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ABSTRACT 

The paper presents a comparative analysis of data clustering by 

Particle swarm optimization (PSO) and differential evolution 

(DE) techniques. It is clearly reveled from the simulation results 

that almost parameter free optimization technique such as 

Differential evolution could provide better performance 

compared to PSO where in many parameters are to be tuned. To 

exhibit the numerical optimizing capability of DE we have 

demonstrated the capability of this by optimizing few 

benchmark functions. 
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1. INTRODUCTION 

Cluster analysis seeks to divide a set of objects into a small 

number of relatively homogeneous groups on the basis of their 

similarity over N variables. Cluster analysis can be viewed 

either as a means of summarizing a data set or as a means of 

constructing a topology [12]. Patterns within a valid cluster are 

more similar to each other than to a pattern belonging to a 

different cluster. Clustering is useful in several exploratory 

pattern-analysis, grouping, decision-making, data mining, 

document retrieval, image segmentation and pattern 

classification [8]. 

 

Data clustering can be hierarchical or partitional. Hierarchical 

clustering algorithms can be described in terms of trees. 

According to Hartigan (1967, p. 1140), "a tree may be regarded 

as a hierarchical grouping structure, in which the objects are 

grouped into a set of clusters, these clusters are again grouped 

into a set of clusters of clusters, and so on." Hartigan regards 

objects, clusters, and clusters of clusters equally as nodes [12]. 

Hierarchical clustering algorithms can be agglomerative 

(bottom-up) or divisive (top-down). Agglomerative algorithms 

begin with each element as a separate cluster and merge them 

into larger clusters. Divisive algorithms begin with the whole set 

of data objects and proceed to divide it into successively smaller 

clusters [9]. 

Partitional clustering algorithms relocate instances by moving 

them from one cluster to another, starting from the initial 

partitioning. Such method requires the number of clusters to be 

preset by the user. The simplest and the most commonly used 

portioning algorithm is K-Means, where K denotes the number  

 

 

of clusters. The reasons for the algorithmic popularity is it’s ease 

of interpretation, simplicity of implementation , speed of 

convergence and adaptability to sparse data(Dhillon and Modha, 

2001)[13]. The disadvantages of this algorithm lies in the fact 

that the accuracy of the algorithm completely depends on the 

initial selection of centroids and it more often stuck up at local 

optima for complex multimodal problems. 

 

Inspired by the process of Darwinian evolution (Back and 

Weigend, 1998; Eiben and Smith, 2003), a new paradigm called 

as evolutionary computation came which consists of stochastic 

search algorithms. Because of its robust, adaptive search 

methods for performing global search, EAs are applied in the 

field of Data Mining. In the mid 1990s Eberhart and Kennedy 

came with a new evolutionary based optimization technique by 

emulating the collaborative behavior of bird flocks and fish 

schools and called it Particle Swarm Optimization. Around the 

same time, Price and Storn proposed a new algorithm based on a 

differential operator, and called it Differential Evolution. 

  

In this paper we try to bring out the performance variations 

among the two evolutionary based algorithms PSO and DE by 

applying them to optimize four standard benchmark functions 

and also for clustering three real-world data sets. The remainder 

of this paper is organized as follows. In Section 2, the 

fundamentals of PSO are described. In Section 3, fundamentals 

of DE are discussed. Function optimization using PSO and DE 

is discussed in Section 4. In Section 5, frame work for data 

clustering is discussed. Experimental setup and results are 

discussed in Section 6. Conclusion is discussed in Section 7.

  

2. FUNDAMENTALS OF PSO 

Particle swarm optimization (PSO) is an evolutionary 

computation technique developed by Kennedy and Eberhart 

(1995) [1]. They were essentially aimed at producing 

computational intelligence by exploiting simple analogs of 

social interaction rather than purely individual cognitive 

abilities. The first simulations (Kennedy & Eberhart, 1995) were 

influenced by Heppner and Grenander’s work (1990), and 

involved analogs of bird flocks searching for corn. These soon 

developed into a powerful optimization method, PSO [2]. 

  

The key difference between PSO and evolving populations is the 

way in which new samples are generated. In GAs, new samples 

are produced by some recombination of selected parent solutions 

which may then go on to replace members of population. In 
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PSO, new samples are generated by perturbation of existing 

solutions. Later approach can lead to issues of stability [3]. 

 

PSO is a population-based search algorithm and is initialized 

with a population of random solutions called particles [4].In this, 

each individual is treated as a volume less particle in a d-

dimensional search space.  

 

• The ith particle is represented as xi= (xi1, xi2,...xid).  

• The best previous position (the position giving the best 

fitness value) of the ith particle is recorded and represented 

as Pi=(Pi1, Pi2,...Pid).  

• The index of the best particle among all the particles in the 

population is represented by the symbol g. 

• The rate of position change (velocity) for particle i is 

represented as Vi=(Vi1, Vi2...Vid)[5].  

• The particle is manipulated according to the following 

equation: 

 

( ) ( ) ( ) ( ) ( )

( )2

1**** 21

→+=

→−+−+∗=
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Where w is the inertia of weight, c1 and c2 are two positive 

constants, and rand( ) is a random function in the range [0,1] 

[11]. 

 

The original process for implementing the global version of PSO 

includes: 

1. initializing a population of particles with random positions 

and velocities on d dimensions in the problem space,  

2. evaluating the desired optimization fitness function in d 

variables, for each particle,  

3. comparing particle’s fitness evaluation with particle’s 

pbest. If current value is better than pbest, then set pbest 

value equal to the current value, and the pbest location 

equal to the current location in d-dimensional space. 

4. comparing fitness evaluation with the population’s overall 

previous best. If the current value is better than gbest, then 

reset gbest to the current particle’s value. 

5. changing the velocity and position of the particle according 

to the equations(1) and(2), respectively: 

6. loop to step 2 until the criterion is met, usually a 

sufficiently good fitness or a maximum number of 

iterations. 

3. FUNDAMENTALS OF DE 

Differential Evolution (DE) is a parallel direct search method 

developed by Storn and Price in 1997 which is a population-

based global optimization algorithm .It uses a real-coded 

representation [6]. This approach for numerical optimization is 

simple to implement and requires little or no parameter tuning, 

but gives a remarkable performance. Like all other evolutionary 

algorithms, the initial population is chosen randomly. 

 

Classical DE 

Like all other evolutionary algorithms, DE method also consists 

of three basic steps: 

(i) Generation of population with N individuals in the d-

dimensional space, randomly distributed over the entire search 

domain  

( ) ( ) ( ) ( ) ( )[ ]txtxtxtxtX iDiiii ....,, 3,2,1,=  

 where t=0,1,2,….t,t+1 

 

(ii) Replacement of this current population by a better fit new 

population, and  

(iii) Repetition of this replacement until satisfactory results are 

obtained or certain criteria of termination is met. 

The basic scheme of evolutionary algorithms is given below: 

a) Mutation 

After the random generation of population, in each 

generation, a Donor vector ( )tVi is created for each 

( )tX i .This donor vector can be created in different ways (see 

section 3.2). 

b) Recombination 

Now a trial offspring vector is created by combining 

components from the Donor vector ( )tVi  and the target vector 

( )tX i . This can be done in the following way 

( ) ( )tVtU jiji ,, =    if randi,j(0,1)<=cr  

    ( )tX ji,=  otherwise 

c) Selection 

Selection in DE adopts Darwinian principle “Survival Of the 

Fittest”. Here if the trail vector yields a better fitness value, it 

replaces its target in the next generation; otherwise the target 

vector is retained in the population. Hence the population either 
gets better (w.r.t. the fitness function) or remains constant but 

never deteriorates. 

( ) ( )tUtX ii =+1  if  ( )( ) ( )( ),tXftUf ii ≤  

   ( )tX i=  if   

( )( ) ( )( ) ( )3....→< tUftXf ii  

 

DE mutation Schemes 

The five different mutation schemes suggested by Price [6] is as 

follows: 

Scheme 1-DE/rand/1 

In this scheme, to create a donor vector ( )tVi  for each ith 

member, three other parameter vectors (say the o1, o2, and o3th 

vectors) are chosen randomly from the current population. A 

scalar number F is taken. This number scales the difference of 

any two of the three vectors and the resultant is added to the 

third one. For the ith donor vector, this process can be given as              

( ) ( ) ( ) ( )( ) ( )41
321

→−∗+=+ tXtXFtXtV oooi

 

Initializa
tion 

Mutation Recomb
ination 

Selection 
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Scheme 2-DE/rand to best/1 

This scheme follows the same procedure as that of the Scheme1. 

But the difference is, now the donor vector is generated by 

randomly selecting any two members of the population (say the 

( )tX
20 , and ( )tX 3,0  vectors)  and the best vector of the 

current generation (say ( )tX best ). For the ith donor vector, at 

time t=t+1, this can be expressed as 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )5

1

32
→−∗

+−∗+=+

tXtXF

tXtXtXtV

oo

ibestii λ
 

Where λ  is a control parameter in DE and ranges between [0, 

2] . To reduce the number of parameters, we consider λ =F. 

Scheme 3-DE/best/1 

This scheme is identical to Scheme 1 except that the result of the 

scaled difference is added to the best vector of the current 
population. This can be expressed as 

( ) ( )

( ) ( )( ) ( )6

1

21
→−∗
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Scheme 4-DE/best/2 

In this scheme, the donor vector is formed by using two 

difference vectors as shown below 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )7

1
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Scheme 5-DE/rand/2 

Here totally five different vectors are selected randomly  

from the population, in order to generate the donor  

vector. This is shown below 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )8

`
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2
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tXtXF
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Here F1 and F2 are two weighing factors selected in the 

range from 0 to 1. To reduce the number of parameters we 
may choose F1 = F2 = F. 

The experiment we conducted in this study uses Scheme 1-
DE/rand/1(equation 4). 

 Procedure for DE 

1. Randomly initialize the position of the particles 

2. Evaluate the fitness for each particle 

3. For each particle, create Difference-Offspring 

4. Evaluate the fitness of the Difference-Offspring 

5. If an offspring is better than its parent then replace the 

parent by offspring in the next generation; 

6. Loop to step 2 until the criterion is met, usually a 

sufficiently good fitness or a maximum number of 

iterations. 

4. FUNCTION OPTIMIZATION USING 

PSO AND DE 

The aim of an optimization problem is to determine a best-suited 

solution under a given set of constraints. Mathematically an 

optimization problem involves a fitness function, which needs to 

be maximized or minimized. Most of the traditional 

optimization techniques employ derivative approach to locate 

the optima. This approach fails to determine the global optima 

for multimodal optimization problems. More recently, the 

optimization problem is being represented as an intelligent 

search problem, where one or more agents are employed to 

determine the optima on a search space[7]. This technique of 

searching is called as evolutionary based searching 

 

All evolutionary based algorithms follow a single approach for 

solving an optimization problem. The approach is given below: 

1. Initialize the population with particles or vectors 

2. Calculate the fitness function for each particle or vector 

3. Based on the best fitness value, update the position of the 

particles or vectors 

The difference among different evolutionary based algorithms 

lies in the way they update the particles by changing the 

parameters. 

 

In our experiment, we have taken two such evolutionary based 

search techniques PSO(Kennedy and Eberhart 1995)  and 

DE(Storn and Price 1997). These two techniques are first tested 

on standard four benchmark functions[Table 1] and the 

comparative analysis is given with plots.[See Table 2 and Fig1]. 

We have coded all the programs in MATLAB 7.5 software and 

run with 1.86 Core2 DUO processor , 1GB RAM. 

5. Frame work for Data Clustering 

Data clustering is a process of grouping a set of data vectors into 

a number of clusters or bins such that elements or data vectors 

within the same cluster are similar to one another and are 

dissimilar to the elements in other clusters. Clustering 

algorithms can be grouped into two main classes of algorithms, 

namely Supervised and Unsupervised. With Supervised 

clustering, the learning algorithm has an external teacher that 

indicates the target class to which the data vector should belong. 

For unsupervised clustering, a teacher does not exist, and data 

vectors are grouped based on distance from one another [8]. 

Data clustering can be hierarchical or partitional. We here, 

instead, confine ourselves to the field of evolutionary based 

partitional Clustering. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 8– No.13, October 2010 

4 

 

Partitional clustering algorithms, attempt to decompose the 

dataset into a set of disjoint clusters by optimizing a criteria 

(such as intra cluster distance which is to be detailed below) . 

Hence clustering can also be treated as an optimization problem 

and we can apply the evolutionary techniques to get the 

optimum solutions. In this paper we have taken PSO and DE for 

clustering three real-world datasets (see Section 6.1 for data 

description). Comparative analysis is given  in Table 3 and a 

sample plot is also shown(See fig 2 and fig 3). All the 

algorithms have been coded in MATLAB 7.5  

 

5.1 Basic K-Means clustering algorithm 
K-Means algorithm falls under partitional based clustering 

technique. It was introduced by MacQueen’67[9].K in K-Means, 

signifies the number of clusters into which data is to be 

partitioned. This algorithm aims at assigning each pattern of a 

given dataset to the cluster having the nearest centroid. K-Means 

algorithm uses similarity measure to determine the closeness of 

two patterns. Similarity can be measured using Euclidean 

Distance or Manhattan Distance or Minkowski Distance. In this 

paper, Euclidean Distance is considered as the similarity 

measure. 

The algorithm for K-Means is as follows: 

i. Initialize randomly kN  cluster centroid vectors 

ii. Repeat 

a. Assign each data vector to the cluster with closest 

centroid vector. The distance from the data vector to 

the centroid vector is determined using the equation  

( )9)(),(
1

2 →−= ∑
=

dN

k

jkpkjp azazd  

b. Recalculate the cluster centroid vectors, using 

( )10
1

→= ∑
∈∀ jp Cz

p

j

j z
n

a , where jn  is the 

number of data vectors in cluster j  Until a stopping 

criterion is reached 

  

The process of K-Means clustering can be stopped when one of 

the following criteria are satisfied: 

i. When the maximum number of iterations has reached 

ii. When there is no change in the newly obtained 

centroid vectors 

For the purpose of this study, the second criteria got 

used 

 

5.2 PSO Clustering 
There are different versions of PSO models[10]. In this work we 

stick to the basic PSO model called gbest model wherein every 

particle will interact with every other particles to decide its 

optimum direction. This section now presents a standard gbest 

PSO clustering algorithm. 

 

Data vectors can be clustered using standard gbest PSO as 

follows: 

i. Randomly select Nk cluster centroids to initialize each 

particle 

ii. For I =1 to maxI do 

a) For each particle i do 

b) For each data vector pz  

i. calculate Euclidean distance ),( ijp azd to all 

cluster centroids ijC  using equation 9 

ii. assign pz  to the cluster ijC  such that 

),( ijp azd = 

{ }),(min .....1 ikpNk azd
k=∀  

iii. calculate the fitness using the equation 

 

[ ]
( )11

),(
1

→

∑ ∑
=

∈∀

k

N

j

jpCz

N

azd
k

ijp

 

c) Update the pbest and gbest positions 

d) Update the cluster centroids using the equations (1) 

and (2) 

Where maxI is the maximum number of iterations. 

 

5.3 DE Clustering 
There are different DE Schemes available [6]. Here we stick to 

the classical DE algorithm (Scheme 1, See section 3.2), which is 

presented below: 

 

Data vectors can be clustered using classical DE as follows: 

i. Initialize each vector to contain K number of 

randomly selected cluster centers 

ii. For I=1 to Imax do 

a. For each vector i do 

b. For each object in the data set Zp 

i. Calculate the Euclidean distance ),( ijp azd  to 

all cluster centroids Cij using equation 3 

ii. Assign Zp to the cluster Cij such that 

),( ijp azd = { }),(min .....1 ikpNk azd
k=∀  

c. Change the population members according to the 

DE algorithm outlined in(section 3.3). Use the 

vectors fitness to guide the evolution of the 

population. 

iii. Report cluster centers and the partition obtained by 

globally best vector at time I=Imax 

6. Experimental set-up and Results 

The algorithms have been tested on four benchmark functions: 

Sphere,Rosenbrock, Rastrigin and Griewank. Table1 gives the 

descriptions of these functions. A comparison of the two 

algorithms, PSO and DE, has been reported for the afore 

mentioned benchmark functions(see Table2 and Fig1) 



International Journal of Computer Applications (0975 – 8887)  

Volume 8– No.13, October 2010 

5 

 

These algorithms are applied for clustering three real world data 

sets described below. All these data sets are available at 

www.ics.uci.edu/~mlearn/MLRepository.html. Fitness 

comparison of the two algorithms, PSO and DE has been 

reported in Table3. Fig 2 and Fig 3 shows the three-dimensional 

plots of observations for PSO and DE algorithms respectively on 

Iris dataset.\ 

 

6.1 Dataset Description 
Three well-known real-world datasets from the machine 

learning repository have been considered for this experiment. 

They are: 

1. Fisher’s iris dataset (n=150,p=4,c=3), which consists of n 

objects characterized by p features (sepal length, sepal 

width, petal length, petal width). There are c categories in 

this data: Iris setosa (50), Iris versicolor (50), Iris virginica 

(50) 

2. Wisconsin breast cancer dataset (n=683,p=9,c=2), which 

consists of n objects characterized by p features (clump 

thickness, cell size uniformity, cell shape uniformity, 

marginal adhesion, single epithelial cell size, bare nuclei, 

bland chromatin, normal nucleoi and mitoses). There are c 

categories in the data: malignant (444 objects) and benign 

(239 objects) 

3. Wine recognition dataset (n=178,p=13,c=3), which consists 

of n objects, characterized by p features(Alcohol, 

Malicacid, Ash, Alcalinity of ash, Magnesium, Total 

Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color 

intensity, Hue, OD280/OD315 of diluted wines,Proline) 

with c categories in the data: class 1(59 objects), class 2 
(71 objects), class 3 (48 objects) 

 

For PSO, we have set the inertia of weight, w=0.7 and c1=c2=2  

for our experiment 

For DE, we have set the cross over rate cr =0.9, the weighting 

factor is chosen as F=0.8[6]. 

 
Table 1 Descriptions of Benchmark functions used in the 

experiment 
 

 
 

 

6.2 Results 
 

Table 2: Optimized results of PSO and DE on the afore 

mentioned four Benchmark functions 

 
 
Number of particles/vectors taken=10 

Number of variables taken = 2 

Number of Iterations = 200 

Number of runs = 2 

 

 
Table 3: Mean Intracluster Distances of PSO and DE on the 

given three real-world data sets 

 

 

   
Number of iterations=50 

Number of vectors/particles =5 

 

Fig1. Diagram of convergence for the two algorithms applied to 

all four benchmark functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 
a. Sphere 
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c. Rastrigin 

 

 

 

 

 

 
 

 

 

d. Griewank 

Fig2. PSO generated Three-Dimensional Clusters of IRIS 

dataset  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig 3:DE generated Three-Dimensional  Clusters of IRIS dataset 
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7. CONCLUSION 

In this paper, the performance of PSO and DE for finding the 

optimum solution is compared on four benchmark 

functions(Table 1) and also on clustering 3 real-world data sets. 

From our experiments it turns out that DE is clearly superior 

compared to that of PSO with respect to the consistency and 

robustness of results. Apart from performance issues, DE is very 

easy to implement with very little parameter tuning when 

compared to that of PSO. As further enhancement we will like to 

see how different mutation models perform for clustering 

results. 
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