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ABSTRACT 
The fuzzy relational databases which use the special types of 

constraints, called dependencies, as a semantic tool for 
expressing properties of the data like a classical relational 
databases. Fuzzy functional dependencies(ffd) and fuzzy 
multivalued dependencies(fmvd) are the most common types 
of dependencies. Similar to classical relational database, a full 
utilization of fuzzy multivalued dependencies in the design of 
fuzzy relational databases requires that fuzzy embedded 
multivalued dependencies(fEmvd) and fuzzy subset 

dependencies(fsd). These multivalued dependencies hold in a 
projection of a relation but not necessarily in the relation 
itself. The main object of this paper is to extend the concept of 
Embedded Multivalued Dependency (EMVD) and Subset 
Dependency (SD) to fuzzy relational database. 

Key Words: Fuzzy relational databases, Fuzzy functional 

dependencies, Fuzzy multivalued dependencies, Fuzzy 
embedded multivalued dependencies, Fuzzy subset 
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1. INTRODUCTION 
The fuzzy relational databases[7,8,13,14,16] which use the 
special types of constraints, called dependencies, as a 
semantic tool for expressing properties of the data like a 
classical relational databases[2,3,15]. Fuzzy functional 
dependencies[13,14] and fuzzy multivalued dependencies[7,8] 
are the most common types of dependencies. Similar to 
classical relational database[15], a full utilization of fuzzy 

multivalued dependencies in the design of fuzzy relational 
databases requires that fuzzy embedded multivalued 
dependencies(fEmvds) and fuzzy subset dependencies. These 
multivalued dependencies hold in a projection of a relation 
but not necessarily in the relation itself. 
 
The  main object of this paper is to extend the concept of  
Embedded Multivalued Dependency (EMVD) and Subset 

Dependency (SD) to fuzzy relational database. 
 
This paper is organized in the following manner. In section 2, 
the basic definitions and concepts related to the classical 
relational databases and fuzzy relational databases are 
presented. Fuzzy integrity constraints are discussed in section 
3. An Embedded fuzzy multivalued dependency is defined in 
section 4. Section 5 defines fuzzy subset dependencies and 

proves the soundness and completeness of associated 
inference rules. Concluding remarks are given in section 6. 

2. BASIC DEFINITIONS 
In this section the basic terminology, notations, definitions 
and concepts related to the classical relational data 
model[2,3,15] are given and a few definitions and concepts 

from fuzzy relations are reviewed.  

Classical Relational Data Model 
The universe of a relational database denoted by R, is a  finite 

set of  elements  A1, A2 , . . . . ,An called attributes. The 

domain of an attribute Aj , for j = 1, 2, …. , n, is written as 
dom(Aj). In this paper, the letters A, B, … are used for single 
attributes and the letters X, Y, …. are used for set of 
attributes. The union of the two sets X and Y is written as XY. 
 

A relation r on the set of attributes (A1, A2 , . . . . ,An ) is a 

subset of the Cartesian product dom(A1)  …..  dom(An). 

The elements of the relation are called tuples or rows. 
Normally, r is used an instance of a relation scheme R. if t is a 
tuple and A is an attribute in relation R, then t[A] is a tuple 
which corresponds to an attribute A. 
 
Data dependencies are constraints imposed on data in a 
database. In addition to a set of attributes, a set of data 
dependencies is also an essential part of a relation scheme. 

The class of functional dependencies(fds) was the first type of 
data dependencies. Let r be an instance of a relation scheme 

R. Relational r satisfies fd: X  Y, if for all t1 and t2 in r, 

t1[X] =  t2[X] implies t1[Y] =  t2[Y]. 
 
A multivalued dependency(mvd) is a constraint on the set R 

of attributes and is of the form X  Y, where X and Y are 

subsets of R. Relation r satisfies mvd X  Y, if for every 

pair of tuples in r, say t1 and t2 , there is another tuple t3 in r 
such that t1[X] = t2[X] =  t3[X]  implies t1[Y]  =  t3[Y]   and   
t2[Z] = t3[Z], where Z = R – XY. 
 

An Embedded multivalued dependency (Emvd) is a constraint 

on R and is written as X  Y / Z where XYZ is a proper 

subset of R. Relation r satisfies Emvd X  Y / Z, if mvd  X 

 Y holds in the projection r[XYZ]. 
 

Note that the notation X  Y / Z means  X  Y and X 

 Z for XYZ in R. The logical equivalence for a mvd 
cannot be extended to any Emvd. 

 
Inference axiom for Emvd: 
 

EMD1 (Projection) : If X  Y / Z, Y‟  Y and   Z‟  Z, 

then  X  Y‟ / Z‟. 

 
Subset dependencies were first introduced by sagiv and 
walecka[15]. Subset dependencies are generalizations of 
embedded multivalued dependencies. 
 
A subset dependency(SD) is a constraint on the set R of 

attributes that contains XYZ and is of the form Z(X)  Z(Y)  

for all tuples t1 and t2 in r with t1[X] = t2[X], there exists a 
tuple t3 in r such that t1[Y]  =  t3[Y]   and   t2[Z] = t3[Z]. 
 

Generally the notation Z(X)   Z(Y) is used for the subset 

dependency. For our convenience we denote the subset 

dependency as  Z(X)  Z(Y). 



International Journal of Computer Applications (0975 – 8887)  
Volume 8– No.13, October 2010 

 

30 

 

Fuzzy Set Theory 
A fuzzy set A in U = { u1, ….., un }, A  U will be written as 

 A = { ( u1)/ u1, ( u2)/ u2, ….. , ( un)/ un} 

where 

A(u)  = U  [0, 1]. 

The membership function A(u)  [0, 1] is the membership grade of u in A, with the grades 1 and 0 representing full membership and 

non-membership, respectively. 
 Let  A and B be fuzzy subset of U. The basic operations performed on fuzzy sets are[1,4,5,6,9,10,17] 

A  B(u)  = max ( A(u), B(u) ) , 

A  B(u)  = min ( A(u), B(u) ) , 

Ã(u)  = 1 -  A(u).  

The Cartesian product A  B is defined to be fuzzy subset of  U1  U2 = U, where 

A  B(u)  = min ( A(u), B(u) ) . 

 

If U is the Cartesian product of n universes of discourse U1  U2  …  Un  ,  then an n-ary fuzzy relation R in U is a fuzzy subset of  

U1  U2  …  Un  and is characterized by the n-variate membership function 

 r : U1  U2  …  Un   [0, 1].  

FUZZY RELATIONS 
A  fuzzy  relation scheme  R  and  a  fuzzy  relation  r  on  a  relation  scheme R(A1 A2  . . . . An ) are same as  classical relational data 

model. As in classical relations, r will be represented as a table with an additional column for r( t ) denoting the membership value of 

the tuple t in r. For any tuple not present in the table we assume r( t ) = 0. The tuples for which r( t ) > 0 are only considered in this 

paper. 
Example 2.1: Consider the relation scheme COMPANY(N, E, S, P, Y), where N stands for Company name, E for Number of 
employees, S for Sales, P for Profit, and Y for Year. An instance r of a relation R is shown in Fig.2.1. In this case some of the domain 
values are crisp, where as dom(E), dom(S), and dom(P) are fuzzy subsets. 

 

Fig 2.1: An instance r of COMPANY(N, E, S, P, Y) 
            

N  E     S     P    Y        

 A  10  11000  1100  1985     0.37 
 A  11  10000  1600  1986     0.67 
 A  14  10000  1150  1987     0.50 
 A  12  13000  1800  1988     0.67 
 A  9  8000  1200  1989     0.50 

  
Suppose that the universe of discourse Ue for the number of employees is in the range 0-30. Up , the universe of discourse of profit is in 

the range of Rs. 500-3,000 and Us, the universe of salary is in the range of Rs.5,000-30,000. The membership function SE, HS, and 

HP of the fuzzy sets, small number of employees, High-sales and High-profit, are as given below: 

 

SE (E) =    (1 + |e – 10| / 4 )-1     for e ≥ 10 

    1   for e < 10 , 
 

 HS (S) =    (1 + |s – 12000| / 4000 )-1   for s  12000 

                    1                                          for s > 12000 , 
 

HP (P) =     (1 + |p – 1600| / 400 )-1       for p  1600 

                     1                                         for p > 1600 . 
  

In this example, r( t ) can be represented as the truth value for the fuzzy proposition, “y has high-sales and high-profit”, for the tuple t. 
Thus the truth value of the fuzzy proposition “Company A has high-sales and high-profit” is 0.67. 

 

3. FUZZY DATA CONSTRAINTS 
To extend the classical relational data model to deal with 
fuzzy information it would be necessary to consider integrity 
constraints that may also involve compound integrity 
constraints.  
 
The integrity constraints in relational database systems can be 
classified into two major types. One is domain dependency 
and another is data dependency. As an example of fuzzy 

domain dependency, consider a relation STUDENTS(Name, 
Age, Height, Course, Marks). An integrity constraint may be 
stated as “most of the DBMS students are young” or “most of 

the A.I students are intelligent”. As an example of a fuzzy 
data dependency, consider a relation scheme 
EMPLOYEE(Name, Department, Job, Experience, salary), 
where an integrity constraint may be stated as “in any 
department employees having similar jobs and experience 
must have almost equal salaries”. This type of data 
dependency is called fuzzy functional dependency[13, 14]. As 
another example of fuzzy data dependency consider a relation 

scheme COMPANY(Name, Employees, Sales, Profit) for 
which an integrity constraint is “ if any company has almost 
equal sales then one set of profits are almost equal and 
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another set of employees are almost equal”. This type of 
compound data constraint can be viewed as fuzzy multivalued 
dependency[7, 8]. 
 
To deal with these data constraints the concept of 

particularization has been introduced by Zadeh[17, 18]. In 
order to evaluate the particularization of a fuzzy relation due 
to a compound fuzzy proposition, it is necessary to examine 
how the possibility distribution of a compound fuzzy 
proposition can be obtained from the possibility distributions 
of constituent atomic propositions. For this purpose, 
Zadeh[17,18] developed the translation rules. In this paper, 
implication rule of the translation rules are discussed. Suppose 

F and G are fuzzy subsets of the universe U and V, 

respectively, we associate possibility distribution X and  Y 

with atomic propositions “ X is F” and “Y is G”, respectively,  

where X = F  and  Y = G. Mamdani[9] suggested methods 

for a conditional fuzzy propositions, “if X is F then Y is G”. 
This method of translation rule is called the implication rule 
of inference. Mizumoto et al.[10] suggested several improved 
methods for implication rules. The translation rules for 

conditional fuzzy propositions are based on the implication in 
standard sequence logic Salpha(called Rs ), or the Godelian 
implication rule using Galpha logic(called Rg ). 
 
In this paper, the translation rule Rs is used to determine the 
possibility distribution associated with a conditional fuzzy 
proposition “ If X is F then Y is G ” given by  

                

 ( X  Y )  =  Rs ,                   (3.1) 

where Rs is a fuzzy subset of U  V with membership function 

Rs(u, v) =    1         if  F(u)    G(v),        (3.2)            

                0           otherwise. 
We consider the translation rule Rs with some modification[7, 8] to determine the possibility distribution associated with a 

compound conditional fuzzy proposition, “If X is F then (Y is G1 and Z is H2) or (Y is G2 and Z is H1) or (Y is G) or (Z is H)” as 

 ( X  Y )  =  Rs
*,       (3.3) 

where Rs
* is a fuzzy subset of U  V  W with membership function 

                                Rs*(u, v, w)  =   1            if  F(u)    (G1  H2 )  (G2  H1 )  G  H(v, w),    

                           0            otherwise.     (3.4) 

where  and  are “and” and “or” operators, respectively. 

 The other modified translation rule is defined as follows:  

Let F = F1  F2  F3 , G = G1  G2  G3 , H = H1  H2  H3 be fuzzy subsets in U, V, and W respectively. The possibility 

distribution  (Z (X)  Z (Y)) associated with compound fuzzy conditional proposition “ if X is F1 then Y is G2 and Z is H 3” is given 

by 

 (Z (X)  Z (Y)) = RS
**       (3.5) 

where RS
** is a fuzzy subset of U  V  W with membership function 

                                RS** (u, v, w) =      1            if  F1(u)    G2  H3(v, w),                                

         0            otherwise.     (3.6) 
Next, the fuzzy measure EQUAL(EQ)  is defined to compare two elements of a given domain[13, 14] in the fuzzy relations with 
membership function as 

EQ : U  U  [0, 1],      (3.7) 

where EQ satisfies the following conditions. For all a, b  U 

EQ (a, a) = 1                    (reflexivity),      (3.8) 

EQ (a, b) = EQ (b, a)       (symmetry).      (3.9) 

That is EQUAL is a resemblance relation over U. It may be noted that EQUAL is not assumed to be transitive. The resemblance of 
EQUAL over a composite domain is defined by 

EQ (t1, t2) = min{ EQ (t1[A1], t2[[A1]), …….., EQ (t1[An], t2[[An])},  (3.10) 

where t1, t2 be two tuples in D = dom(A1)  …..  dom(An). 

In this paper, the extended fuzzy resemblance relation EQUAL [8] is used to compare a set of elements of a given domain. A fuzzy 

relation EQUAL(EQ) over a universe of discourse U is defined as a fuzzy subset U  U  U, having the membership function 

EQ (a, b, c) = min{ EQ (a, b), EQ (b, c), EQ (c, a)},   (3.11) 

where a, b, c  U.  

The membership function EQ satisfies the reflexivity and symmetry properties and does not satisfy the transitivity. In terms of 

possibility theory, EQ(a, b, c) can be represented as the possibility of a, b,  and c to be „equal‟. Similar to (3.1), the fuzzy measure 

EQUAL of a set of elements over a composite domain is defined as 

EQ (t1, t2) = min{ EQ (t1[A1], t2[[A1], t3[A1]), …….., EQ (t1[An], t2[[An], t3[An])}. (3.12) 

Example 3.1: Consider the relation scheme COMPANY(N, E, S, P) and its relation r discussed in example 2.1. The equality is defined 
over different domains as follows. 

EQ (a, b) = 0  for a  b, a, b  {dom(N), dom(Y)} 

EQ (a, b) = 1/(1 +  |a – b| ) 

 
where 

 = 1  for a, b  dom(E), 

      = 1/1000 for a, b  dom(S), 

      = 1/100  for a, b  dom(P), 

All membership functions defined above are reflexive and symmetric. The fuzzy measure EQUAL can be used to represent the 
approximate equality of the domain values. The EQUAL relation is used to represent the fuzzy data dependencies. 
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Definition 3.1: A fuzzy dependency (ffd) f : X ⇝ Y with X, Y  R, holds in a fuzzy relation r on R, if for all tuples t1 and t2 of r (ie., 

r (ti) > 0 for i = 1, 2), we have 

                   EQ (t1[X], t2[X])      EQ (t1[Y], t2[Y]).    (3.13) 

Definition 3.2: A fuzzy multivalued dependency (fmvd) f : X ⇝⇝ Y holds in a fuzzy relation r on R, if for all tuples t1 and t2 of r 
there exists another tuple t3 in r such that  

 EQ (t1[X], t2[X], t3[X])     max { min (  EQ (t1[Y], t3[Y]),  EQ (t2[Z], t3[Z]),  

                                                               min (  EQ (t2[Y], t3[Y]),  EQ (t1[Z], t3[Z]), 

                                                        EQ (t1[Y], t2[Y], t3[Y]),  EQ (t1[Z], t2[Z], t3[Z])} (3.14) 

where Z = R – XY. 
 

4. EMBEDDED FUZZY MULTIVALUED DEPENDENCY 
In this section, the extension of the concept of embedded multivalued dependency(emvd) to fuzzy relational database.  

Definition 4.1:An Embedded fuzzy multivalued dependency (Efmvd) m: X ⇝⇝Y with X, Y, Z  R, holds in a fuzzy relation r over 

a set of attributes R if the fmvd X ⇝⇝Y/Z holds in r(XYZ) (ie., in the projection of r onto XYZ).  
 

As in  the  case  of  classical  database, the  fmvd  X ⇝⇝Y/Z  and  the  Efmvd  X ⇝⇝Y/Z are syntactically the same but 

semantically different. The fmvd X ⇝⇝Y/Z is defined only on relations over XYZ while the Efmvd X ⇝⇝Y/Z is defined on 

relation over any set of attribute that contains XYZ. However, the fmvd X ⇝⇝Y/Z and the Efmvd X ⇝⇝Y/Z express the same 
constraints on relations over XYZ. 
Example 4.1: Consider the relation scheme COMPANY(N, E, S, P, Y), where N = Company name, E = Number of employees, S = 
Sales, P = Profit, Y = Year. An instance r of a relation R is shown in Fig.4.1. The resemblance relations of this relation is discussed in 

example 3.1. The fuzzy relation r of  COMPANY satisfies the following Embedded fuzzy multivalued dependencies. 

NS ⇝⇝P/E 

NP ⇝⇝E/S 

E ⇝⇝S/P 

Fig 4.1: An instance r of COMPANY(N, E, S, P, Y). 
 

           N  E  S  P  Y   

 
 A  10  11000  1100  1985 0.37 
 A  11  10000  1600  1986 0.67 
 A  14  10000  1150  1987 0.50 
 A  12  13000  1800  1988 0.67 
 A  9  8000  1200  1989 0.50 
    

 The inference axiom of Efmvd is, 

EFM1 (Projection): If X ⇝⇝ Y/Z, Y   Y and Z   Z, then X ⇝⇝ Y / Z  . 

 To prove the soundness of the axiom, consider an instance r of R, then   X ⇝⇝ Y/Z means 

 

 EQ (t1[X], t2[X], t3[X])     max { min (  EQ (t1[Y], t3[Y]),  EQ (t2[Z], t3[Z]),  

                                                                min (  EQ (t2[Y], t3[Y]),  EQ (t1[Z], t3[Z]), 

                                                                 EQ (t1[Y], t2[Y], t3[Y]),  EQ (t1[Z], t2[Z], t3[Z])}           ---(1) 

Case 1: Let 1st part of the right hand side be the maximum. That is, 

          EQ (t1[X], t2[X], t3[X])     min (  EQ (t1[Y], t3[Y]),  EQ (t2[Z], t3[Z]) 

Since Y   Y and Z   Z, by FF1, Y ⇝ Y  and Z ⇝ Z . 

By definition 3.1, we have 

                 EQ (t1[Y], t3[Y])      EQ (t1[Y ], t3[Y ]) 

    EQ (t1[Z], t3[Z])       EQ (t1[Z ], t3[Z ]) 

therefore,  

min(  EQ (t1[Y], t3[Y]),  EQ (t2[Z], t3[Z]))  

                                           min {  EQ (t1[Y ], t3[Y ]), (  EQ (t1[Z ], t3[Z ])}          --- (2) 

From (1) and (2), we have 

      EQ (t1[X], t2[X], t3[X])      min {  EQ (t1[Y ], t3[Y ]),  EQ (t2[Z ], t3[Z ]) } 

That is, X ⇝⇝ Y /Z  holds in r. Proof of other three cases is similar. 
 

5. FUZZY SUBSET DEPENDENCY 
An  instance  r  of  a  relation  scheme  R(A1 A2  . . . . An )  satisfies  a  classical Sd: Z(X)  Z(Y), for all tuples t1 and t2  in r, if t1[X] = 

t2[X], then there exists another tuple t3 in r such that t3[Y] = t1[Y] and t3[Z] = t2[Z], where X, Y, and Z are sets of attributes and both X 
and Y are disjoint from Z, and t[X] is the projection  of a tuple t over the attribute X. 
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The above statement prescribes that if the first set of tuples agree on X-column, then the second set of tuples must agree on Y-column 
and the third set of tuples must agree on Z-column. This is too restricted. In a fuzzy database, we define the fuzzy subset 
dependency(fsd) as “ if X is approximately equal on first part then Y is approximately equal on second part and Z is approximately 
equal on third part”. 
 

Let R(A1  A2  …… An) be a relation scheme, and let X = Ai1, Ai2, …… Ail ; Y = Aj1, Aj2, …… Ajp  and Z = Ak1, Ak2, …… Akm  be 

subsets of A1, A2, …… An . A fuzzy proposition „X is Equal‟ defines a fuzzy subset of dom(Ai1)  dom(Ai2)  ……. dom(Ail) based 

on our interpretation of „equality‟, with the membership  function  determined  by (3.13). A  generalization  of  a  Sd: Z(X)  Z(Y)  in 

R  is  called  fsd:Z(X) ⇝ Z(Y). The compound fuzzy conditional proposition, „if X is equal on first part then Y is equal on second 
part and Z is equal on third part‟, can be translated into fuzzy relation using the translation rule RS

**. The possibility distribution 
determined by (3.5) and (3.6) define the fuzzy subset dependency in the following way: 

Definition 5.2: A fuzzy subset dependency (fsd): Z(X) ⇝ Z(Y), where X, Y, Z  R and both X and Y are disjoint from Z, holds in a 

fuzzy relation r, if for all tuples t1 and t2 of r there exists another tuple t3 in r, such that         
  

 EQ (t1[X], t2[X])  min {  EQ (t1[Y], t3[Y]), (  EQ (t2[Z], t3[Z])    (5.1) 

 
The fuzzy subset dependency introduced here reduces to classical subset dependency,  when  the  resemblance  relation  takes  the  

binary  values {0,1}  and  EQ (X1 , X2 ) = 0  for  X1  X2  where  Xj  Uj  for  j = 1, 2. Therefore, if   EQ (t1[X], t2[X]) = 1 (ie., t1[X] = 

t2[X] ) by definition 5.2, min{  EQ (t1[Y], t3[Y]), (  EQ (t2[Z], t3[Z])} must be equal to 1, then  EQ (t1[Y], t3[Y]) = 1 and   EQ (t2[Z], 

t3[Z])= 1. Hence t1[Y]=t3[Y] and t2[Z] = t3[Z] . 

 
Example 5.1: Let us consider the relation scheme COMPANY(N, D, E, S, P), where N = Company Name, D= Department, E = 
Number of Employees, S = Sales, P = Profit, and the resemblance relations discussed in example 3.1. The fuzzy relation r in Fig.5.1 
satisfies the following fuzzy subset dependency. 
 

   E(DS)  ⇝ E(P) 
Fig 5.2: An instance r of COMPANY relation 

 

          N            D             E                     S                    P                              

          
         A  x  10       11000            1100 0.37 

             A   x   8       10000            1600            0.67 
                         A  y   9       8000              1200 0.50 

     

Note that the fsd: E(DS)  ⇝ E(P) does not permit the tuple t = ( A   y    11    7500     1300 ) to be inserted in the database because r 

already contains the tuples  t1 = ( A    y     9     8000     1200), t2 = ( A    x     10     11000     1100), and 
 

 EQ (t[DS], t1[DS]) > min {  EQ (t[P], t2[P]), (  EQ (t1[E], t2[E])} 

 

However, insertion of thesis tuple would not violate a classical Sd: E(DS)  E(P). The integrity constraint “ if in any department, 

sales are approximately equal on first part then profit must be approximately equal on second part and the number of employees must 

be approximately equal on third part”. By suitably selecting EQ , the fsd: E(DS)  ⇝ E(P) provides a more acceptable model for such 

integrity constraints. 
 

5.1 Inference Rules for Fuzzy Subset Dependencies 
A set of sound and complete inference axioms are presented for fsds, which are similar to classical Sds []. Let R(A1 A2  . . . . An ) be a 
relation scheme and S be a set of fsds. An instance r of R satisfies all fsds in S. In the following axioms, X, Y, Z, V and W are subsets 
of the relation scheme R. 

FS1 ( Reflexivity) : If W  V and Z  V = Ø , then Z(V) ⇝ Z(W), holds in r. 

FS2 ( Augmentation) : If  W  V and Z  V = Ø and  Z(X) ⇝ Z(Y) holds in r, then  

                                     Z(XV) ⇝ Z(YW) holds in r. 

FS3 ( Transitivity): If  Z(X) ⇝ Z(Y) and Z(Y) ⇝ Z(W) hold in r, then Z(X) ⇝ Z(W)  

                                holds in r. 

FS4 (Union): If  Z(X) ⇝ Z(Y) and Z(X) ⇝ Z(W) hold in r, then Z(X) ⇝ Z(YW)  
                      holds in r. 

FS5 (Decomposition): If  Z(X) ⇝ Z(YW) holds in r, then Z(X) ⇝ Z(Y) and Z(X) ⇝  
                            Z(W) hold in r. 

FS6 ( Pseudo-transitivity) : If  Z(X) ⇝ Z(Y) and  Z(YW) ⇝ Z(V) hold in r, then  

                                            Z(XW) ⇝ Z(V) holds in r. 

 
To prove the soundness of these axioms, consider an instance r of R and let t1, t2, t3 be three tuples in r. 
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FS1 ( Reflexivity): Since W  V and Z  V = Ø, we have Z  W = Ø. So both V and W are disjoint from Z. By the definition 5.1 

Z(V) ⇝ Z(W) trivially holds in r. 

FS2 ( Augmentation): Since Z(X) ⇝ Z(Y) holds in r,  

        EQ (t1[X], t2[X])  min {  EQ (t1[Y], t3[Y]),  EQ (t2[Z], t3[Z])}      ---                (1) 

and W  V and Z  V = Ø, by reflexivity axiom FS1 we have Z(V) ⇝ Z(W). That is, 

          EQ(t1[V], t2[V])  min {  EQ (t1[W], t3[W]), (  EQ (t2[Z], t3[Z])}      ---                (2) 

from (1) and (2) 

          min {  EQ (t1[X], t2[X]),  EQ (t1[V], t2[V])}  

             min [min {  EQ (t1[Y], t3[Y]),  EQ (t2[Z], t3[Z])},  

                                     min {  EQ (t1[W], t3[W]), (  EQ (t2[Z], t3[Z])}] 

Hence, 

           EQ (t1[XV], t2[XV])    min{  EQ (t1[YW], t3[YW]),  EQ (t2[Z], t3[Z])} 

That is,  Z(XV)  ⇝ Z(YW) holds in r. 

FS3 (Transitivity): Since Z(X)  ⇝ Z(Y) holds in the fuzzy relation  r, 

           EQ (t1[X], t2[X])    min{  EQ (t1[Y], t3[Y]),  EQ (t2[Z], t3[Z])}               ---  (1) 

 We consider another tuple t4 in r and Z(X)  ⇝ Z(Y) and Z(Y)  ⇝ Z(W) hold in r (given), we get 

          EQ (t1[X], t2[X])    min{  EQ (t1[Y], t4[Y]),  EQ (t2[Z], t4[Z])}                ---  (2) 
and 

          EQ (t1[Y], t3[Y])    min{  EQ (t1[W], t4[W]),  EQ (t3[Z], t4[Z])}                ---  (3) 

These three conditions imply that 

          EQ (t1[X], t2[X])    min{  EQ (t1[W], t4[W]),  EQ (t2[Z], t4[Z])} 

Thus Z(X)  ⇝ Z(W) also holds in r. 
 The remaining axioms follow from these three axioms. 

FS4 (Union) : Z(X)  ⇝ Z(Y)   (given) 

  Z(X)  ⇝ Z(XY)  ( by FS2 )           ---   (1) 

  Z(X)  ⇝ Z(V)                         (given) 

  Z(XY)  ⇝ Z(YV)    ( by FS2)           ---    (2) 

  Z(X)  ⇝ Z(YV)    ( from (1) and (2) and FS3 ) 

FS5 (Decomposition) : Z(X)  ⇝ Z(YV)                (given) 

  Z(YV)  ⇝ Z(Y)  ( by FS1 )           ---   (1) 

  Z(X)  ⇝ Z(Y)                         (by FS3 and from (1)) 

  Z(YV)  ⇝ Z(V)    ( by FS1)           ---    (2) 

  Z(X)  ⇝ Z(V)    ( by FS3 and from (2)) 

FS6 ( Pseudo-transitivity) : Z(X)  ⇝ Z(Y)   (given) 

  Z(XW)  ⇝ Z(XW)  ( by FS2 )           ---   (1) 

  Z(YW)  ⇝ Z(V)                     (given)                                                   ---    (2) 

  Z(XW)  ⇝ Z(V)    ( from (1) and (2) and FS3 ) 

 
The following definition describes the closure of a set of attributes with respect to a set of fsds.[54] 

Definition 5.2: Suppose S is a set of  fsds  of  relation scheme R and let W  R. Then W+, the  closure  of  W with respect to S,  is  the  

set  of  attributes  A  R, such that  Z(W)  ⇝ Z(A) can be obtained from S using fsd inference axioms (FS1-FS6). 

Lemma 5.1: Z(W)  ⇝ Z(V) follows from the inference axioms of fsds, iff V  W+. 

Proof: LET V = { A1, A2 , ……, Ak }and suppose that Z(W)  ⇝ Z(V) follows from the fsd inference axioms. Then for each i, Z(W)  

⇝ Z(Ai) holds by the decomposition axiom. So V  W+. 

 

Suppose V  W+. By definition 5.3, for each i, Z(W)  ⇝ Z(Ai) is implied by the fsd axioms. Hence according to the union rule, Z(W)  

⇝ Z(V) follows. 

 
Lemma 5.2: Natural join of fuzzy relations preserves fuzzy subset dependencies. 
Proof: Let S1 and S2 be two sets of fsds satisfied by two fuzzy relations r1 and r2 respectively. 

 Let r = r1 ⋈  r2 , we show that r satisfies all fsds in S1  S2 . Now we assume that r does not satisfy the fsds: Z(X)  ⇝ Z(Y) 

in S1  S2 . That is, for any two tuples t1 and t2 of r, there exists another tuple t3 of r such that  

 EQ (t1[X], t2[X])     min{  EQ (t1[Y], t3[Y]),  EQ (t2[Z], t3[Z])}               ---  (1) 

 We know that s is in S1  S2 . When s  Sj ( j  {1,2}), then X, Y, Z are attributes of rj , where X and Y are disjoint from Z. 

Therefore (1) leads to the contradiction that rj violates s  Sj , for j  {1, 2}. Hence r satisfies S1  S2, 
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                             n      

It can be similarly shown that if ri satisfies Si , for i = 1, 2, ……., n  then r = ⋈ ri  

              n                                                                                                                         i=1           

satisfies  Si . 

             i=1 
 
Next, the completeness of the fsd axioms is examined. The following example shows that the fsd inference axioms  FS1-FS6 are not 
always complete.  
 

Example 5.2: We select an additional condition to the resemblance relations over dom(Ai), i = 1, 2, 3, that is, for all a1i , a1j  dom (A1) 

and for all  ark , arp , arm  dom (Ar), r = 2, 3, if ark , arp  arm , then 

 EQ (a1i , a1j)     min{  EQ (a2k , a2m),  EQ (a3p , a3m)}                                     ---  (1) 

 

Consider the fsd Z(A1  A2 ) ⇝ Z(A3) over R(A1  A2 A3  A4) ( here Z = A4). Let r be an instance of R. Since r satisfies Z(A1  A2 ) ⇝ 

Z(A3) , for any three tuples t1, t2, and t3 of  r such that 

 EQ (t1[A1A2], t2[A1A2])      min{  EQ (t1[A3], t3[A3]),  EQ (t2[A4], t3[A4])}          ---  (2) 

Let  be a proposition defined by 

             = { ( t1[A1]  t2[A1] ) and  ( t1[A2] = t2[A2] ) }. 

 

We now show that r also satisfies Z(A2) ⇝ Z(A3). Assume that the proposition  is true. From (2.24)  EQ (t1[A1A2], t2[A1A2])  =   EQ 

(t1[A1], t2[A1] ). By (1) and (2), we have t1[A3] = t3[A3] and  t2[A4] = t3[A4] . Hence by reflexivity of resemblance relations, r satisfies 

Z(A2) ⇝ Z(A3).  
 

Now we assume that  is false (i.e., either  t1[A1] = t2[A1] or  t1[A2]  t2[A2] ). From (2.24)  EQ (t1[A1A2], t2[A1A2])  =   EQ (t1[A1], 

t2[A2] ). So, from (2), r satisfies Z(A2) ⇝ Z(A3). 

 
Example 5.2 specifies that depending upon the type of the resemblance relations used for defining the fsds, it is possible to imply new 
fsds that cannot be inferred using FS1-FS6. To infer such fsds, we have to consider additional inference axioms that depend on the 
resemblance relations used for comparing the domain values. A complete set of fsds where additional restrictions are imposed on 

EQUAL. In this connection, it will be useful to find a class of fsds for which the inference axioms FS1-FS6 constitute a complete set. 
The following theorem establishes completeness of these fsd axioms. 
 
Theorem 5.1: The inference axioms form a complete set of inference axioms for fuzzy subset dependencies of a relation scheme R(A1  
A2  …… An ) when the following condition holds: 

For each Ai  R , there exists at least one pair of elements ai , bi  dom (Ai ) such that  EQ (ai , bi ) = 0. (5.2) 

Proof: Let fsd: Z(X) ⇝ Z(Y) be in fsd (R) - + . We need to show that r satisfies all fsds in + but does not satisfy the fsd  Z(X) ⇝ 

Z(Y). Consider r to be an instance of R. Let t1, t2 and t3 be three tuples in r. Let tuples t2 and t3 be a1, a2 …..  an. The tuple t1 is defined 
by 

  t1[Ai] =    ai   if Ai  X+ 

                                                bi   otherwise,  

where  EQ (aj , bj ) = 0 for   aj , bj   dom (Aj ), j = 1, 2, ….. , n. 

 

First we show that r satisfies all the fsds in S. Let  Z(W) ⇝ Z(V) be an fsd in S. If W ⊈ X+ , then for Aj  (W – X+),  EQ (t1[Aj], 

t2[Aj])  =   EQ (bj, aj ) =  EQ (aj, bj ) = 0. So,     EQ (t1[W], t2[W]) = 0. Hence by (5.1)  r  trivially satisfies Z(W) ⇝ Z(V). When W  

X+, by lemma 5.1, Z(X) ⇝ Z(W) and by transitivity, Z(X) ⇝ Z(V). Applying lemma 5.1 again, V  X+. Since WV  X+,  by  

construction   EQ (t1[W], t2[W])  =   EQ (t1[V], t3[V]) = 1.0  and   EQ (t2[Z], t3[Z]) = 1.0 (given). Therefore r satisfies the fsd Z(W) ⇝ 

Z(V). 
 
Since s cannot be inferred from S using the inference axioms, we now show that r does not satisfy s. from the definition of r, t1[X] = 
t2[X]. In order that r satisfies s, we must have 

   EQ (t1[Y], t3[Y])  =   EQ (t2[Z], t3[Z]) = 1.0 

But this requires that Y  X+, thereby implying that s follows from S by the inference axioms. 

 

Since this conclusion violates our original assumption, the fuzzy relation r cannot satisfy the fsd Z(X) ⇝ Z(Y). Hence the inference 

rules are complete. 
 
The condition (5.2) defines a class of fsds for which the inference axioms FS1-FS3 constitute a complete set. 
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6. CONCLUSIONS 

This paper deals with fuzzy embedded multivalued 

dependency and fuzzy subset dependency for treating precise 
as well as imprecise data. The definition of fuzzy subset 
dependency as given in definition 5.1 is not unique way of 
generalizing sd in a fuzzy database. For example, on 
introducing another translation rule for conditional fuzzy 
proposition such as Godelian implication rule[5, 12, 19] a 
different set of relation is to have binary truth values. Thus a 

relation may either satisfy the fsd: Z(X) ⇝ Z(Y) or not. 

Condition (5.2) is only a sufficient condition for the axioms 
FS1-FS3 to be complete. It may be possible to find a 
restriction on EQUAL that is both necessary and sufficient for 
the completeness of the axioms. 
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