState to specify its state. The PortState

sort represents its functional interfaces states.

Thread component internal structure or its implementation is

specified by the ThreadImpl class (figure 3) having the attributes:

1) Sstate specifying substate of the “Compute” composite state, 2)

Time (predefined sort) allowing to specify both temporal

execution properties (Period and Execution-Time) and the

Clock-P and Clock-C clocks for the warning of the period and

execution time of the thread. It is obvious that this ThreadImpl

class is declared as a subclass of the Thread class to profit from

the inheritance concept.

Figure 3. RT-Maude specification of AADL thread component

We represent the passage of data flow and/or event through

threads connection, by messages transmission (figure 3) between a

thread and their neighbors (threads). Each message declaration

specifies the source and destination threads and the transmitted

data/event type. The source and destination components are

object instances of the Thread class. Message transmission time

is taken into account by the DlyMsg sort modeling the flow

latency time. The operator dly(m, t) indicates that it remains t time

units for the arrival of the msg m (to its destination).

All static concepts, involved in the thread specification, are given

in the corresponding real time object oriented module. We omit

their presentation for paper ligibility.

The thread behavior formalization in this case must begin by a

detailed and a complete modeling of concurrent and hierarchical

thread states.

So, we declare, with constructor operators, the thread states (wait

or compute), the thread substates (Ready, Running, Awaiting-

Resource, Complete and noSub) and the port states (waitIn,

waitOut, receive and send). Then, the behavior formalization

aspect starts with the specification of the visible changes of the

thread states, associated to its connection ports and materialized

by the rewrite rules Data-Receive and Data-send (see figure 4).

The Data-Receive rule prepares thread for a new execution

period, after receiving a message. It changes the thread state from

wait to compute and its substate from noSub to Ready initializing

the clocks by the values, specified in the execution properties.

Figure 4. RT-Maude specification of AADL connection and

interaction

The Data-Send rule putts the thread in its initial state after a

period elapse and an execution time. It transforms the thread state

from compute to wait and its substate from Complete to noSub

and then, generates the message with the thread execution result

for the transmission.

In this formalization, we take into account the composite state of

the thread in its active hierarchical state compute. We define its

substates and their corresponding transitions (see figure 2) and

also the execution properties (Compute-Execution-Time and

Period). The first rewrite rule, in figure 5, changes the thread

substate from Ready to Running and prepares the received data

treatment. The rewrite rule finish considers the particular case,

where the thread doesn‟t have an out port and gives its initial state

after elapse of period time.

class Thread | IPort : PortState, OPort :

PortState, TState : ThreadState, InBufferPort

: File, AccessData : File, OutBufferPort :

File, MaxPreempt : Nat, MaxData : Nat, NBS :

Set .

class ThreadImpl | Substate : Sstate, Period

: Time,Execution-time : Time, Clock-P : Time,

Clock-C : Time .

subclass ThreadImpl < Thread .

subsort Sstate < ThreadState .

msg from_to_transfer_ : Oid Oid Data -> Msg .

sort DlyMsg .

subsorts Msg < DlyMsg < Configuration .

op dly : Msg Time -> DlyMsg [ctor] .

var ms : Msg .

eq dly(ms, 0) = ms .

rl[Data-Receive]:(from T1 to T2 transfer DT) <

T2: ThreadImpl | IPort: waitIn, TState : wait,

Substate: noSub , Clock-P: 0, Clock-C: 0,

Period: R , Execution-time : R', InBufferPort:

L2 >

=> < T2 : ThreadImpl | IPort: receive, TState:

compute , Substate: Ready, Period: R,Execution-

time: R', Clock-P: R, Clock-C: R', MaxData: 0,

MaxPreempt: 0, InBufferPort: DT; L2 >.

rl[Data-Send]: < T1: ThreadImpl | OPort:

waitOut, TState: compute, Substate: Complete,

OutBufferPort: L; DT, NBS:(T2 & R), Clock-P:

R1, Clock-C: R2, MaxPreempt: N, MaxData: N1 >

=> < T1: ThreadImpl | OPort: waitOut, TState:

wait , Substate: noSub, OutBufferPort: L , NBS:

T2 & R , Clock-P: 0, Clock-C: 0, MaxPreempt: 0,

MaxData: 0 > dly(from T1 to T2 transfer DT, R).

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.10, October 2010

21

Figure 5. RT-Maude specification of AADL thread behavior

The conditional rewrite rules resume, preempt, block-on-Release-

Resource, Unblock-on-Release-Resource, recover and complete-

rec define the transitions between substates of the compute state.

The mte function is used to calculate the maximum time elapse

value possible from a given thread state, before a significant

action is taken (here, it is about the minimum values of the two

clocks). Moreover, the delta function models the effect of passage

of a time R on the thread by decreasing one or both of its clocks

according to the time elapsed. These two functions are used in the

tick rule in order to calculate and apply the time elapse on the

thread configuration (figure 5).

The nonexec attribute of the tick rule (figure 6) precises that this

rule advances time when no other rule is executable. The delta

operation modifies only the attributes of sort time. The equations

in figure 6 calculate the delta operation effect on thread

configuration and on the messages transmission. We introduce

send and reception time for each message and we express too, the

distribution of the delta operation on the whole thread

configuration to make the time elapsing uniformly.

The mte operation evaluation considers a thread (if it is at

compute state) with its clocks initialized by the execution

properties values. Then, it considers the distribution of the mte

operation on the configuration.

This formalization approach gives a real-time object-oriented

rewrite module in RT-Maude, providing an executable

mathematical model of AADL architectural system, composed

essentially of several communicated threads. We can use these

RT-Maude specifications to simulate and analyze the concurrent

system behavior so formalized.

Under appropriate conditions, we can check that our mathematical

model satisfies some important properties, or obtain a useful

counter example showing that the property in question is violated.

For instance, we can model check any linear temporal logic (LTL)

property of AADL architectural system. We will deal with very

useful properties such as accessibility, safety and liveness, while

considering the formal description of AADL thread behavior in its

“compute” particular state (see GPS example section).

5. A CASE STUDY: GPS EXAMPLE
We illustrate our proposed AADL formalization approach through

a case study describing a GPS system example. This system

should display the current position information for the user. It is

composed of one sensor GPS and two threads: TGPS and

TScreen. The GPS sensor captures information parameters from

satellite and sends it to thread TGPS.

Crl [init] : < Imp : ThreadImpl |InBufferPort:

L, AccessData: EmptyFile, Substate: Ready,

Clock-C: R'>

=> < Imp: ThreadImpl | InBufferPort: Queu(L),

AccessData: Head(L), Substate: Running, Clock-

C: R' > if (R' > 0) .

...

crl [complete-Rec] : < Imp: ThreadImpl | IPort

: receive , TState : compute, Substate: subS ,

AccessData: Temp2 , OutBufferPort: L,

OPort: waitOut, Clock-P: R, Clock-C : R' >

=> < Imp: ThreadImpl | IPort: waitIn , TState:

compute, AccessData: EmptyFile ,

OutBufferPort: Temp2 ; L , Substate: Complete,

 OPort : waitOut , Clock-P : R, Clock-C : R' >

if (R == 0) .

rl[finish]: <Imp : ThreadImpl | IPort: receive,

TState: compute, Substate: Complete , OPort:

NoPort , Clock-P: R, Clock-C: R',

MaxPreempt: N, MaxData: N1 >

=> < Imp: ThreadImpl | IPort: waitIn, TState:

wait, Substate: noSub, OPort: NoPort, Clock-P :

0, Clock-C : 0 , MaxPreempt : 0 , MaxData : 0

> .

crl [tick] : {C:Configuration}

=> {delta(C:Configuration, R)} in time R if

(R <= mte(C:Configuration)) /\ (not

agerEnabled(C:Configuration)) [nonexec] .

eq delta(< Imp : ThreadImpl | Substate :

Running, Clock-P : R , Clock-C : R' >, R'') =

< Imp : ThreadImpl | Substate : Running, Clock-

P : R monus R'' , Clock-C : R' monus R'' > .

ceq mte(NeC NeC') = min(mte(NeC), mte(NeC')) if

(NeC =/= none) /\(NeC' =/= none) .

system GPSyst

end GPSyst

system implementation GPSyst.impl

subcomponents

 GPS: device GPS.impl;

 TGPS: thread TGPS.impl;

 TScreen: thread TScreen.impl;

connections

 data port GPS. OutBufPort -> TGPS.InBufPort;

 data port TGPS.OutBufPort ->

TScreen.InBufPort;

end GPSyst.impl;

thread TGPS

 features

 InBufPort : in data port DataType;

 OutBufPort : out data port DataType;

end TGPS;

thread implementation TGPS.impl

 properties

 Dispatch-Protocol => Periodic ;

 Compute-Execution-Time => 10 ms ;

 Period => 20 ms ;

 end TGPS.impl;

thread TScreen

 features

 InBufPort : in data port DataType;

 OutBufPort : out data port DataType;

end TSreen;

thread implementation TScreen.impl

 properties

 Dispatch-Protocol => Periodic;

 Compute-Execution-Time => 7 ms ;

 Period => 15 ms ;

 end TScreen.Impl;

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.10, October 2010

22

Figure 6. AADL description of GPS example

TGPS reads these parameters and converts them into an internal

representation, then it sends the result to thread TScreen. This one

displays the recent position received periodically.

AADL description of thread TGPS in this architecture (figure 6)

shows that is a periodic thread which operates according to

temporal properties values: Period and Compute-Execution-Time.

This AADL model gives only static description of components

and their connections including, for each thread description, the

specification of implementation conditions. This is done by the

properties declaration, such as: dispatch protocol, period and

Compute-Execution-Time and their various values. We exploit

this AADL declaration to describe the thread behavioral aspects

using our proposed approach.

The obtained RT-Maude module is so generic and serves to

simulate and analyze the any system behavior particularly the

GPS one. It is clear that the code portion of this module in figure

7 defines an instantiation of the initial state of the considered

architecture configuration declared in the equation part

“initstate”. Similarly, we may formalize any system example.

Figure 7. The Maude model of the AADL GPS example

In addition, for each thread of this AADL architecture example, a

check of the following property :

The final state (Complete substate) of the thread execution process

can be reached in time, by the LTL model-checker of RT-Maude

is launched by this command (figure 8):

 (mc initState1 |=t (<> CompleteStateTGPS)/\
(<> CompleteStateTSCREEN) in time <= 70 .)

This means that the thread execution finishes correctly (substate

= complete reachable in time). The screen shot of figure 8 shows

that this property for instance is then evaluated to true with this

solution.

Figure 8. The model-check of AADL property example

For this purpose, we build the module MODEL-CHECK-AADL-

PROP (figure 9) which imports the predefined module TIMED-

MODEL-CHECKER and the module AADL-SPEC containing all

the architecture specification of our GPS example including the

TGPS thread specification. The specification of the previous

property, of sort Prop, is made through the atomic proposition:

CompleteStateTGPS and its corresponding equation.

Figure 9. MODEL-CHECK-AADL-PROP module

6. CONCLUSION
AADL describes embedded system architecture using a set of

interconnected components, abstracting away the functionality of

components that is not precisely known at early stages of system

development. This article deals with the formalization behaviour

of its components, especially the thread component, known as the

fundamental unit of concurrent execution in AADL. For such a

ops GPS TGPS TSCREEN : -> Oid [ctor] .

op initState : -> GlobalSystem .

eq initState = {(from GPS to TGPS transfer

data1) < TGPS: ThreadImpl |IPort : waitIn,

TState : wait, Substate : noSub , OPort :

waitOut, InBufferPort : EmptyFile, AccessData

: EmptyFile, OutBufferPort : EmptyFile,

Period : 20, Execution-time : 10, Clock-P :

0, Clock-C : 0, MaxData : 0, MaxPreempt : 0 ,

NBS : (TSCREEN & 4) >

 < TSCREEN : ThreadImpl | IPort : waitIn,

TState : wait, Substate: noSub, OPort:

NoPort, InBufferPort : EmptyFile, AccessData

: EmptyFile, OutBufferPort : EmptyFile ,

Period : 15, Execution-time : 7, Clock-P: 0,

Clock-C: 0, MaxData : 0, MaxPreempt: 0 , NBS

: EmptySet >}.

(tomod MODEL-CHECK-AADL-PROP is

 including TIMED-MODEL-CHECKER .

 protecting AADL-SPEC .

 ops CompleteStateTGPS : -> Prop [ctor].

 var REST : Configuration .

 var Imp : Oid .

 vars R R' R'' : Time .

eq {REST < TGPS : ThreadImpl | Substate :

 Complete >} |= CompleteStateTGPS = true .

endtom)

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.10, October 2010

23

purpose, we have chosen Rewriting Logic via its practical

language Maude as the underlined formalism for the proposed

semantic framework.

This article presents a first step to achieve behaviour

formalization of AADL architecture. The next steps must refine

and complete the set of real-time object-oriented modules

presented above. Other architectural elements must also be

investigated (eg. AADL properties), we will extend the proposed

formal analysis approach to other property kinds specifying space

constraints and temporal ones.

7. REFERENCES
[1] SAE International 2008 Architecture Analysis and Design

Language (AADL) Standard, Version 2. SAE Draft Standard

AS5506 V2.

[2] Dissaux, P., Bodeveix, J.P., Filali, M., Gaufillet, P., and

Vernadat, F. 2006 AADL Behavioral Annex. In Proceeding

of the DASIA‟06, Data Systems in Aerospace- Conference,

Berlin, Germany, ESA SP-630.

[3] Ölveczky, P. C. 2007 Real-Time Maude 2.3 Manual.

Department of Informatics, University of Oslo.

[4] Clavel, M., Duran, F., Eker, S., Marti-Oliet, N., Lincoln, P.,

Meseguer, J., and Talcott, C. 2008 Maude Manual (Version

2.4).

[5] Meseguer, J. 1992 Conditional rewriting logic as a unified

model of concurrency. Theoretical Computer Science, 96(1),

pp. 73-155.

[6] Marti-Oliet, N., Meseguer, J. 1993 Rewriting logic as

logical and semantic framework. Technical Report SRI-CSL-

93-05, SRI International, Computer Science Laboratory.

[7] Bruni, R., Meseguer, J. 2006 Semantic foundations for

generalized rewrite theories. Theoretical Computer Science

360, pp. 386-414.

[8] Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N.,

Meseguer, J., Quesada, J. F. 2002 Maude: Specification

and programming in rewriting logic”, Theoretical Computer

Science, pp. 187–243.

[9] Ölveczky, P. C., Meseguer, J., and Talcott, C. 2006

Specification and Analysis of the AER/NCA Active Network

Protocol suite in Real-Time Maude. In Formal Methods in

System Design, vol. 29, pp. 253-293.

[10] Ölveczky, P. C., and Caccamo, M. 2006 Formal Simulation

and Analysis of CASH Scheduling algorithm in Real-Time

Maude. Electronic Notes in Theoretical Computer Science,

L. Baresi and R. Heckel editors, Vol. 3922, pp. 357-372.

[11] Ölveczky, P. C., and Thorvaldsen, S. 2006 Formal

Modeling and Analysis of Wireless Sensor Network

Algorithms in Real-Time Maude. In IPDPS‟2006: Parallel

and Distributed processing Symposium.

[12] Jerad, C., Barkaoui, K., and Grissa-Touzi, A.. 2007

Hierarchical Verification in Maude of LfP Software

Architectures. In ECSA'07, 1st European Conference on

Software Architecture, Aranjuez (Madrid), LNCS , Springer,

pp. 156-170

[13] Barkaoui, K., Boucheneb, H., and Hicheur, A. 2008

Modeling and Analyzing Time-Contrained Flexible

Workflows with Time Recursive Petri Nets. In 5th

International Workshop on Web Services and Formal

Methods Co-Located with BPM 2008, LNCS volume 5387,

Springer R. Bruni, pp. 19-35.

[14] Berthomieu, B., Ribet, P.-O., and Vernadat, F. 2004 The

tool TINA-construction of abstract state spaces for Petri nets

and time Petri nets, International Journal of Production

Research, Vol. 42, pp. 2741-2756.

[15] Garavel, H., Mateescu, R., Lang, F., Serwe, W. 2007 CADP

2006 : A toolbox for the construction and analysis of

distributed processes, In Werner Damm and Holger

Hermanns editors CAV, LNCS, Springer vol. 4590, pp. 158-

163.

[16] Chkouri, M., Robert, A., Bozga, M., and Sifakis, J. 2008

Translating AADL into BIP -Application to the Verification

of Real-time Systems, In Proc. of MoDELSACES-MB

Model Based Architecting and Construction of Embedded

Systems, pp. 39-54.

[17] Renault, X., Kordon,, F., Hugues, J. 2009 Adapting models

to modelcheckers, a case study : Analyzing AADL using

Time or Colored Petri Nets. In Proceedings of the 20th

International Symposium on Rapid System Prototyping,

IEEE Computer Society, pp. 26-33.

[18] Renault, X., Kordon, F., Hugues, J. 2009 From AADL

architectural models to Petri Nets: Checking model viability.

12th IEEE International Symposium on Object-oriented

Real-time distributed Computing (ISORC'09), IEEE

Computer Society, pp. 313-320.

[19] Sokolsky, O., Lee, I., and Clarke, D. 2009 Process-Algebraic

Interpretation of AADL Models. 14th International

Conference on Reliable Software Technologies, LNCS

5570, pp. 222-236

[20] Yang, Z., Hu, K., Ma, D., and Pi, L. 2009 Towards a Formal

Semantics for The AADL Behavior Annex. In Design,

Automation & Test in Europe DATE 2009, pp. 1166-1171.

