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ABSTRACT 

Returns on stocks have traditionally been modelled by fitting a 
suitable statistical process to empirical returns. Studies on agent 
based  models of stock market have been carried out by 
researchers, primarily on US markets. This paper analyzes the 
empirical features generated using historical data from the 
Bombay Stock Exchange (BSE), employing the  concept of 

agent based model proposed by LeBaron[2,3,8]. Agent-based 
approach to stock market  considers stock prices as arising from 
the interaction of a number of individual investors. These 
investors are modeled as intelligent agents, using differing 
lengths of past information, each trading with its own rules 
adapting and evolving over time, and this in turn determines the 
market prices. It is seen that the model generates some features 
that are similar to those from actual data of the BSE.  
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1.   AGENT BASED MODELLING (ABM) 

OF STOCK MARKETS 

 

1.1 Introduction 
Returns achieved on stock markets contain certain characteristic 
features[1]. These features include a distribution of returns that 
is more peaked than the Gaussian distribution, periods of 
persistent high volatility, and correlation between volatility and 

trading volume. It has been shown that agent based models are 
able to demonstrate this, unlike the traditional financial models. 
The traditional economic models generally use either a simple 
distribution of returns such as the Gaussian and treat extreme 
events as outliers, or construct a statistical process which 
reproduces some of these features. The agent-based approach 
considers a population of intelligent adaptive agents and let 
them interact in order to maximize their financial performance. 

It has been shown that such an approach can replicate features of 
real stock markets[2,3,4,5,6,7,12,13]. This paper is an extension 
of the work of LeBaron and aims to study the Bombay Stock 
Exchange by forward testing [8] an Agent Based Model where a 

market is run using real data as the price input up to the current 
date, and then allowed to continue on into its future to enable the 

study of the empirical features. An attempt is made to study the 
behavior of agents with varying memory to see whether all 
horizon agents dominate the BSE market, preventing the stable 
long horizon agents to play a crucial role, as was established for 
the US market by LeBaron[2,3,8,9]. In this study, the financial 
data of BSE from the years 2003 to 2009 is considered for 
building the model, as against LeBaron‟s model, where the data 
is entirely generated. 

1.2   Why use an agent-based model for the 

stock market? 
Agent-based simulation is a bottom-up system  approach to 

forecast and understand the behaviour of non-linear systems[5]. 
Interaction between agents is a key feature of the agent-based 
systems. As an alternative to regarding stock prices as stochastic 
processes, in ABM, prices arise from simulating the interactions 
of autonomous entities with different profit-making strategies. 
The collective behaviour of such groups of individuals is not 
determined by a single mechanism but by the interaction of 
individual behaviours distributed across the group and it is only 

by  the individual behaviours that the group behaviour can 
emerge. This indeed is the mechanism prevailing in stock 
markets and hence the aptness of agent based models for 
analysis. A large number of agent-based stock market models 
have been proposed by researchers. [2,4,6,7,8,9,10,12,13,14,15]. 

1.3    Features of a Stock Market 
The returns achieved from investing in shares in a stock market 
accrue partly from changes in the share price as capital gains 
and partly from dividends paid. Returns on shares are volatile 
and are consequently expected to be higher than for a safer 
investment such as risk free bonds. A key property of returns on 
shares is their apparent randomness which follows from the 
concept of an efficient market based on the Random Walk 

Hypothesis. This hypothesis states that it is impossible to predict 
future price changes based on historic data. Therefore a realistic 
model of a stock market should show autocorrelation of price 
return close to zero; a distribution of returns which is non-
Gaussian  having a kurtosis significantly above three with “fat 
tails” and persistence in asset return volatility.  However in 
practice the Gaussian is often used to represent the stock market 
returns since it is amenable to easier analytical tractability, 

notwithstanding the fact that in actuality, the returns are non-
Gaussian.  
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2.  Review of Agent Based Model of LeBaron 
The design proposed by LeBaron [2,3,8], reviewed in the 
following paragraphs is used for analysis of the BSE. 

2.1  Agent Based Model 
The agents used  has some “intelligence” and  the investment 

decisions specified on a proportion of wealth are based upon an 
information set. A key concept of the model  is that of “bounded 
rationality” – that an agent cannot feasibly analyse all the 
information in the market, and can at best combine limited 
“bounded” rational decision-making with empirical evidence. A 
Walrasian auction is adopted, wherein each agent calculates its 
demand for shares at every possible price and submits this to an 
auctioneer. The price is then set so that total demand across all 

agents equals total shares that can be issued.  

2.2  Assets 
The model contains two assets for investment – cash and equity. 
Cash pays a constant guaranteed rate of return rf  (risk free). The 
equity pays a dividend at each time step. This is random and the 

log-dividend follows a random walk: 

log (dt+1) =   log (dt) + t  

where dt is the dividend and t is a Gaussian random variable 

N(μ, ). The equity is available in a fixed supply of one share 
for the population. If si is the share holding of agent i, the  

     I 

constraint that  si  = 1  will be always maintained,  

                        i = 1 
where I is the number of agents. The equity price arises through 
the interactions of the agents. 

2.3 Agents 
The model contains a number of agents. Each agent has a 

certain wealth and at each time step it decides how much of its 
wealth to consume and how much to save, and how much of its 
savings wealth to allocate to equity and how much to cash. The 
agents are of Constant Relative Risk Aversion (CRRA) of 
logarithmic form and at time t makes these decisions in an 
attempt to maximise its lifetime utility 

               

ui,t    = E t   
s log  ci,t+s

                                        s= 0
subject to the constraint 

wi,t  =  pt si,t+ bi,t + ci,t= ( pt+ dt )si,t-1+ (1+ rf )bi,t-1 
where ui,t is the lifetime utility of agent i from time t 

onwards,  is a constant, ci,t is the consumption of agent i at 
time t, and wi,t  is wealth at time t, si,t and bi,t are the risky and 

risk-free asset holdings, pt  the share price, dt the dividend paid. 
The two decisions, choosing ci,t  and si,t, will affect the agent‟s 
pattern of consumption. Utility would model the benefit 
obtained from an amount of money and utility of wealth is 
optimized  rather than actual wealth. The optimal amount of 
wealth to consume at a single time step can be shown to be a 
constant proportion of wealth 
  ci,t = ( 1-  wi,t  

The time rate of discount is set to 1/1+r where r = 0.01 is 
the discount rate. The agent does not consider what happens 
over the whole of the future, but restricts itself only over the 
next single time step. In order to maximise ui,t   it is sufficient to 
maximise the expected log-return: 

Et log [1 + t rt+1  + ( 1- t ) rf ] 

where t is the proportion of wealth allocated to equity, rt+1  is 
the return achieved from equity in the period (t, t+1) and rf   the 
constant cash return. It is not possible to perform the 
maximisation deductively since the equity returns distribution is 
not known in advance (these arise from the interaction of the 

agents). Therefore the agents  maximise a sample expectation 
taken from historic returns. Because the distribution of returns 
may change over time, agents do not look at the whole past 
history, but rather look at the last Ti periods, to maximise 

          Ti 

1/Ti      log [1+ ( t-k   rt+1-k ) + ( 1- t-k) rf ] 
         K=1 
where Ti is a constant for agent i. The choice of Ti will affect an 
agent‟s performance. There are many ways in which an agent 
could determine its allocation to equities. Under LeBaron‟s 
model it does this by using one of a pool of rules. 

2.4  Rules 
A rule recommends the proportion of savings an agent 

should allocate to equities, taking information about the current 

state of the market and produces an output (  The rules 

are implemented as simple feed forward neural network  (Figure 
1) with a single hidden unit with restricted inputs giving an 
output.  The equations given below define the network, where zt 
is time t information and wj are parameters. k takes values from 1 

to 6 so that the weight array {w} consists of 19 parameters. The 
output from the intermediate neuron k is denoted h k.  

                   
  hk    = g1(w0,k z t, k + w1,k) 

            6 
α (zt)  = g2 (w2 + Σ  w3,k hk) 

                 k=1 

g1(x)  = tanh(x) 
 

g2(x)  = ½(1+tanh(x/2)) 

 

 
Figure 1: Structure of FFNN 

2.5  Input Values to the FFNN - The 

Information Set 
The information set consists of six items reflecting various 

fundamental and technical trading strategies, and its 
combinations. These six items extract potentially useful 
information from the large quantity of historic data and 
simplifies the decision making process. The first three inputs are 
the returns on equity in the previous three time-steps, useful for 
technical trading. The fourth is a measure of how the current 
price differs from the rational-expectations price. The last two 
inputs measure the ratio between the current price and 

exponentially weighted moving averages of the price. The 
Information set is: 
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zt,1  = rt  = log( (pt +dt)/pt-1) 
zt,2 = r t-1  

zt,3 = r t-2 

zt,4 = log(r pt/ dt) 
zt,5 = log(pt/ m1,t) 
zt,6 = log(pt/ m2,t) 
 

            Where pt  is the share price, dt is the dividend paid, r is 
a constant and mi,t  is the moving average given by 

 
mi,t  =  ρi  mi,t-1 + (1- ρi  ) pt  

with ρ1 = 0.8 and ρ2 = 0.99. 

2.6 Trading and price-setting 
For a given share price p, each agent can determine how 

much of its wealth it wishes to invest and how much of this is to 
be invested in shares. Consequently it arrives at a demand 

function for shares 
di,t (pt)= [ αi (pt, It ) β Wi,t ] / pt 

where i denotes the agent, t refers to time, and It represents the 
information set. A Walrasian auction is then used to find the 
price pt. Walrasian auction is one in which the price is set by an 
auctioneer in order that the total demand for shares at that price 
is equal to the available supply: 
             Nagents 

 di,t (pt)= Nshares 
                I= 1 

where Nagents is the number of agents and Nshares the number of 
shares. Because the new price affects the information set, and 
this affects the rule output which in turn affects the agents‟ 
demand, the equations to solve are non-linear. This equation is 
solved using complex recursive function which searches for a 
value of pt that satisfies these equations starting from the price at 
the previous time-step.  

2.7 Adaptation and evolution 
 

The model contains three forms of adaptation and evolution 

 Agents can adapt by selecting a different rule. At each 

time step a proportion of the agents can adapt. An 
agent adapts by comparing the performance of its 
current rule with a randomly chosen rule, and 
switching to the new rule if the new rule scores more 
than the old. 

 Agents evolve at each time step, wherein agents with 

the least wealth is removed from the population. It is 
replaced by a new agent which is given the median 
cash and equity holding. The new agent is given a 

memory length taken from a random distribution. 

 The rules are also evolved. A rule is replaced if it has 

not been used for 10 time steps, and is replaced using 
one of three genetic operators: copying a parent and 
changing a single weight to a random number in (-
1,1); copying a parent and adding a random number in 
(-0.25, 0.25) to a single weight, and copying a parent 
and replacing the weights for one neuron with those 
for the corresponding neuron of another parent. 

3.   Implementation – Agent Based Model of 

BSE 

 3.1 Validating the FFNN structure for Rule 
BSE Sensex, the most popular Indian stock index has been 

chosen for the study. The time step considered here is one 
month. Prior to adopting the FFNN as the structure for the 
Rules, we have validated it by using the BSE Index data. The 
MATLAB Neural Network Toolbox has been chosen for 
creating, training and testing the network. The FFNN was 
trained with inputs from historical prices of BSE index, 

calculated taking monthly closing prices of BSE stock index 
from the year 2003 to 2008. The output is a simple function 
α(zt,wj). The output from the network, α  is a 0 or 1 which would 
suggest  where to invest in the next time-step, a 0 indicating that 
risk-free asset (Public Provident Fund data considered) would 
give higher returns for the particular time-step and a 1 indicating 
that investing in an Index fund tracking the BSE  would  render 
higher returns. The network was tested with data pertaining to 

the year 2009 and the results have been found to validate the 
market scenario. It has been found that the FFNN with one 
hidden layer with six neurons has produced quite accurate 
results. Thus the FFNN has been found to establish the 
functional dependency between the input parameters and the 
market behavior and hence has been validated for the purpose of 
generating the rules for the agents of BSE.  

3.2   Agents 

The model contains of a number of agents. Each agent has 

properties that define its behavior. The properties of agents 
defined in this model are given in Table 1 below: 

 
Table 1  Agent Class 

3.3  Step by Step Process 

The flow diagram of the implementation is illustrated as a Step 
by Step Process in Figure.2:- 

NAME  PROPERTY  

Rule now  Integer specifying the rule used by agent 

Wealth  Wealth till (t-1) to be spent at time t 

Memory  No of time steps agent looks back 

Returns  Returns in the past 

Proportions  Alpha values used in the past 

Memwealth  Memory bound wealth 

Volume  Volume it demands at each time step 

Exist  No of time steps the agent has existed 
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Figure 2 Step by Step Process 
The simulation of the system is done for two cases  

 All memory case- where agents with all memory 
lengths are present in the market. 

 Long memory case- Only agents with long memory 
are present in the market. 

The simulation runs for 1000 iterations for both the cases and 

the prices, returns and the interaction and evolution of agents are 
monitored.  

3.4   Parameter settings 
Table 2 gives the parameter settings used in the experiment. A 
total of 140 agents have been used. The model was initialised by 

setting agent memories and neural network parameters using a 
uniform random distribution over the allowable range. Each 
agent started with  an equal shareholding set to 100. 
 

Table 2.  Initializing Various Parameters 

 

 3.5  Results 
Forward Testing simulation was carried out by feeding data 
from the BSE index prices. For the first 70 months, data from 

BSE is used by the agents. Subsequently, the prices are 
generated by Walrasian auction. The process continues for 1000 
iterations. The “all-memory case” followed by “long memory 
case” has been implemented. The following results emerge: 

 In the “long-memory case” where agents‟ memory 

lengths are in the range [51,70], the  prices converge 
after an initial learning period to the rational-

expectations price, so that the returns are Gaussian. 
There is very little trading. 

 In the “all-memory case” where agents‟ memory 
lengths are in the range [1,70] prices do not settle to 

the rational-expectations price. Returns are more 
volatile, and the distribution has fat tails. Shares 

continue to be traded frequently. 

 3.6  Prices 
 Figure 3 shows the variation in prices for the all 

memory case. The first 70 time steps show variation of 
BSE index prices. After the 70th time step prices are 

generated through Walrasian auction as a result of 
interaction between agents with different memory 

lengths and trading strategies. 

 
 
 

 

 

 

Figure 3. Price time series for all-memory agents 

 

 

 
 

 

 It can be understood that the prices vary considerably 

in the presence of agents with all memory lengths. The 
volatility in prices is evident in the above case. 
 

 Figure 4 shows the variation in prices for the long 

memory case. The first 70 time steps show variation of 
BSE index prices. After the 70th time step prices are 
generated through Walrasian auction as a result of 
interaction between agents with similar memory 
lengths (long) and slightly varying trading strategies. 

 

Figure 4. Price time series for long-memory agents 

PARAMETERS VALUES 

Number of Agents 140 

Minimum Memory 1 

Maximum Memory 70 

Length of one Time-Step 1 month 

Number of Rules 250 

Number of Shares 1 

Number of time-steps projected 1000 

Minimum Neural Network weight -1 

Maximum Neural Network weight 1 

Time steps before a new rule is 

discarded 

10 
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 Further, it is seen that prices tend to stabilize after 

some time. This is because agents converge to similar 
strategies over a period of time due to similar memory 
lengths. This in turn suppresses trading and prices 
stabilize to the rational expectations price. Hardly any 

shares are traded once the rational-expectations price 
has been reached. Comparing the two figures and the 
data from BSE, we could deduce that it is because of 
the presence of agents with varying memory and 
different trading strategies, trading takes place. 
Volatility in prices arises because of these differences 
in agents‟ properties. 

3.7   Returns 
 Logarithmic returns are considered here which is 

calculated from the prices and dividends. It is 
depending on these returns that an agent chooses his 
trading strategy (rules).  

 The following graph, Figure 5 shows variation in 

returns for the all memory case. The returns for the 
first 70 times steps are calculated using prices and 
dividends from the BSE. After this the returns are 
calculated with prices generated by the Walrasian 
auction and random dividends. 

 

 

Figure 5.   Return time series for all-memory agents 

 The above graph shows how returns from the markets 
closely resemble the returns arising out of interaction 

between agents of varying memory lengths.  

 The following graph, Figure 6, shows variation in 
returns for the long memory case. The returns for the 

first 70 times steps are calculated using prices and 
dividends from the BSE. After this the returns are 
calculated with prices generated by the Walrasian 
auction and random dividends.  

 The variation in returns in this case is very less 
compared to the actual market and the all memory 
case. This is because of similarity in property of 
agents that interact in the market. These graphs further 
emphasize the fact that the market is comprised of 

agents with different strategies, different memory 
length and irrational behavior.   

 

Figure 6.   Return time series for long-memory agents 

3.8   Statistical Observations 
The statistical observations obtained from the runs of the 

model are given at Table 3. The table presents summary 

statistics for these returns in the two different cases along with 
comparison of the BSE Sensex. The first columns correspond to 
the series standard deviation, and the second to kurtosis. In the 
standard deviation, the all-memory case shows a value closer to 
the BSE data implying the existence of investors of all kinds of 
memory in a market rather than investors of only long memory.  
The column labeled kurtosis shows the flatness of the curve and 
also the peak value which in turn can give an idea about the 

variations from the mean.  
 

Table 3 Return Summary Statistics 
 

 Standard Deviation Kurtosis 

BSE 4.24 1.9 

All Memory 3.98 1.78 

Long Memory 1.87 1.2 

 3.9  Other Miscellaneous Observations 
Other observations detected along with possible 

explanations for such behavior  are given below:- 

 Agents with memory length around 25 get deleted 

often. Though the reason for this could not be 
conclusively understood, one possible explanation 
could be because of the fact that in the data fed in, the 
BSE reaches the lowest values after a period of about 
25 months. Hence this could have affected the agents‟ 

strategy, thereby affecting its performance. 

 Agents with memory length from 50 to 60 stay for a 

longer period of time. Some agents even stay 
throughout the entire 1000 runs. A possible 
explanation is that this memory is the optimal period 
to look back in order to get the maximum returns from 
the market. 

 Rules which gave a value of α near 0.5 were 

modified early. This could be attributed to two 

factors:- 
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 In cases of  a fall in BSE Sensex, rules which have a 

much lower α value reduced the losses, thus making 
the earlier rules poor.  

 In cases of rise in Sensex, rules which have much 
higher α value increased the profits, again making the 

α = 0.5 rules poor. 

 3.10  Variation from LeBaron Model  
 In order to reduce the computational complexity and 

to synchronize the model with the BSE, few variations 
have been introduced in LeBaron‟s model as follows:- 

 The number of agents have been reduced from 250 to 

140. 

 Memory of the agents is between [1,70], limited to 

available BSE data. 

 A tolerance value of 0.1 was introduced into the 

Walrasian auction. 

 Since the computational complexity of „fzero‟ 

function in MATLAB was very high, a customized 
version of the function which works in a similar 
manner, has been developed.  

4. FUTURE ENHANCEMENTS 
 The simulation was run for 1000 time steps due to 

high computational duration. It can be extended 
further to 10,000 runs (as suggested in the original 
paper) and patterns can be observed for a longer 

period of time. Further, owing to computational 
complexities, tolerance levels have been introduced, 
which could be removed in future simulations for 
better results. 

 In the actual market, massive fluctuations occur due to 

natural disasters, calamities, war etc. These 
catastrophic events are not considered when 
generating prices in Walrasian auction, since in this 
simulation, the interaction between agents alone 
determines the price. Further research can be done, so 
as to embed theories underlying such events so as to 

give a more realistic approach to the price formation 
mechanism. 

 Lastly, the Walrasian auction is used to generate 

prices in this model. Further studies could make this a 
prediction tool. For this to be possible, the agents may 
have to be redefined, their numbers and interactions 
increased and tested exhaustively to verify and 
validate. 

 

5.  CONCLUSION 
LeBaron‟s model of artificial market [2,3,8]  has been 
successfully replicated employing the  concept of Agent Based 
Modeling with few modifications so as to synchronize it with the 
BSE. This was implemented by forward testing the BSE data (a 
strategy different from that adopted by LeBaron) and the prices 
and returns were observed over a period of 1000 time steps. 

Various empirical features of BSE market have been generated. 
The results obtained suggest that it is indeed the interaction 
between agents of different strategies that brings volatility and 
trading in the market. This also proves that Agent Based Models 
are capable of quantitatively replicating various features of actual 
financial markets.  Observations on the behavior of agents were 
made to identify what type of agents and what strategies are 

successful in the market. Further research would have to be 
carried out to refine this model as a prediction tool for the BSE.  
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