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ABSTARCT 
In this study Expectation Maximization based Clustering 
approach is evaluated for Reusability Prediction of Function 
based Software systems.  Here, the metric based approach is 
used for prediction. The function oriented dataset considered 
have the output attribute as Reusability value. The Reusability in 

the dataset is expressed in terms of six numeric labels i.e. 1, 2, 3, 
4, 5 and 6. The label 1 represents Nil and the label 6 represents 
the Excellent Reusability Label. A framework of metrics are 
used to target those the essential attributes of function oriented 
features towards measuring the reusability of software modules, 
so it tried to analyze, refine and use following metrics to explore 
different structural dimensions of  Function oriented 
components: Cyclometric Complexity Using Mc Cabe’s 

Measure, Halstead Software Science Indicator, Regularity 
Metric, Reuse-Frequency Metric  and Coupling Metric. The 
input attributes are expressed in the three linguistic labels i.e. 1, 
2, and 3. The label 1 corresponds to the Low value, label 2 
corresponds to the Medium value and label 3 corresponds to the 
high value.Five Input metrics are used as Input and clusters are 
formed using EM.  EM assigns a probability distribution to each 
instance which indicates the probability of it belonging to each 
of the clusters.Thereafter 10 fold cross validation performance 

of the system is recorded. The results are expressed in Precision, 
Recall and Accuracy values. Precision for a class is the number 
of true positives (i.e. the number of items correctly labeled as 
belonging to the positive class) divided by the total number of 
elements labeled as belonging to the positive class (i.e. the sum 
of true positives and false positives, which are items incorrectly 
labeled as belonging to the class). Recall is defined as the 
number of true positives divided by the total number of elements 

that actually belong to the positive class (i.e. the sum of true 
positives and false negatives, which are items which were not 
labeled as belonging to the positive class but should have been). 
Hence,  Precision can be seen as a measure of exactness or 
fidelity, whereas Recall is a measure of completeness. Accuracy 
is the percentage of the predicted values that match with the 
expected values of the reusability for the given data. As deduced 
from the results it is clear that Precision and Recall values of the 

sixth level reusability class is the maximum, it means the system 
is able to detect the “Excellent” components precisely. 
Similarly, Precision and Recall values of the fourth level 
reusability class is the second best, it means the system is able to 
detect the “Good” components with good Precision. The 
proposed technique is showing Accuracy value approximately 
equal to 60%, so it is satisfactory enough to use the Expectation 
maximization based clustering technique for the prediction of 

the function based reusable modules from the existing reservoir  

 
 
 
of software components. The proposed approach is applied on 
the C based software modules/components and it can further be 
extended to the Artificial Intelligence (AI) based software 

components e.g. Prolog Language based software components. 
It can also be tried to calculate the fault-tolerance of the 
software components with help of the proposed metric 
framework. 
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1 INRODUCTION 
Software reuse (Frakes, W.B., 2005) is the process of 
implementing or updating software systems using existing 
software assets. Software assets or components include all 
software products, from requirements and proposals, to 
specifications and designs, to user manuals and test suites. 
Anything that is produced from a software development effort 
can potentially be reused.The reusability is the quality of a piece 

of software, that enables it to be used again, be it partial, 
modified or complete. Software professionals have recognized 
reuse as a powerful means to potentially overcome the situation 
called as software crisis.  Software reuse not only improves 
productivity but also has a positive impact on the quality and 
maintainability of software products.There are two approaches 
for reuse of code: develop the code from scratch or identify and 
extract the reusable code from already developed code. For the 
organization that has experience in developing software, but has 

not yet used the software reuse concept, there exists extra cost to 
develop the reusable components from scratch to build and 
strengthen their reusable software reservoir. The cost of 
developing the software from scratch can be saved by 
identifying and extracting the reusable components from already 
developed software systems or legacy systems .The contribution 
of metrics to the overall objective of the software quality is very 
well understood and recognized. But how these metrics 

collectively determine reusability of a software component is 
still at its naïve stage.  
There are two forms of reuse and they are as: 

 Horizontal Reuse. 

 Vertical Reuse. 

Horizontal reuse refers to software components used across a 
wide variety of applications. In terms of code assets, this 
includes the typically envisioned library of components, such as 
a linked list class, string manipulation routines, or graphical user 
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interface (GUI) functions. Horizontal reuse can also refer to the 
use of a commercial off-the-shelf (COTS) or third-party 
application within a larger system, such as an e-mail package or 
a word processing program. A variety of software libraries and 
repositories containing this type of code and documentation 

exist today at various locations on the Internet.  
Vertical reuse, significantly untapped by the software 
community at large, but potentially very useful, has far reaching 
implications for current and future software development efforts.  

 1.1 Reuse Process 
The process of reuse consists of four major activities:  
 manage the reuse infrastructure (MRI). 
 produce reusable assets (PRA). 
  broker reusable assets (BRA) and  
 consume reusable assets (CRA).  
Producers are those who create reusable assets with the specific 
goal of reusability.  
Function of Manage the Reuse Infrastructure (MRI) is to 

establish the reuse rules, roles, and goals in the infrastructure to 
support reuse. The Produce Reusable Assets (PRA) activities 
develop, generate, or reengineer assets with the specific goal of 
reusability. PRA includes domain analysis and domain 
engineering. The Broker Reusable Assets (BRA) activity aids 
the reuse effort by qualifying or certifying, configuring, 
maintaining, promoting and brokering reusable assets. The 
Consume Reusable Assets (CRA) activity occurs when systems 

are produced using reusable assets (Poulin, J. S., 1997). 
Followings are the steps for implementing Reuse Process:  
 Assess organizational readiness: Understand the people, 

process, product, technology, asset, economic, metric and 
management facets of the organization and how reuse will 
impact each of these aspects. 

 Identify and collect metrics: While this activity is done 
throughout the reuse effort as necessary, collecting metrics 
early will enable us to benchmark the organization and 

show the impact when reuse is implemented.  
 Identify domains in the organization: Enumerate a list of 

domains that are in common within the organization.  
 Analyze the domain: An informal domain analysis may be 

conducted for the chosen domain. This analysis includes 
determining features common to systems in the domain and 
assessing the range of variability.  

 Examine the existing organizational structure: Consider 

establishing an independent producer group. This would 
dedicate resources to ensure that the necessary assets are 
created, managed and supported. 

 Create and manage reusable assets: Make, buy or re-
engineer existing assets for users. Bring these assets under 
a source control and configuration management system. 

 Utilize tools, technology, and standards: Examine whether 
to create or use existing tools, technology and standards for 

your reuse program.  
 Conduct reviews and walkthroughs to reinforce reuse: 

Throughout the product development life cycles, perform 
reviews to ensure adherence to reusability objectives. 

1.2 Introduction to Clustering Techniques 
As a broad subfield of Fault Prediction, clustering is concerned 
with the design and development of algorithms and techniques 
that allow division of data in to different groups.   
Clustering means to assign a set of observations in to different 
groups (known as clusters), so that the observations are same in 

some sense. At a general level, there are two types of clustering: 
distance based and conceptual clustering. Distance based 
clustering divides the data in to subsets on the basis of distance. 
Conceptual clustering, cluster the data on the basis of the similar 
concept the data will have.  

An important component of a clustering algorithm is the distance 
measure between data points. If the components of the data 
instance vectors are all in the same physical units then it is 
possible that the simple Euclidean distance metric is sufficient to 
successfully group similar data instances. It is the ordinary 
distance between two points that one would measure with a ruler, 
which can be proven by repeated application of the Pythagorean 
theorem. The major focus of clustering research is to extract 

information from data automatically, by computational and 
statistical methods. Hence, clustering is closely related to data 
mining and statistics. 
Many clustering methods aim at finding a single partition of the 
collection of items into clusters. However, obtaining a hierarchy 
of clusters can provide more flexibility and other methods rather 
focus on this. A partition of the data can be obtained from a 
hierarchy by cutting the tree of clusters at some level. Most 

clustering methods were developed for numerical data, but some 
can deal with categorical data or with both numerical and 
categorical data. 
The degree of membership of a data item to a cluster is either in 
[0, 1] if the clusters are fuzzy or in {0, 1} if the clusters are crisp. 
For fuzzy clusters, data items can belong to some degree to 
several clusters that don’t have hierarchical relations with each 
other. This distinction between fuzzy and crisp can concern both 

the clustering mechanisms and their results. Crisp clusters can 
always be obtained from fuzzy clusters. Clusters can be seen 
either as distant compact sets or as dense sets separated by low 
density regions. Unlike density, compactness usually has strong 
implications on the shape of the clusters, so methods that focus 
on compactness should be distinguished from methods that focus 
on the density. Clustering denotes changes in a system that 
enables a system to do the same task more efficiently the next 
time. Clustering is a method of unsupervised learning, in which 

one seeks to determine how the data are organized.  
Clustering algorithms can be: 

1.2.1 Hierarchical: 
 A hierarchical algorithm creates a hierarchy of clusters which 
may be represented in a tree structure called a dendrogram. The 
root of the tree consists of a single cluster containing all 
observations, and the leaves correspond to individual 
observations. In hierarchical clustering algorithm, a valid metric 
may be used as a measure of similarity between pairs of 
observations. Algorithms for hierarchical clustering are generally 
either agglomerative, in which one starts at the leaves and 

successively merges clusters together; or divisive, in which one 
starts at the root and recursively splits the clusters. 

1.2.2 Partitional: 
 Partitional algorithms typically determine all clusters at once. 

These algorithms divide data in to independent clusters on the 
basis of distance measures. A division data objects into non-
overlapping subsets (clusters) such that each data object is in 
exactly one subset.  
K-Means is an unsupervised clustering technique used to classify 
data in to K clusters. It is   partitional clustering approach, each 
cluster is associated with a centroid (center point), each point is 
assigned to the cluster with the closest centroid, Number of 

clusters, K, must be specified. 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Dendrogram
http://en.wikipedia.org/wiki/Metric_(mathematics)
http://en.wikipedia.org/wiki/Partition_of_a_set
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Fuzzy C-Means (FCM) is a method of clustering which allows 
one piece of data to belong to two or more clusters. It processes 
n vectors in p-space as data input, and uses them, in conjunction 
with first order necessary conditions for minimizing the FCM 
objective functional, to obtain estimates for two sets of 

unknowns.  FCM clustering is used to build fuzzy rule bases for 
fuzzy systems design; and there are numerous applications of 
FCM in virtually every major application area of clustering 

1.2.3: Spectral 

This clustering techniques make use of the spectrum of the 

similarity matrix of the data to perform dimensionality reduction 
for clustering in fewer dimensions.The main requirements that a 

clustering algorithm should satisfy are scalability; dealing with 
different types of attributes; discovering clusters with arbitrary 
shape; minimal requirements for domain knowledge to determine 
input parameters; ability to deal with noise and outliers; 
insensitivity to order of input records; high dimensionality; 
interpretability and usability. 
 

2 LITERATURE SURVEY 
(Boetticher, G., et.al, 1993) assimilated knowledge about object 
oriented concepts, analysis and design. Explanation of various 
object-oriented metrics was also given such as class oriented 
metrics (CK metric), metrics for source code, testing, analysis 
model and design model. Advantages and disadvantages of each 

object-oriented metric was explained. Information regarding 
theoretical background of the reusability of software and Object 
oriented metrics for measuring size, complexity are also given in 
this reference. 
(Boetticher, et.al, 1993) discussed various approaches for 
measuring software reusability, to build reusable components 
and to identify useful modules in existing programs. Taxonomy 
of reusability metrics was given which provide the attributes of 

reusable software. Two main methods are there to measure the 
reusability. One is Empirical methods stress objective, 
numerical, and repeatable metrics, such as those obtained by 
observing the module complexity or size. Other is Qualitative 
methods included (or even emphasized) subjective criteria, such 
as how well a module complies with a set of style, certification, 
quality guidelines, or simply agrees with the opinions of 
"experts." These are further divided into two categories module 

oriented and component oriented. 
 (Kartalopoulos, S. V. 1996) discussed REBOOT (reusability 
based on object oriented technique) that develop a taxonomy of 
reusability attributes. It provided reusability factors, a list of 
criteria for factor and a list of metrics for each criteria. Various 
object oriented concepts were defined in this paper, which are 
useful for finding the reusability. Information about software 
reuse, types of software reuse, requirements for building 
software reuse and management issues toward reusable software 

were also given. This also shows the advantages of this 
technique over other methods.  
Prieto-Diaz and Freeman encouraged white-box reuse and 
identified five program attributes for evaluating reusability . The 
attributes used are: 

 Program Size 

 Program  Structure 

 Program Documentation 

 Programming Language 

 Reuse Experience 

 (Richard W. Selby, 2005) discussed that  CK metric suit is able 
to target all the essential attributes of OO-based   software. 
(Parvinder, 2005) used Tuned and Refined values of the 
following Metric suit for the reusability data Modeling:  

 Weighted methods per class (WMC) 

 Depth of inheritance tree (DIT) 
 Number of Children (NOC) 
 Coupling Between Object Classes (CBO) 

Lack of Cohesion in Methods (LCOM) 
 

3 PRESENT WORK 

3.1 Problem Formulation 

The aim of Metrics is to predict the quality of the software 
products. Various attributes, which determine the quality of the 
software, include maintainability, defect density, fault 

proneness, normalized rework, understandability, reusability etc. 
The requirement today is to relate the reusability attributes with 
the metrics and to find how these metrics collectively determine 
the reusability of the software component. To achieve both the 
quality and productivity objectives it is always recommended to 
go for the software reuse that not only saves the time taken to 
develop the product from scratch but also delivers the almost 
error free code, as the code is already tested many times during 

its earlier reuse. 
A great deal of research over the past several years has been 
devoted to the development of methodologies to create reusable 
software components and component libraries, where there is an 
additional cost involved to create a reusable component from 
scratch. That additional cost could be avoided by identifying and 
extracting reusable components from the already developed 
large inventory of existing systems. But the issue of how to 

identify good reusable components from existing systems has 
remained relatively unexplored. Our approach, for identification 
and evaluation of reusable software, is based on software models 
and metrics. As the exact relationship between the attributes of 
the reusability is difficult to establish so a Neural Network 
approach could serve as an economical, automatic tool to 
generate reusability ranking of software by formulating the 
relationship based on its training. When one designs with Neural 
Networks alone, the network is a black box that needs to be 

defined; this is a highly compute-intensive process. One must 
develop a good sense, after extensive experimentation and 
practice, of the complexity of the network and the learning 
algorithm to be used. With the objective of taking advantage of 
the features of the neural networks, in this study Neural Network 
based approach is used to economically determining reusability 
of software components in existing systems as well as the 
reusable components that are in the design phase. Inputs to 

Neural system, are provided in form of McCabe’s Cyclometric 
Complexity Measure for Complexity measurement, Regularity 
Metric, Halstead Software Science Indicator for Volume 
indication, Reuse Frequency metric and Coupling Metric values 
of the  software component and output is be obtained in terms of 
reusability.  

3.2 Methodology 
Reusability evaluation System for function Based Software 
Components can be framed using following steps: 
I) Selection and refinement of metrics targeting the  quality  of  
function based  software  system  and perform   parsing  of  the  
software   system  to generate  the  Meta  information  related  to  

http://www.scholarpedia.org/article/Fuzzy_Sets
http://en.wikipedia.org/wiki/Spectrum_of_a_matrix
http://en.wikipedia.org/wiki/Dimensionality_reduction
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that Software. The metric of the  Parvinder et. al 2006 is used 
and the metrics are as under:  
The proposed five metrics for function Oriented Paradigm are as 
follows: 

The proposed metrics for Function Oriented Paradigm are as 

follows: 

3.2.1 Cyclometric Complexity Using Mc Cabe’s 
Measure 

According to Mc Cabe, the value of Cyclometric Complexity 
(CC) can be obtained using the following equation: 

1nodespredicateofNumberCC  (1) 

Where predicate nodes are the nodes of the directed graph, 
made for the component, where the decisions are made.Hence, 
the value of CC of a software component should be in between 
upper and lower bounds as a contribution towards reusabilityIf 
CC is high with high regularity of implementation then there 
exists high functional usefulness. 

3.2.2  Halstead Software Science Indicator  
According to this metric volume of the source code of the 

software component is expressed in the following equation: 

)21(2log21 NNVolume  (2) 

Where, η1 is the number of distinct operators that appear in 
the program, η2 is number of distinct operands that appear in the 
program, N1 is the total number of operator occurrences and N2 
is the total number of operand occurrences.  

The high volume means that software component needs more 
maintenance cost, correctness cost and modification cost. On the 

other hand, less volume increases the extraction cost, 
identification cost from the repository and packaging cost of the 
component. So the volume of the reusable component should be 
in between the two extremes. 

3.2.3  Regularity Metric  
The notion behind Regularity is to predict length based on 

some regularity assumptions. As actual length (N) is sum of N1 
and N2. The estimated length is shown in the following 
equation: 

22log212log1NLenghtEstimated  (3) 

The closeness of the estimate is a measure of the Regularity 

of Component coding is calculated as: 

 

NNNNNgularity /]/){(1Re  (4) 

The above derivation indicates that Regularity is the ratio of 
estimated length to the actual length. High value of Regularity 

indicates the high readability, low modification cost and non-
redundancy of the component implementation [24].  

Hence, there should be some minimum level of Regularity of 
the component to indicate the reusability of that component. 

3.2.4  Reuse-Frequency Metric  

Reuse frequency is calculated by comparing number of static 
calls addressed to a component with number of calls addressed 
to the component whose reusability is to be measured. Let N 
user defined components be X1, X2 … XN in the system, where 
S1, S2 … SM are the standard environment components e.g. 

printf in C language, then Reuse-Frequency is calculated as: 

M

i
iS

M

C
FrequencyReuse

0

)(
1

)(
 

(5) 

Equation (5) shows that the Reuse-Frequency is the measure 
of function usefulness of a component. Hence there should be 
some minimum value of Reuse- Frequency to make software 

component really reusable [24]. 

3.2.5  Coupling Metric 
Functions/methods that are loosely bound tend to be easier to 

remove and use in other contexts than those that depend heavily 

on other functions or non-local data. Different types of coupling 
effects reusability to different extent.  

Data Coupling:  

Stamp Coupling:  

Control Coupling:.  

Common Coupling:  

Data Coupling is lightest weight coupling, whereas Content 
Coupling is the heaviest one.  

Let 

ai be the number of functions called and Data Coupled with 
function “i”  

bi be the number of functions called and Stamp Coupled with 
function “i”  

ci be the number of functions called by function “i” and 
Control Coupled with function “i” 

di be the number of functions Common Coupled with 

function “i”  

e
cdwcwbwawa iiii

caxf
)( 43211

1
),,(  

(6) 

Where a = 10, c = 0.5 and wi for i = 1, 2, 3, 4 is the weights of 
the respective the coupling types. 

As coupling increases, there is decrease in understandability and 
maintainability, so there should be some maximum value of the 
coupling. 
II) Calculate the metric values of the sampled software 
components.  

III) Implement the EM (expectation maximisation) Clustering 
based prediction system in Matlab environment.  
EM assigns a probability distribution to each instance which 
indicates the probability of it belonging to each of the clusters. 
EM can decide how many clusters to create by cross validation, 
or you may specify apriori how many clusters to generate.  
The cross validation performed to determine the number of 
clusters is done in the following steps:  

1. the number of clusters is set to 1  
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2. the training set is split randomly into 10 folds. 
3. EM is performed 10 times using the 10 folds the usual CV 
way. 
4. the loglikelihood is averaged over all 10 results. 
5. if loglikelihood has increased the number of clusters is 

increased by 1 and the program continues at step 2.  
The number of folds is fixed to 10, as long as the number of 
instances in the training set is not smaller 10. If this is the case 
the number of folds is set equal to the number of instances. 
Deduce the results on the 10 fold cross validation accuracy, 
precision and recall values. 

In case of the two-cluster based problem, the confusion matrix 
has four categories: True positives (TP) are modules correctly 

classified as faulty modules.  False positives (FP) refer to fault-
free modules incorrectly labeled as faulty modules. True 
negatives (TN) correspond to fault-free modules correctly 
classified as such. Finally, false negatives (FN) refer to faulty 
modules incorrectly classified as fault-free modules as shown in 
table 3.1.  
 

Table 3.1. Confusion Matrix of Prediction Outcomes. 

                 Real Data Value 

Predicted Value Fault No fault 

Fault TP FP 

No Fault FN TN 

 
With help of the confusion matrix values the precision and recall 

values are calculated described below: 

 Precision 

The Precision is the proportion of the examples which truly 
have class x among all those which were classified as class x.  

Precision for a class is the number of true positives (i.e. the 
number of items correctly labeled as belonging to the positive 
class) divided by the total number of elements labeled as 
belonging to the positive class (i.e. the sum of true positives and 
false positives, which are items incorrectly labeled as belonging 
to the class). The equation is:   
Precision = TP / (TP + FP) (1) 

 Recall  

Recall in this context is defined as the number of true positives 
divided by the total number of elements that actually belong to 
the positive class (i.e. the sum of true positives and false 
negatives, which are items which were not labeled as belonging 
to the positive class but should have been) [8]. The recall can be 
calculated as follows: 

Recall = TP / (TP + FN) (2) 

 Accuracy  

The percentage of the predicted values that match with the 
expected values of the reusability for the given data. 

The best system is that having the high Accuracy, High 

Precision and High Recall value. 
 

4 RESULTS AND DISCUSSION  
The proposed Neural based methodology is implemented in 
MATLAB 7.4. MATLAB (Matrix Laboratory) environment is 

one such facility which lends a high performance language for 
technical computing. 
The function oriented dataset considered have the output 
attribute as Reusability value. The Reusability in  the dataset is 
expressed in terms of six numeric labels i.e. 1, 2, 3, 4, 5 and 6. 

The label 1 represents Nil and the label 6 represents the 
Excellent Reusability Label. The statistics of the count of the 
number of examples of certain reusability label is shown in the 
Table 4.1. The Graphical representation of the count of the 
number of examples of certain reusability label is shown in the 
Figure 4.1 

 

Table 4.1 statistics of the Reusability Output Attribute in the 

Dataset 
 

 
 

Figure 4.1 Bar-chart of Count of examples of the Reusability 

Output Attribute in the Dataset 
 
 

 
 
The statistics shows that in the dataset, there are 9 examples of 
label 1, 10 examples of label 2, 26 examples of label 3, 29 

examples of label 4, 17 examples of label 5 and 18 examples of 
label 6.  
The input attribute-wise statistical details of the count of the 
examples of the labels are shown in table 4.2, table 4.3,  table 
4.4,  table 4.5,  table 4.6. The input attributes are expressed in 
the three linguistic labels i.e. 1, 2, and 3. The label 1 
corresponds to the Low value, label 2 corresponds to the 
Medium value and label 3 corresponds to the high value.  

Table 4.2 statistics of the Input Attribute Coupling in the 

Dataset 

 
 

Table 4.3 statistics of the Input Attribute Volume in the 

Dataset 
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Table 4.4 statistics of the Input Attribute Coupling in the 

Dataset 
 

 
 

Table 4.5 statistics of the Input Attribute Coupling in the 

Dataset 
 
 

 
 

Table 4.6 statistics of the Input Attribute Reuse-Frequency 

in the Dataset 
 

 
 

The given data with five Input Attributes  i.e. Coupling,  
Volume,  Complexity,  Regularity, Reuse_Frequency, and 
Output attributes is loaded in the Weka environment. First, the 
EM clustering  ignores  Reusability output attribute. EM assigns 
a probability distribution to each instance which indicates the 
probability of it belonging to each of the clusters.  

There following parameters are used in the algorithm: 

 debug -- It is set to true so that formed clusters 
information  can be displayed on the console. 

 maxIterations – It is Maximum number of iterations. 
That are set to  100. 

 minStdDev – It is Minimum allowable standard 
deviation. That is set to 1.0E-6 as default value. 

 numClusters – It is the number of clusters. It is set to 6 

as in the dataset there are six levels of reusability value. 

 seed – It is random number seed to be used. It is set to 

100 as default value. 
The snapshot of the parameters set is shown in figure 4.2. 
 

Figure 4.2. Snapshot of the Parameters Set in the EM 

Clustering Algorithm 

 
 
The EM  clustering algorithm has created clusters numbered as 0 
to 5 and assigned the 23 ( means 21%) examples to cluster 
number 0,  24 ( means 22%) examples to cluster number 1, 38 ( 
means 35%) examples to cluster number 2, 18 ( means 17%) 
examples to cluster number 3 and 6 (  means 6%) examples to 
cluster number 4. The cluster 5 is not able to get any example. 

Further the cluster numbers are again assigned  Predicted Labels 
as follows: 
 

Table 4.7. The Assignment of Predicted Labels to the 

Clusters formed by EM 

Cluster Number 

 

Predicted Label 

 

 
Cluster 0 

 
6 

 
Cluster 1 

 
3 

 
Cluster 2 

 
4 

 
Cluster 3 

 
2 

 
Cluster 4 

 
1 

 
The confusion matrix calculated is shown in Table 4.8.  

 

Table 4.8 The Confusion Matrix Generated after applying 

EM Clustering 
 

 Real Data Label 

Predicted 

Label 
1 2 3 4 5 6 
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1 2 1 1 2 0 0 

2 7 8 3 0 0 0 

3 0 1 12 2 9 0 

4 0 0 10 25 3 0 

5 0 0 0 0 0 0 

6 0 0 0 0 5 18 

 
The Precision and Recall values for different the Reusability 
levels if the reusability is shown in table 4.9 and 4.10 
respectively. 
 

Table 4.9  Precision Value of Different Classes of the 

Reusability Values 
 

Re usability Level Class Precision Value 

1 0.33 

2 0.44 

3 0.5 

4 0.66 

5 0 

6 0.78 

 

Table 4.10  Recall Value of Different Classes of the 

Reusability Values 

 
 

Reusability Level Class Recall Value 

1 0.22 

2 0.8 

3 0.46 

4 0.86 

5 0 

6 1 

As evidenced from the confusion matrix the incorrectly 
clustered instances are 44.0 means 40.367  % is the inaccuracy 
value or correctly clustered instances are 65 means the accuracy 

is approximately 60%. 
 

5 CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 
In this study Expectation Maximization based Clustering 
approach is evaluated for Reusability Prediction of Function 
based Software systems.  Here, the metric based approach is 
used for prediction. Reusability value is expressed in the six 
linguistic values. Five Input metrics are used as Input and 
clusters are formed using EM, thereafter 10 fold cross validation 

performance of the system is recorded. As deduced from the 
results it is clear that Precision and Recall values of the sixth 
level reusability class is the maximum, it means the system is 
able to detect the “Excellent” components precisely. Similarly, 
Precision and Recall values of the fourth level reusability class 

is the second best, it means the system is able to detect the 
“Good” components with good precision. 
The proposed technique is showing Accuracy value 
approximately equal to 60%, so it is satisfactory enough to use 
the Expectation maximization based clustering technique for the 

prediction of the function based reusable modules from the 
existing reservoir of software components.  

5.2 Future Scope 
The proposed approach is applied on the C based software 
modules/components and it can further be extended to the 

Artificial Intelligence (AI) based software components e.g. 
Prolog Language based software components. It can also be 
tried to calculate the fault-tolerance of the software components 
with help of the proposed metric framework.  
The research work can be extended in the following directions: 

 Intelligent Component Mining or Extraction 

algorithms can be developed 

 Early prediction of the quality of component based 

system 

 Characterization of Software Components for easy 

retrieval 
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