
International Journal of Computer Applications (0975 – 8887)
Volume 8– No.13, October 2010

13

Evaluation of Expectation Maximization based Clustering

Approach for Reusability Prediction of Function based

Software Systems
 Dr Himani Goel Gurbhej Singh

Department of Computer science & Engg Department of Computer science & Engg

 B.M.S.C.E Muktsar, Punjab (India) B.M.S.C.E Muktsar, Punjab (India)

ABSTARCT
In this study Expectation Maximization based Clustering
approach is evaluated for Reusability Prediction of Function
based Software systems. Here, the metric based approach is
used for prediction. The function oriented dataset considered
have the output attribute as Reusability value. The Reusability in

the dataset is expressed in terms of six numeric labels i.e. 1, 2, 3,
4, 5 and 6. The label 1 represents Nil and the label 6 represents
the Excellent Reusability Label. A framework of metrics are
used to target those the essential attributes of function oriented
features towards measuring the reusability of software modules,
so it tried to analyze, refine and use following metrics to explore
different structural dimensions of Function oriented
components: Cyclometric Complexity Using Mc Cabe’s

Measure, Halstead Software Science Indicator, Regularity
Metric, Reuse-Frequency Metric and Coupling Metric. The
input attributes are expressed in the three linguistic labels i.e. 1,
2, and 3. The label 1 corresponds to the Low value, label 2
corresponds to the Medium value and label 3 corresponds to the
high value.Five Input metrics are used as Input and clusters are
formed using EM. EM assigns a probability distribution to each
instance which indicates the probability of it belonging to each
of the clusters.Thereafter 10 fold cross validation performance

of the system is recorded. The results are expressed in Precision,
Recall and Accuracy values. Precision for a class is the number
of true positives (i.e. the number of items correctly labeled as
belonging to the positive class) divided by the total number of
elements labeled as belonging to the positive class (i.e. the sum
of true positives and false positives, which are items incorrectly
labeled as belonging to the class). Recall is defined as the
number of true positives divided by the total number of elements

that actually belong to the positive class (i.e. the sum of true
positives and false negatives, which are items which were not
labeled as belonging to the positive class but should have been).
Hence, Precision can be seen as a measure of exactness or
fidelity, whereas Recall is a measure of completeness. Accuracy
is the percentage of the predicted values that match with the
expected values of the reusability for the given data. As deduced
from the results it is clear that Precision and Recall values of the

sixth level reusability class is the maximum, it means the system
is able to detect the “Excellent” components precisely.
Similarly, Precision and Recall values of the fourth level
reusability class is the second best, it means the system is able to
detect the “Good” components with good Precision. The
proposed technique is showing Accuracy value approximately
equal to 60%, so it is satisfactory enough to use the Expectation
maximization based clustering technique for the prediction of

the function based reusable modules from the existing reservoir

of software components. The proposed approach is applied on
the C based software modules/components and it can further be
extended to the Artificial Intelligence (AI) based software

components e.g. Prolog Language based software components.
It can also be tried to calculate the fault-tolerance of the
software components with help of the proposed metric
framework.

Keywords
Fault Prediction, Cyclometric Complexity, volume, Regularity
Metric, Reuse-Frequency Metric, Coupling Metric, Precision
Recall ,Accuracy, confusion matrix, expectation maximisation.

1 INRODUCTION
Software reuse (Frakes, W.B., 2005) is the process of
implementing or updating software systems using existing
software assets. Software assets or components include all
software products, from requirements and proposals, to
specifications and designs, to user manuals and test suites.
Anything that is produced from a software development effort
can potentially be reused.The reusability is the quality of a piece

of software, that enables it to be used again, be it partial,
modified or complete. Software professionals have recognized
reuse as a powerful means to potentially overcome the situation
called as software crisis. Software reuse not only improves
productivity but also has a positive impact on the quality and
maintainability of software products.There are two approaches
for reuse of code: develop the code from scratch or identify and
extract the reusable code from already developed code. For the
organization that has experience in developing software, but has

not yet used the software reuse concept, there exists extra cost to
develop the reusable components from scratch to build and
strengthen their reusable software reservoir. The cost of
developing the software from scratch can be saved by
identifying and extracting the reusable components from already
developed software systems or legacy systems .The contribution
of metrics to the overall objective of the software quality is very
well understood and recognized. But how these metrics

collectively determine reusability of a software component is
still at its naïve stage.
There are two forms of reuse and they are as:

 Horizontal Reuse.

 Vertical Reuse.

Horizontal reuse refers to software components used across a
wide variety of applications. In terms of code assets, this
includes the typically envisioned library of components, such as
a linked list class, string manipulation routines, or graphical user

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.13, October 2010

14

interface (GUI) functions. Horizontal reuse can also refer to the
use of a commercial off-the-shelf (COTS) or third-party
application within a larger system, such as an e-mail package or
a word processing program. A variety of software libraries and
repositories containing this type of code and documentation

exist today at various locations on the Internet.
Vertical reuse, significantly untapped by the software
community at large, but potentially very useful, has far reaching
implications for current and future software development efforts.

 1.1 Reuse Process
The process of reuse consists of four major activities:
 manage the reuse infrastructure (MRI).
 produce reusable assets (PRA).
 broker reusable assets (BRA) and
 consume reusable assets (CRA).
Producers are those who create reusable assets with the specific
goal of reusability.
Function of Manage the Reuse Infrastructure (MRI) is to

establish the reuse rules, roles, and goals in the infrastructure to
support reuse. The Produce Reusable Assets (PRA) activities
develop, generate, or reengineer assets with the specific goal of
reusability. PRA includes domain analysis and domain
engineering. The Broker Reusable Assets (BRA) activity aids
the reuse effort by qualifying or certifying, configuring,
maintaining, promoting and brokering reusable assets. The
Consume Reusable Assets (CRA) activity occurs when systems

are produced using reusable assets (Poulin, J. S., 1997).
Followings are the steps for implementing Reuse Process:
 Assess organizational readiness: Understand the people,

process, product, technology, asset, economic, metric and
management facets of the organization and how reuse will
impact each of these aspects.

 Identify and collect metrics: While this activity is done
throughout the reuse effort as necessary, collecting metrics
early will enable us to benchmark the organization and

show the impact when reuse is implemented.
 Identify domains in the organization: Enumerate a list of

domains that are in common within the organization.
 Analyze the domain: An informal domain analysis may be

conducted for the chosen domain. This analysis includes
determining features common to systems in the domain and
assessing the range of variability.

 Examine the existing organizational structure: Consider

establishing an independent producer group. This would
dedicate resources to ensure that the necessary assets are
created, managed and supported.

 Create and manage reusable assets: Make, buy or re-
engineer existing assets for users. Bring these assets under
a source control and configuration management system.

 Utilize tools, technology, and standards: Examine whether
to create or use existing tools, technology and standards for

your reuse program.
 Conduct reviews and walkthroughs to reinforce reuse:

Throughout the product development life cycles, perform
reviews to ensure adherence to reusability objectives.

1.2 Introduction to Clustering Techniques
As a broad subfield of Fault Prediction, clustering is concerned
with the design and development of algorithms and techniques
that allow division of data in to different groups.
Clustering means to assign a set of observations in to different
groups (known as clusters), so that the observations are same in

some sense. At a general level, there are two types of clustering:
distance based and conceptual clustering. Distance based
clustering divides the data in to subsets on the basis of distance.
Conceptual clustering, cluster the data on the basis of the similar
concept the data will have.

An important component of a clustering algorithm is the distance
measure between data points. If the components of the data
instance vectors are all in the same physical units then it is
possible that the simple Euclidean distance metric is sufficient to
successfully group similar data instances. It is the ordinary
distance between two points that one would measure with a ruler,
which can be proven by repeated application of the Pythagorean
theorem. The major focus of clustering research is to extract

information from data automatically, by computational and
statistical methods. Hence, clustering is closely related to data
mining and statistics.
Many clustering methods aim at finding a single partition of the
collection of items into clusters. However, obtaining a hierarchy
of clusters can provide more flexibility and other methods rather
focus on this. A partition of the data can be obtained from a
hierarchy by cutting the tree of clusters at some level. Most

clustering methods were developed for numerical data, but some
can deal with categorical data or with both numerical and
categorical data.
The degree of membership of a data item to a cluster is either in
[0, 1] if the clusters are fuzzy or in {0, 1} if the clusters are crisp.
For fuzzy clusters, data items can belong to some degree to
several clusters that don’t have hierarchical relations with each
other. This distinction between fuzzy and crisp can concern both

the clustering mechanisms and their results. Crisp clusters can
always be obtained from fuzzy clusters. Clusters can be seen
either as distant compact sets or as dense sets separated by low
density regions. Unlike density, compactness usually has strong
implications on the shape of the clusters, so methods that focus
on compactness should be distinguished from methods that focus
on the density. Clustering denotes changes in a system that
enables a system to do the same task more efficiently the next
time. Clustering is a method of unsupervised learning, in which

one seeks to determine how the data are organized.
Clustering algorithms can be:

1.2.1 Hierarchical:
 A hierarchical algorithm creates a hierarchy of clusters which
may be represented in a tree structure called a dendrogram. The
root of the tree consists of a single cluster containing all
observations, and the leaves correspond to individual
observations. In hierarchical clustering algorithm, a valid metric
may be used as a measure of similarity between pairs of
observations. Algorithms for hierarchical clustering are generally
either agglomerative, in which one starts at the leaves and

successively merges clusters together; or divisive, in which one
starts at the root and recursively splits the clusters.

1.2.2 Partitional:
 Partitional algorithms typically determine all clusters at once.

These algorithms divide data in to independent clusters on the
basis of distance measures. A division data objects into non-
overlapping subsets (clusters) such that each data object is in
exactly one subset.
K-Means is an unsupervised clustering technique used to classify
data in to K clusters. It is partitional clustering approach, each
cluster is associated with a centroid (center point), each point is
assigned to the cluster with the closest centroid, Number of

clusters, K, must be specified.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Dendrogram
http://en.wikipedia.org/wiki/Metric_(mathematics)
http://en.wikipedia.org/wiki/Partition_of_a_set

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.13, October 2010

15

Fuzzy C-Means (FCM) is a method of clustering which allows
one piece of data to belong to two or more clusters. It processes
n vectors in p-space as data input, and uses them, in conjunction
with first order necessary conditions for minimizing the FCM
objective functional, to obtain estimates for two sets of

unknowns. FCM clustering is used to build fuzzy rule bases for
fuzzy systems design; and there are numerous applications of
FCM in virtually every major application area of clustering

1.2.3: Spectral

This clustering techniques make use of the spectrum of the

similarity matrix of the data to perform dimensionality reduction
for clustering in fewer dimensions.The main requirements that a

clustering algorithm should satisfy are scalability; dealing with
different types of attributes; discovering clusters with arbitrary
shape; minimal requirements for domain knowledge to determine
input parameters; ability to deal with noise and outliers;
insensitivity to order of input records; high dimensionality;
interpretability and usability.

2 LITERATURE SURVEY
(Boetticher, G., et.al, 1993) assimilated knowledge about object
oriented concepts, analysis and design. Explanation of various
object-oriented metrics was also given such as class oriented
metrics (CK metric), metrics for source code, testing, analysis
model and design model. Advantages and disadvantages of each

object-oriented metric was explained. Information regarding
theoretical background of the reusability of software and Object
oriented metrics for measuring size, complexity are also given in
this reference.
(Boetticher, et.al, 1993) discussed various approaches for
measuring software reusability, to build reusable components
and to identify useful modules in existing programs. Taxonomy
of reusability metrics was given which provide the attributes of

reusable software. Two main methods are there to measure the
reusability. One is Empirical methods stress objective,
numerical, and repeatable metrics, such as those obtained by
observing the module complexity or size. Other is Qualitative
methods included (or even emphasized) subjective criteria, such
as how well a module complies with a set of style, certification,
quality guidelines, or simply agrees with the opinions of
"experts." These are further divided into two categories module

oriented and component oriented.
 (Kartalopoulos, S. V. 1996) discussed REBOOT (reusability
based on object oriented technique) that develop a taxonomy of
reusability attributes. It provided reusability factors, a list of
criteria for factor and a list of metrics for each criteria. Various
object oriented concepts were defined in this paper, which are
useful for finding the reusability. Information about software
reuse, types of software reuse, requirements for building
software reuse and management issues toward reusable software

were also given. This also shows the advantages of this
technique over other methods.
Prieto-Diaz and Freeman encouraged white-box reuse and
identified five program attributes for evaluating reusability . The
attributes used are:

 Program Size

 Program Structure

 Program Documentation

 Programming Language

 Reuse Experience

 (Richard W. Selby, 2005) discussed that CK metric suit is able
to target all the essential attributes of OO-based software.
(Parvinder, 2005) used Tuned and Refined values of the
following Metric suit for the reusability data Modeling:

 Weighted methods per class (WMC)

 Depth of inheritance tree (DIT)
 Number of Children (NOC)
 Coupling Between Object Classes (CBO)

Lack of Cohesion in Methods (LCOM)

3 PRESENT WORK

3.1 Problem Formulation

The aim of Metrics is to predict the quality of the software
products. Various attributes, which determine the quality of the
software, include maintainability, defect density, fault

proneness, normalized rework, understandability, reusability etc.
The requirement today is to relate the reusability attributes with
the metrics and to find how these metrics collectively determine
the reusability of the software component. To achieve both the
quality and productivity objectives it is always recommended to
go for the software reuse that not only saves the time taken to
develop the product from scratch but also delivers the almost
error free code, as the code is already tested many times during

its earlier reuse.
A great deal of research over the past several years has been
devoted to the development of methodologies to create reusable
software components and component libraries, where there is an
additional cost involved to create a reusable component from
scratch. That additional cost could be avoided by identifying and
extracting reusable components from the already developed
large inventory of existing systems. But the issue of how to

identify good reusable components from existing systems has
remained relatively unexplored. Our approach, for identification
and evaluation of reusable software, is based on software models
and metrics. As the exact relationship between the attributes of
the reusability is difficult to establish so a Neural Network
approach could serve as an economical, automatic tool to
generate reusability ranking of software by formulating the
relationship based on its training. When one designs with Neural
Networks alone, the network is a black box that needs to be

defined; this is a highly compute-intensive process. One must
develop a good sense, after extensive experimentation and
practice, of the complexity of the network and the learning
algorithm to be used. With the objective of taking advantage of
the features of the neural networks, in this study Neural Network
based approach is used to economically determining reusability
of software components in existing systems as well as the
reusable components that are in the design phase. Inputs to

Neural system, are provided in form of McCabe’s Cyclometric
Complexity Measure for Complexity measurement, Regularity
Metric, Halstead Software Science Indicator for Volume
indication, Reuse Frequency metric and Coupling Metric values
of the software component and output is be obtained in terms of
reusability.

3.2 Methodology
Reusability evaluation System for function Based Software
Components can be framed using following steps:
I) Selection and refinement of metrics targeting the quality of
function based software system and perform parsing of the
software system to generate the Meta information related to

http://www.scholarpedia.org/article/Fuzzy_Sets
http://en.wikipedia.org/wiki/Spectrum_of_a_matrix
http://en.wikipedia.org/wiki/Dimensionality_reduction

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.13, October 2010

16

that Software. The metric of the Parvinder et. al 2006 is used
and the metrics are as under:
The proposed five metrics for function Oriented Paradigm are as
follows:

The proposed metrics for Function Oriented Paradigm are as

follows:

3.2.1 Cyclometric Complexity Using Mc Cabe’s
Measure

According to Mc Cabe, the value of Cyclometric Complexity
(CC) can be obtained using the following equation:

1nodespredicateofNumberCC (1)

Where predicate nodes are the nodes of the directed graph,
made for the component, where the decisions are made.Hence,
the value of CC of a software component should be in between
upper and lower bounds as a contribution towards reusabilityIf
CC is high with high regularity of implementation then there
exists high functional usefulness.

3.2.2 Halstead Software Science Indicator
According to this metric volume of the source code of the

software component is expressed in the following equation:

)21(2log21 NNVolume (2)

Where, η1 is the number of distinct operators that appear in
the program, η2 is number of distinct operands that appear in the
program, N1 is the total number of operator occurrences and N2
is the total number of operand occurrences.

The high volume means that software component needs more
maintenance cost, correctness cost and modification cost. On the

other hand, less volume increases the extraction cost,
identification cost from the repository and packaging cost of the
component. So the volume of the reusable component should be
in between the two extremes.

3.2.3 Regularity Metric
The notion behind Regularity is to predict length based on

some regularity assumptions. As actual length (N) is sum of N1
and N2. The estimated length is shown in the following
equation:

22log212log1NLenghtEstimated (3)

The closeness of the estimate is a measure of the Regularity

of Component coding is calculated as:

NNNNNgularity /]/){(1Re (4)

The above derivation indicates that Regularity is the ratio of
estimated length to the actual length. High value of Regularity

indicates the high readability, low modification cost and non-
redundancy of the component implementation [24].

Hence, there should be some minimum level of Regularity of
the component to indicate the reusability of that component.

3.2.4 Reuse-Frequency Metric

Reuse frequency is calculated by comparing number of static
calls addressed to a component with number of calls addressed
to the component whose reusability is to be measured. Let N
user defined components be X1, X2 … XN in the system, where
S1, S2 … SM are the standard environment components e.g.

printf in C language, then Reuse-Frequency is calculated as:

M

i
iS

M

C
FrequencyReuse

0

)(
1

)(

(5)

Equation (5) shows that the Reuse-Frequency is the measure
of function usefulness of a component. Hence there should be
some minimum value of Reuse- Frequency to make software

component really reusable [24].

3.2.5 Coupling Metric
Functions/methods that are loosely bound tend to be easier to

remove and use in other contexts than those that depend heavily

on other functions or non-local data. Different types of coupling
effects reusability to different extent.

Data Coupling:

Stamp Coupling:

Control Coupling:.

Common Coupling:

Data Coupling is lightest weight coupling, whereas Content
Coupling is the heaviest one.

Let

ai be the number of functions called and Data Coupled with
function “i”

bi be the number of functions called and Stamp Coupled with
function “i”

ci be the number of functions called by function “i” and
Control Coupled with function “i”

di be the number of functions Common Coupled with

function “i”

e
cdwcwbwawa iiii

caxf
)(43211

1
),,(

(6)

Where a = 10, c = 0.5 and wi for i = 1, 2, 3, 4 is the weights of
the respective the coupling types.

As coupling increases, there is decrease in understandability and
maintainability, so there should be some maximum value of the
coupling.
II) Calculate the metric values of the sampled software
components.

III) Implement the EM (expectation maximisation) Clustering
based prediction system in Matlab environment.
EM assigns a probability distribution to each instance which
indicates the probability of it belonging to each of the clusters.
EM can decide how many clusters to create by cross validation,
or you may specify apriori how many clusters to generate.
The cross validation performed to determine the number of
clusters is done in the following steps:

1. the number of clusters is set to 1

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.13, October 2010

17

2. the training set is split randomly into 10 folds.
3. EM is performed 10 times using the 10 folds the usual CV
way.
4. the loglikelihood is averaged over all 10 results.
5. if loglikelihood has increased the number of clusters is

increased by 1 and the program continues at step 2.
The number of folds is fixed to 10, as long as the number of
instances in the training set is not smaller 10. If this is the case
the number of folds is set equal to the number of instances.
Deduce the results on the 10 fold cross validation accuracy,
precision and recall values.

In case of the two-cluster based problem, the confusion matrix
has four categories: True positives (TP) are modules correctly

classified as faulty modules. False positives (FP) refer to fault-
free modules incorrectly labeled as faulty modules. True
negatives (TN) correspond to fault-free modules correctly
classified as such. Finally, false negatives (FN) refer to faulty
modules incorrectly classified as fault-free modules as shown in
table 3.1.

Table 3.1. Confusion Matrix of Prediction Outcomes.

 Real Data Value

Predicted Value Fault No fault

Fault TP FP

No Fault FN TN

With help of the confusion matrix values the precision and recall

values are calculated described below:

 Precision

The Precision is the proportion of the examples which truly
have class x among all those which were classified as class x.

Precision for a class is the number of true positives (i.e. the
number of items correctly labeled as belonging to the positive
class) divided by the total number of elements labeled as
belonging to the positive class (i.e. the sum of true positives and
false positives, which are items incorrectly labeled as belonging
to the class). The equation is:
Precision = TP / (TP + FP) (1)

 Recall

Recall in this context is defined as the number of true positives
divided by the total number of elements that actually belong to
the positive class (i.e. the sum of true positives and false
negatives, which are items which were not labeled as belonging
to the positive class but should have been) [8]. The recall can be
calculated as follows:

Recall = TP / (TP + FN) (2)

 Accuracy

The percentage of the predicted values that match with the
expected values of the reusability for the given data.

The best system is that having the high Accuracy, High

Precision and High Recall value.

4 RESULTS AND DISCUSSION
The proposed Neural based methodology is implemented in
MATLAB 7.4. MATLAB (Matrix Laboratory) environment is

one such facility which lends a high performance language for
technical computing.
The function oriented dataset considered have the output
attribute as Reusability value. The Reusability in the dataset is
expressed in terms of six numeric labels i.e. 1, 2, 3, 4, 5 and 6.

The label 1 represents Nil and the label 6 represents the
Excellent Reusability Label. The statistics of the count of the
number of examples of certain reusability label is shown in the
Table 4.1. The Graphical representation of the count of the
number of examples of certain reusability label is shown in the
Figure 4.1

Table 4.1 statistics of the Reusability Output Attribute in the

Dataset

Figure 4.1 Bar-chart of Count of examples of the Reusability

Output Attribute in the Dataset

The statistics shows that in the dataset, there are 9 examples of
label 1, 10 examples of label 2, 26 examples of label 3, 29

examples of label 4, 17 examples of label 5 and 18 examples of
label 6.
The input attribute-wise statistical details of the count of the
examples of the labels are shown in table 4.2, table 4.3, table
4.4, table 4.5, table 4.6. The input attributes are expressed in
the three linguistic labels i.e. 1, 2, and 3. The label 1
corresponds to the Low value, label 2 corresponds to the
Medium value and label 3 corresponds to the high value.

Table 4.2 statistics of the Input Attribute Coupling in the

Dataset

Table 4.3 statistics of the Input Attribute Volume in the

Dataset

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.13, October 2010

18

Table 4.4 statistics of the Input Attribute Coupling in the

Dataset

Table 4.5 statistics of the Input Attribute Coupling in the

Dataset

Table 4.6 statistics of the Input Attribute Reuse-Frequency

in the Dataset

The given data with five Input Attributes i.e. Coupling,
Volume, Complexity, Regularity, Reuse_Frequency, and
Output attributes is loaded in the Weka environment. First, the
EM clustering ignores Reusability output attribute. EM assigns
a probability distribution to each instance which indicates the
probability of it belonging to each of the clusters.

There following parameters are used in the algorithm:

 debug -- It is set to true so that formed clusters
information can be displayed on the console.

 maxIterations – It is Maximum number of iterations.
That are set to 100.

 minStdDev – It is Minimum allowable standard
deviation. That is set to 1.0E-6 as default value.

 numClusters – It is the number of clusters. It is set to 6

as in the dataset there are six levels of reusability value.

 seed – It is random number seed to be used. It is set to

100 as default value.
The snapshot of the parameters set is shown in figure 4.2.

Figure 4.2. Snapshot of the Parameters Set in the EM

Clustering Algorithm

The EM clustering algorithm has created clusters numbered as 0
to 5 and assigned the 23 (means 21%) examples to cluster
number 0, 24 (means 22%) examples to cluster number 1, 38 (
means 35%) examples to cluster number 2, 18 (means 17%)
examples to cluster number 3 and 6 (means 6%) examples to
cluster number 4. The cluster 5 is not able to get any example.

Further the cluster numbers are again assigned Predicted Labels
as follows:

Table 4.7. The Assignment of Predicted Labels to the

Clusters formed by EM

Cluster Number

Predicted Label

Cluster 0

6

Cluster 1

3

Cluster 2

4

Cluster 3

2

Cluster 4

1

The confusion matrix calculated is shown in Table 4.8.

Table 4.8 The Confusion Matrix Generated after applying

EM Clustering

 Real Data Label

Predicted

Label
1 2 3 4 5 6

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.13, October 2010

19

1 2 1 1 2 0 0

2 7 8 3 0 0 0

3 0 1 12 2 9 0

4 0 0 10 25 3 0

5 0 0 0 0 0 0

6 0 0 0 0 5 18

The Precision and Recall values for different the Reusability
levels if the reusability is shown in table 4.9 and 4.10
respectively.

Table 4.9 Precision Value of Different Classes of the

Reusability Values

Re usability Level Class Precision Value

1 0.33

2 0.44

3 0.5

4 0.66

5 0

6 0.78

Table 4.10 Recall Value of Different Classes of the

Reusability Values

Reusability Level Class Recall Value

1 0.22

2 0.8

3 0.46

4 0.86

5 0

6 1

As evidenced from the confusion matrix the incorrectly
clustered instances are 44.0 means 40.367 % is the inaccuracy
value or correctly clustered instances are 65 means the accuracy

is approximately 60%.

5 CONCLUSION AND FUTURE SCOPE

5.1 Conclusion
In this study Expectation Maximization based Clustering
approach is evaluated for Reusability Prediction of Function
based Software systems. Here, the metric based approach is
used for prediction. Reusability value is expressed in the six
linguistic values. Five Input metrics are used as Input and
clusters are formed using EM, thereafter 10 fold cross validation

performance of the system is recorded. As deduced from the
results it is clear that Precision and Recall values of the sixth
level reusability class is the maximum, it means the system is
able to detect the “Excellent” components precisely. Similarly,
Precision and Recall values of the fourth level reusability class

is the second best, it means the system is able to detect the
“Good” components with good precision.
The proposed technique is showing Accuracy value
approximately equal to 60%, so it is satisfactory enough to use
the Expectation maximization based clustering technique for the

prediction of the function based reusable modules from the
existing reservoir of software components.

5.2 Future Scope
The proposed approach is applied on the C based software
modules/components and it can further be extended to the

Artificial Intelligence (AI) based software components e.g.
Prolog Language based software components. It can also be
tried to calculate the fault-tolerance of the software components
with help of the proposed metric framework.
The research work can be extended in the following directions:

 Intelligent Component Mining or Extraction

algorithms can be developed

 Early prediction of the quality of component based

system

 Characterization of Software Components for easy

retrieval

6 ACKNOWLEDGMENTS
I would like to place on record my deep sense of gratitude
to Dr. Himani Sharma, Dean P.G.Courses, BMSCE,
Muktsar,, India for his generous guidance, and supervision
throughout the course of present work. I express my sincere
gratitude to Dr.D.S. Grewal, Director/Principal of Bhai
Maha Singh College of Engineering, Muktsar India, for his
stimulating guidance, continuous encouragement and useful
suggestions

 7 REFERENCES
1. Anderson, J.A (2003) “An Introduction To

Neural Networks”, Prentice Hall of India.

2. Arnold, R.S. (1990) “ Heuristics for Salvaging
Reusable Parts From Adav Code”, SPC TechnicalReport,
ADA_REUSE_HEURISTICS-90011-N, March 1990.

3. Arnold, R.S. (1990) “Salvaging Reusable Parts
From Ada Code: A Progress Report”, SPC Technical
Report, SALVAGE_ADA_PARTS_PR-90048-N,
September 1990.

4. Basili, V. R. and Rombach, H. D. (1988) “The
TAME Project: Towards Improvement Oriented Software

Environments”, IEEE Trans. Software Eng., vol. 14, no. 6,
June 1988, pp. 758-771.

5. Basili, V.R. (1989) “Software Development: A

Paradigm for the Future”, Proceedings COMPAC’89, Los
Alamitos, California, IEEE CS Press, 1989, pp. 471-485.

6. Boetticher, G. and Eichmann, D. (1993) “A

Neural Network Paradigm for Characterizing Reusable
Software”, Proceedings of the Australian Conference on
Software Metrics, Australia, July, 1993, pp. 234-237.

7. Boetticher, G., Srinivas, K. and Eichmann, D.
(1990) “A Neural Net-Based Approach to the Software
Metrics” Proceedings of the 5th International Conference
on Software Engineering and Knowledge Engineering,
San Francisco, CA, 14-18 June 1990, pp. 271-274.

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.13, October 2010

20

8. Caldiera, G. and Basili, V. R. (1991)
“Identifying and Qualifying Reusable Software
Components,” IEEE Computer, February 1991.

9. Chen, Y. F. Nishimoto, M. Y. and Ramamoorty,
C. V. “The C Information Abstraction System”, IEEE
Trans. on Software Engineering, Vol. 16, No. 3, March
1990.

10. Dunn, M. F. and Knight, J. C. (1993)
“Software reuse in Industrial setting: A Case Study”, Proc.
of the 13th International Conference on Software
Engineering, Baltimore, MA, 1993. pp. 56-62.

11. Esteva, J. C. and Reynolds, R. G. (1991)
“Identifying Reusable Components using Induction”,

International Journal of Software Engineering and
Knowledge Engineering, Vol. 1, No. 3 , 1991, pp. 271-
292.

12. Frakes, W.B. and Kyo Kang (2005) “Software
Reuse Research: Status and Future”, IEEE Trans. Software
Engineering, vol. 31, issue 7, July 2005, pp. 529 - 536.

13. Jang, J-S. R. a n d Sun, C.T. (1995) “Neuro-
fuzzy Modeling and Control”, Proceeding of IEEE, March
1995, pp. 123-135.

14. Jerome Feldman (1996) “Neural Networks - A
Systematic Introduction” Berlin, New-York, 1996.

15. Kartalopoulos, S. V. (1996) “Understanding
Neural Networks and Fuzzy Logic-Basic Concepts and
Applications”, IEEE Press, 1996, pp. 153-160.

16. Klir, G. J. and Yuan, B. (1995) “Fuzzy Sets and
Fuzzy Logic” Prentice-Hall, New Jersey.

17. Mayobre, G. (1991) “Using Code Reusability
Analysis to Identify Reusable Components from
Software Related to an Application Domain,” Proceeding
of the Fourth Workshop on Software Reuse, Reston. VA,
November, 1991, pp. 87-96.

18. Nguyen, H.T. and Walker, E.A. (1997) “A first
course in Fuzzy Logic” Boca Raton FLA. CRC Press,
1997.

19. Melanie Mitchell (1996) “An Introduction to
Genetic Algorithm”, MIT Press, 1996.

20. Parvinder Singh and Hardeep Singh
(2005) “Critical Suggestive Evaluation of CK METRIC”,
Proc. of 9th Pacific Asia Conference on Information

Technology (PACIS-2005), Bangkok, Thailand, July 7 – 10,
2005, pp 234-241.

21. Poulin, J. S. (1997) “Measuring Software Reuse–

Principles”, Practices and Economic Models, Addison-
Wesley, 1997.

22. Richard, W. S. (2005) “Enabling Reuse-Based
Software Development of Large-Scale Systems”, IEEE
Trans. on Software Engineering, Vol. 31, No. 6, June
2005 pp. 495-510.

23. Selby, R. W. (1988) “Empirically Analyzing
Software Reuse in a Production Environment”, Software
Reuse: Emerging Technology, W. Tracz, ed, IEEE
Computer Society Press, 1988.

24. Stender (1994) “Introduction to genetic
algorithms”, IEEE Colloquium on Genetic Algorithms,
Volume 2, March 15, 1994 pp. 1-4.

