
International Journal of Computer Applications (0975 – 8887)  

Volume 8– No.2, October 2010 

29 

 

The Applicability of Existing Metrics for Software Security 

Sree Ram Kumar T 
Research Scholar 

Madurai Kamaraj University 
Madurai, India. 

 

Sumithra A 
Research Scholar 

Madurai Kamaraj University 
Madurai, India. 

 

 

Alagarsamy K 
Associate Professor 

Madurai Kamaraj University 
Madurai, India. 

 

ABSTRACT 
With the increasing inclination of people to use software systems for 

most of the purposes, comes a major challenge for software 

engineers – the engineering of secure software systems. The concept 

of ―Computer Security‖ is being heavily researched and this 

perfectly makes sense in a world where e-commerce and e-

governance are becoming the norms of the day. Along with their 

potential for making life easier and smarter for people, these 

systems also carry with them the danger of insecurity. Because any 

software system is an outcome of some software engineering process 

it makes sense to incorporate security considerations during the 

software engineering processes. This is easier said than done 

because traditional software engineering approaches are 

requirements driven and pay very little, if any, attention to security. 

Tom DeMarco [1] stated, ―You can’t control what you can't 

measure.‖ This clearly states the importance of metrics in software 

engineering. Traditional software metrics do not address the issue of 

security well and now with security becoming an imperative 

necessity of most software systems, these metrics have to be adapted 

to take into account the security aspect. The paper discusses the 

applicability of some established metrics for the security aspect. 

Keywords 
Metrics, Security, Security Metrics, Size Metrics, Complexity 

Metrics 

 

1. INTRODUCTION 

Tom DeMarco [1] stated, ―You can’t control what you can't 

measure.‖ This clearly states the importance of metrics in software 

engineering. Since quantitative methods have proved so powerful in 

other sciences, computer science practitioners and theoreticians have 

worked hard to bring similar approaches to software development. 

Eventhough many software metrics are now available, most of the 

metrics have lacked a sound theoretical basis or a statistically 

significant experimental validation. Despite these problems, it 

appears that the judicious methodical application of software metrics 

can aid significantly in improving software quality and productivity. 

Engineering of secure software systems seems to be one of the most 

important challenges confronted by software practitioners today and 

hence it is worth exploring the possibility of using metrics to aid the 

software engineers in this regard. 

1.1 The Need of Software Metrics 
Current software management is ineffective because software 

development is extremely complex, and we have few well-defined, 

reliable measures of either the process or the product to guide and 

evaluate development. Thus, accurate and effective estimating, 

planning and control are nearly impossible to achieve [2]. 

Improvement of the management process depends upon improved 

ability to identify, measure and control essential parameters of the 

development process. This is the goal of software metrics—

identification and measurement of the essential parameters that 

affect software development. 

1.2 Software Metrics Defined 
It is important to further define the term software metrics as used in 

this paper. Essentially, software metrics deals with the measurement 

of the software product and the process by which it is developed [3]. 

In this discussion, the software product should be viewed as an 

abstract object that evolves from an initial statement of need to a 

finished software system, including source and object code and the 

various forms of documentation produced during development. 

Ordinarily, these measurements of the software process and product 

are studied and developed for use in modeling the software 

development process. These metrics and models are then used to 

estimate/predict product costs and schedules and to measure 

productivity and product quality. Information gained from the 

metrics and the model can then be used in the management and 

control of the development process, leading, one hopes, to improved 

results.  

1.3 Security Metrics Defined 
We shall adopt the following definition of ―Security Metrics‖ 

―At a high-level, metrics are quantifiable measurements of some 

aspect of a system or enterprise. For an entity (system, product, or 

other) for which security is a meaningful concept, there are some 

identifiable attributes that collectively characterize the security of 

that entity. Further, a security metric (or combination of security 

metrics) is a quantitative measure of how much of that attribute the 

entity possesses. A security metric can be built from lower-level 

physical measures.‖ [4]  

1.4 Characteristics of ideal/good metrics 
Ideal metrics should be : 

 Simple, precisely definable – so that it is clear how the 

metric can be evaluated 

 Objective, to the greatest extent possible; 

 Easily obtainable 

 Valid – the metric should measure what it is intended to 

measure 

 Robust – relatively insensitive to insignificant changes in 

the process or product. 

Ferrari [17] observes that the fundamental qualities required of 

any technical system are : 

 functionality – correctness, reliability etc. 

 performance – response time, throughput, speed etc. 

 economy – cost effectiveness. 



International Journal of Computer Applications (0975 – 8887)  

Volume 8– No.2, October 2010 

30 

 

But in this era security of software systems has reached such 

importance that it also needs to be included in the list above. 

Software metrics as the term is most commonly used today, concerns 

itself almost exclusively with functionality and economy [3]. But 

there is now an imperative necessity to broaden the scope of 

software metrics to include the security characteristic as well.  

1.5 Classification of Software Metrics 

Software metrics may be broadly classified as either product metrics 

or process metrics. Product Metrics are measures of the software 

product at any stage of its development, from requirements to 

installed system. Product metrics may measure the complexity of the 

software design, the size of the final program, or the number of 

pages of documentation produced. In the context of security an 

example of a product metric may be the number of vulnerabilities 

identified in the software. Process metrics, on the other hand, are 

measures of the software development process such as overall 

development time, type of methodology used or the average level of 

experience of the programming staff. 

Software metrics can also be classified into objective and subjective 

metrics. Objective metrics should always result in identical values 

for a given metric, as measured by two or more qualified observers. 

For subjective metrics even qualified observers may measure 

different values for a given metric, since their subjective judgment is 

involved in arriving at the measured value. An example of an 

objective security metric can be the number of invalidated input data 

and an example of a subjective metric can be the classification of a 

program as ―highly secure‖, ―secure‖ and ―insecure‖. Although most 

programs might be easy to classify, those on the borderline might 

reasonably be classified in different ways by different 

knowledgeable observers. 

Metrics can also be categorized as primitive or computed. Primitive 

metrics are those that can be directly observed, such as the number 

of security bugs observed in unit testing. Computed metrics are 

those that cannot be directly observed but are computed in some 

manner from other metrics. Examples of Computed Security metrics 

include the average number of vulnerabilities noticed per thousand 

lines of code.  

2. SOURCE CODE ANALYSIS 

Most of the available software metrics are centered on the source 

code, as this is the direct embodiment of the software system. But 

the major drawback of this approach is that the source code is 

typically available only late in the software development life cycle. 

Still, the utility of metrics derived from source code has been 

proven. It is highly likely that the source code will prove useful 

when measuring the security aspect as well.  Many static analyzers 

of source code are now available and these typically analyze the 

source code without executing it. The output from the analyzers can 

be used for various purposes including identifying possible coding 

errors and in formal methods that mathematically prove properties 

about a given program. (that the program behavior matches its 

specification). In the context of security metrics these source code 

analyzers can provide valuable data that provide an insight into the 

various security aspects of the system. Many available static 

analyzers have to be enhanced to be used in this manner. Source 

Code Analyzers can be developed that identify potentially 

vulnerable code. [5] details the desirable properties of such ―security 

aware‖ source code analyzers.  

3. EXISTING METRICS AND THEIR 

SUITABILITY FOR MEASURING SECURITY 

A brief overview of some of the available software metrics and their 

applicability for measuring ―security‖ is presented below: 

 

3.1 Size Metrics 

A number of metrics attempt to quantify software ―size‖. 

The metric that is most widely used , ―Lines Of Code‖ or ―LOC‖, 

suffers from the obvious deficiency that its value cannot be 

measured until after the coding process has been completed.  

3.1.1  LOC 

―Lines of Code‖ is possibly the most widely used metric 

for program size. It would seem to be easily and precisely definable; 

however, there are a number of different definitions for the number 

of lines of code in a particular program. These differences involve 

treatment of blank lines and comment lines, non-executable 

statements, multiple statements per line, and multiples lines per 

statement, as well as question of how to count reused lines of code. 

The most common definition of LOC seems to count any line that is 

not a blank or comment line, regardless of the number of statements 

per line [6,7]. LOC has been theorized to be useful as a predicator of 

program complexity, total development effort, and programmer 

performance.  

In the context of Security, the utility of the LOC metric is 

at best questionable because there seems to be no relationship 

between the LOC of a program and its security. Whether a program 

with more LOC is more or less secure than a program with a fewer 

LOC is yet to be proved. LOC is also influenced by some other 

factors like the programming language used as some recent 

programming languages have the ability to deliver more 

functionality with fewer LOC.  

3.1.2 Function Points 

Albrecht has proposed a measure of software size that can 

be determined early in the development process. The approach is to 

compute the total function points (FP) value for the project, based 

upon the number of external user inputs, inquiries, outputs, and 

master files. The value of FP is the total of these individual values, 

with the following weights applied: inputs: 4, outputs: 5, inquiries: 

4, and master files: 10. Function points are intended to be a measure 

of program size, and, thus, effort required for development. 

3.1.3 Bang Metrics 

DeMarco defines system Bang as a function metric, 

indicative of the size of the system. In effect, it measures the total 

functionality of the software system delivered to the user. Bang can 

be calculated from certain algorithm and data primitives available 

from a set of formal specifications for the software. The model 

provides different formulas and criteria for distinguishing between 

complex algorithmic versus heavily data oriented systems.  

 With regard to security, all the size metrics are of little, if 

any, utility, as the relationship between software size and software 

security is not yet established. Any attempt to reuse these metrics, 

for security, must first determine the relationship between size and 

security, if any exists.  

 



International Journal of Computer Applications (0975 – 8887)  

Volume 8– No.2, October 2010 

31 

 

3.2 Complexity Metrics 

 Numerous metrics have been proposed for measuring 

program complexity – probably more than for any other program 

characteristic. As is the case with size metrics, measures of 

complexity that can be computed early in the software development 

life cycle will be of greater value in managing the software process.  

 

3.2.1 Cyclomatic Complexity – v(G) 

Given any Computer Program, we can draw its control 

flow graph G, wherein each node corresponds to a block of 

sequential code and each arc corresponds to a branch or decision 

point in the program. The cyclomatic complexity of such a graph can 

be computed by a simple formula from graph theory, as v(G) = e – n 

+ 2, where e is the number of edges, and n is the number of nodes in 

the graph.  

3.2.2 Extensions to v(G) 

Myers noted that McCabe’s cyclomatic complexity 

measure v(G), provides a measure of program complexity but fails 

to differentiate the complexity of some rather simple cases involving 

single conditions (as opposed to multiple conditions) in conditional 

statements. As an improvement to the original formula, Myers 

suggests extending v(G) to v’(G)=[l:u], where l and u are lower and 

upper bounds, respectively, for the complexity. This formula gives 

more satisfactory results for the cases noted by Myers [8]. 

Stetter proposed that the program flow graph be expanded 

to include data declarations and data references, thus allowing the 

graph to depict the program complexity more completely. If H is the 

new program flow graph, it will generally contain multiple entry and 

exit nodes. A function f(H) can be computed as a measure of the 

flow complexity of program H. The deficiencies noted by Myers are 

also eliminated by f(H) [9] 

3.2.3 Knots 

The concept of program knots is related to drawing the 

program control flow graph with a node for every statement or block 

of sequential statements. A knot is then defined as a necessary 

crossing of directional lines in the graph. The number of knots in a 

program has been proposed as a measure of program complexity 

[10] 

3.2.4 Information flow 

The information flow within a program structure may also 

be used as a metric for program complexity. Henry and Kafura [11] 

have proposed such a measure. Basically, their method counts the 

number of information flows entering (fan-in) and exiting (fan-out) 

each procedure. The procedure’s complexity is then defined as :  

C = [ procedure – length ] . [ fan-in . fan-out ] 2   

All the complexity metrics have generally been related to 

programming effort, debugging performance, and maintenance 

effort. In the context of security, these metrics may also serve as 

indicators of the strength of security mechanisms needed by the 

program. But for this, evidence needs to be established that a 

relationship exists between the complexity of the program and the 

strength of the security mechanisms needed by it. For example, a 

more complex program may require more effort for security. 

 

3.3 Halstead’s Product Metrics 

 Most of the product metrics proposed have applied to only 

one particular aspect of the software product. In Contrast, Halstead’s 

software science proposed a unified set of metrics that apply to 

several aspects of programs, as well as to the overall software 

production effort. Thus, it is the first set of software metrics unified 

by a common theoretical basis. 

3.3.1 Program Vocabulary 

Halstead theorized that computer programs can be 

visualized as a sequence of tokens, each token being classified as 

either an operator or operand. He then defined the vocabulary, N, of 

the program as: 

n = n1 + n2 

Where n1 = the number of unique operators in the 

program and 

            n2 = the number of unique operands in the 

program. 

Thus, n is the total number of unique tokens from which 

the program has been constructed. [12]. 

3.3.2 Program Length 

Having identified the basic tokens used to construct the 

program, Halstead then defined the program length, N, as the count 

of the total number of operators and operands in the program. 

Specifically, 

N = N1 + N2 

Where N1 = the total number of operators in the 

program, and, 

N2 = the total number of operands in the program. 

Thus, N is clearly a measure of the program size, and one 

that is directly derivable from the program itself. In practice, 

however, the distinction between operators and operands may be 

non-trivial, thus complicating the counting process. [12] 

Halstead theorized that an estimated value for N’, designated , can 

be calculated from the values of n1 and n2 by using the following 

formula: 

N’ = n1 log2 n1 + n2 log2 n2. 

Thus, N is a primitive metric, directly observable from the 

finished program, while N’ is a computed metric, which can be 

calculated from the actual or estimated values of n1 and n2 before 

the final code is actually produced. 

Some studies have attempted to relate N and N’ to other 

software properties such as complexity and defect rates. Similar 

studies need to be done to explore any possibility of relationship 

between Halstead’s metrics and software security. 

3.4 Quality Metrics 

 One can generate long lists of quality characteristics for 

software – correctness, efficiency, portability, maintainability, 

reliability and perhaps even security. Early examples of work on 

quality metrics are discussed by Boehm. [13,14]. Unfortunately, the 

characteristics often overlap and conflict with one another; for 

example, increased portability may result in lowered efficiency.  



International Journal of Computer Applications (0975 – 8887)  

Volume 8– No.2, October 2010 

32 

 

 Although a good deal of work has been done in this area, it 

exhibits less commonality of direction or definition that other areas 

of metric research, such as software size or complexity.  

3.4.1 Defect Metrics 

The number of defects in the software product should be 

readily derivable from the product itself; thus, it qualifies as a 

product metric. However, since there is no effective procedure for 

counting the defects in the program, the following alternative 

measures have been proposed: 

 Number of design changes 

 Number of errors detected by code inspections 

 Number of errors detected in program inspections 

 Number of code changes required 

The number of defects observed in a software product 

provides, in itself, a metric of software quality. These metrics can be 

extended to include ―security defects‖ as well. We may take into 

account for example the number of security design changes required, 

number of security related errors detected by code inspections and 

the number of code changes necessitated by security related aspects. 

These are likely to provide a good measure of the security 

mechanisms built into the program. But they have a major 

disadvantage: these metrics are available only lately in the software 

development life cycle.  

3.4.2 Reliability Metrics 

It would be useful to know the probability of software failure, or the 

rate at which software errors will occur. Again, although this 

information is inherent in the software product, it can only be 

estimated from the data collected on software defects as a function 

of time. If certain assumptions are made, these data can then be used 

to model and compute software reliability metrics. These metrics 

attempt to measure and predict the probability of failure during a 

particular time interval, or the mean time to failure (MTTF). 

The parallels between software reliability metrics and software 

security metrics have been discussed by [15]. The paper also 

highlights some challenges that have to be overcome before we 

attempt to devise metrics for security based on the reliability 

metrics. The paper also discusses the usage of probability-based 

framework to model security breaches analogous to the modeling of 

faults in the context of reliability.  Time cannot be a good criterion 

when it comes to security and hence the paper suggests the usage of 

―effort‖ in the place of ―time‖. The paper also suggests having the 

Mean Time To Breach metric analogous to MTTF.  

 

4. DISCUSSION 
Of all the metrics, discussed above only the quality metrics seem to 

be the most likely candidates for consideration in the context of 

security metrics. But this too, is not without drawbacks. This 

indicates the need for the development of new metrics focused 

exclusively on security. Current measurements about security are 

highly subjective and need a high involvement of the human 

element. This needs to be reduced.  Clearly, much more is to be 

done in the area of security metrics, as the currently available 

metrics do not address the security issue effectively. [16] can be a 

good starting point for the commencement of research in this area. 

The paper suggests the usage of Historical data Collection and data 

mining techniques and AI Assessment techniques in the 

development of security metrics.  With the increasing demand for 

secure systems, the development of security metrics would be well 

worth the effort. Such metrics can be of immense help to the 

software engineers in the engineering of secure software systems. It 

needs to be pointed out here that even in the context of security, 

different systems may require different levels of security. Another 

point worth mentioning here is that, currently security seems to be 

taken into account and measured only for systems where ―very high‖ 

security is demanded such as in military systems. Problems faced in 

this context are similar to that faced in the development of ―ultra-

high‖ reliable systems, the evaluation of which has been notably 

unsuccessful. This suggests that, in the development of security 

metrics, we should initially focus on systems where the security 

requirements are also modest. Once these attempts prove successful, 

work can be done for ultra-high secure systems as well.  

 

5. CONCLUSION 
The paper discussed the applicability of existing software metrics 

for measuring ―software security‖. It is observed that the utility of 

most of the available metrics is at best questionable. And much 

effort is needed to justify the usage of these metrics for security. 

Metrics focused exclusively on security need to be developed and 

this requires a clear understanding of the applicability, utility and 

shortcomings of the existing metrics.  

 

6. REFERENCES 
[1] http://en.wikipedia.org/wiki/Software_metrics 

[2] Rubin, H. A. ―Macro-Estimation of Software Development 

Parameters: The ESTIMACS System.‖ Proc. SOFTFAIR: A 

Conference on Software Development Tools, Techniques, and 

Alternatives. New York: IEEE, July 1983, 109-118. 

[3] Mills, Everald E, ―Software Metrics SEI Curriculum module SEI 

– CM – 12 – 1.1‖, Carnegie Mellon University, Software 

Engineering Institute, December, 1988. 

[4] SSE-CMM: Systems Security Engineering Capability Maturity 

Model, International Systems Security Engineering Association 

(ISSEA), referenced on July 7, 2008, http://www.sse-

cmm.org/metric/metric.asp 

[5] Chess, Brian, ―Metrics That Matter – Quantifying Software 

Security Risk‖, Proceedings of Workshop on Software Security 

Assurance Tools, Techniques, and Metrics, National Institute of 

Standards And Technology, February 2006. 

[6] Boehm, B. W. ―Software Engineering Economics‖, Englewood 

Cliffs, N. J.: Prentice-Hall, 1981. 

[7] Jones, T. C. ―Programming Productivity‖, New York: McGraw-

Hill, 1986. 

[8] Myers, G. J. ―An Extension to Cyclomatic Measure Of Program 

Complexity‖, ACM SIGPLAN Notices 12, 10 (Oct. 1977), 61-64. 

[9] Stetter, F. ―A Measure of Program Complexity‖, Computer 

Languages 9, 3-4(1984), 203-208. 

[10] Woodward, M. R., M. A. Hennell, and D. Hedley. ―A Measure 

of Control Flow Complexiy in Program Text‖, IEEE Trans. Software 

Eng. SE-5, 1 (Jan. 1979), 45-50. 

[11] Kafura, D. and S. Henry. ―Software Quality Metrics Based on 

Interconnectivity‖, J. Syst. and Software 2, 2 (June 1981), 121-131 

[12] Halstead, M. H. ―Elements of Software Science‖, New York: 

Elsevier North-Holland, 1977. 



International Journal of Computer Applications (0975 – 8887)  

Volume 8– No.2, October 2010 

33 

 

[13] Boehm, B. W., J. R. Brown, and M. Lipow, ―Quantitative 

Evaluation of Software Quality‖, Proc. 2nd Intl. Conf. On Software 

Engineering, Long Beach, Calif.: IEEE Computer Society, Oct. 

1976, 592-605. 

[14] McCall, J. A., P. K. Richards, and G. F. Walters, ―Factors in 

Software Quality, Vol. I, II, III: Final Tech. Report.‖, RADC-TR-

77-369, Rome Air Development Center, Air Force Systems 

Command, Griffiss Air Force Base, N. Y., 1977. 

[15] Littlewood Bev, Brocklehurst Sarah, Fenton Norman, Mellor 

Peter, Wright David, Dobson John, McDermid John, Gollmann 

Dieter, ―Towards Operational Measures of Computer Security‖, 

http://www.csr.city.ac.uk/people/bev.littlewood/bl_public_papers/M

easurement_of_security/Quantitative_security.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[16] Jansen, Wayne, ―Directions in Security Metrics Research‖, 

Computer Security Division, Information Technology Laboratory, 

National Institute of Standards and Technology, Gaithersburg, MD, 

April 2009. 

[17] Ferrari, D. ―Considerations on the Insularity of Performance 

Evaluation‖, IEEE Trans. Software Eng. SE-12, 6 (June 1986), 678-

683. 


