
International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

31

An Approach to Security Using Rijndael Algorithm

Srinivasan Nagaraj
Sr.Asst. Professor

Dept. of CSE, GMRIT
Rajam – 532127, AP, India

Kishore Bhamidipati
Asst. Professor

Dept. of IT, GMRIT
Rajam – 532127, AP, India

G Apparao
Asst. Professor

Dept. of CSE, GITAM Univ.
Vizag – 530045, AP, India

ABSTRACT

The existing system consisted of files with literally no file

security. The main issue of Reading or tapping data is

secrecy and confidentiality. Confidentiality has always played

an important role in diplomatic and military matters. Often

Information must be stored or transferred from one place to

another without being exposed to an opponent or enemy. The

main aim of presenting this paper is to encrypt a java file using

Rijndael Algorithm. The first aspect that has to be considered

in our paper is file security and the need for file security. Key

management is also related to Confidentiality. This deals with

generating, distributing and storing keys .File security must be

implemented so as to eliminate the problems like unauthorized

access, execution of commands illicitly, destructive behavior

and confidentiality reaches.

Keywords

Bytes, Cipher, state, finite field Addition, multiplication.

1. INTRODUCTION
Standards like Rijndael was to be implemented due to the

following factors against which several security measures had

to be taken up like. Reading or tapping data, Manipulating and

modifying data and Illegal use of files, Corrosion of data files,

Distortion of data transmission and Disturbance of the

operation of equipment or systems. Also Computer files and

networks must be protected against intruders and

Unauthorized. That includes File Security, Cryptography and

Private-Key-Encryption, Key Management.

1.1 Rijndael Features
Designed to be efficient in both hardware and software across

a variety of platforms. Uses a variable block size, 128, 192,

256-bits, key size of 128, 192-, or 256- bits.

Variable number of rounds (10,12, 14)

128-bit round key used for each round:

 – 128 bits = 16 bytes = 4 words

 – needs Nr+1 round keys for Nr rounds – needs 44

words for 128-bit key (10 rounds)

2. IMPLEMENTING RIJNDAEL

2.1 Notation and Conventions

2.2 Rijndael Inputs and Outputs
The input, the output and the cipher key for Rijndael are each

bit sequences containing 128, 192 or 256 bits with the

constraint that the input and output sequences have the same

length. A bit is a binary digit, 0 or 1, while the term „length‟

refers to the number of bits in a sequence. In general the length

of the input and output sequences can be any of the three

allowed values but for the Advanced Encryption Standard

(AES) the only length allowed is 128. However, both Rijndael

and AES allow cipher keys of all three lengths. The individual

bits within sequences will be enumerated starting at zero and

increasing to one less than the length of the sequence. The

number i associated with a bit, called its index, is hence in one

of the three ranges 0 £ i < 128, 0 £ i < 192 or 0 £ i < 256

depending on the length of the particular sequence in question.

2.3 Bytes
A byte in Rijndael is a group of 8 bits and is the basic data unit

for all cipher operations. Such bytes are interpreted as finite

field elements using polynomial representation, where a byte b

with bits b0 b1 …b7represents the finite field element:

The values of bytes will be presented in binary as a

concatenation of their inputs (0 or 1) between braces. Hence

{011000011} identifies a specific finite field element. Unless

specifically indicated, bit patterns will be presented with

higher numbered bits to the left. It is also convenient to denote

byte values using hexadecimal notation, with each of two

groups of four bits being denoted by a character as follows

Hence the value {011000011} can also be written as {63},

where the character denoting the 4-bit group containing the

higher numbered bits is again to the left. Some finite field

operations utilize a single additional bit (b8) to the left of an 8-

bit byte. Where this bit is present it will appear immediately to

the left of the left brace, for example, as in 1{1b}.

2.4 Arrays of Bytes
All input, output and cipher key bit sequences are represented

as one-dimensional arrays of bytes where byte n consists of

bits 8n to 8n+7 from the sequence with bit 8n+i in the

sequence mapped to bit 7-i in the byte for 0 <= i < 8. For a

sequence denoted by the symbol a, the n‟th byte will be

referred to using either of the two notations an or a[n], with n

in one of the ranges 0 <=n < 16, 0 <=n < 24 or 0 <=n < 32.

2.5 The Rijndael State
Internally Rijndael operates on a two dimensional array of

bytes called the state that contains 4 rows and Nc columns,

where Nc is the input sequence length divided by 32. In this

state array, denoted by the symbol s, each individual byte has

two indexes: its row number r, in the range 0 <=r < 4, and its

column number c, in the range 0 <=c < Nc, hence allowing it

to be referred to either as c r s , or s[r, c]. For AES the range

for c is 0 <=c < 4 since Nc has a fixed value of 4. At the start

(end) of an encryption or decryption operation the bytes of the

cipher input (output) are copied to (from) this state array in the

order shown in Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

32

Hence at the start of encryption or decryption the input array in

is copied to the state array according to the scheme:

s[r, c] = in[r + 4c] for 0 £ r < 4 and 0 £ c < Nc

and when the cipher is complete the state is copied to the

output array out according to:

out[r + 4c] = s[r, c] for 0 £ r < 4 and 0 £ c < Nc

Arrays of 32-bit Words

The four bytes in each column of the state can be thought of as

an array of four bytes indexed by the row number r or as a

single 32-bit word (bytes within all 32-bit words will always

be enumerated using the index r). The state can hence be

considered as a one dimensional array of words for which the

column number c provides the array index. The key schedule

for Rijndael, described below, is an array of 32-bit words,

denoted by the symbol k, with the lower elements initialized

from the cipher key input so that byte 4i+r of the key is copied

into byte r of key schedule word k[i]. The cipher iterates

through a number of cycles, called rounds, each of which uses

Nc words from this key schedule. Hence the key schedule can

also be viewed as an array of round keys, each of which

consists of an Nc word sub-array. Hence word c of round key

n, which is k[Nc * n + c], will also be referred to using two

dimensional array notation as either k[n,c] or kn,c . Here the

round key for round n as a whole, an Nc word sub-array, will

sometimes be referred to by replacing the second index with „-

‟ as in k[n,-] and -, n k.

3. ECRYPTION

3.1 Finite Field Addition
The addition of two finite field elements is achieved by adding

the coefficients for corresponding powers in their polynomial

representations, this addition being performed in GF(2), that

is, modulo 2, so that 1 + 1 = 0. Consequently, addition and

subtraction are both equivalent to an exclusive-or operation on

the bytes that represent field elements. Addition operations for

finite field elements will be denoted by the symbol Å. For

example, the following expressions are equivalent.

(polynomial notation)

{01010111} Å {10000011} _ {11010100}

(binary notation)

{57} Å {83} _ {d4} (Hex Notation)

3.2 Finite Field Multiplication
Finite field multiplication is more difficult than addition and is

achieved by multiplying the polynomials for the two elements

concerned and collecting like powers of x in the result. Since

each polynomial can have powers of x up to 7, the result can

have powers of x up to 14 and will no longer fit, within a

single byte. This situation is handled by replacing the result

with the remainder polynomial after division by a special

eighth order irreducible polynomial, which, for Rijndael, is:

Since this polynomial has powers of x up to 8 it cannot be

represented by a single byte and will be written as either

1{00011011} or 1{1b} as indicated earlier. This process is

illustrated in the following example of the product {57} · {83}

_ {c1} (where · is used to represent finite field multiplication):

This intermediate result is now divided by m(x) above:

Multiplication is associative, and there is a neutral element

{01}; for any binary polynomial b(x) of degree less than 8, the

extended Euclidean algorithm can be used to compute

polynomials a(x) and c(x), such that:

Which shows that the polynomials a(x) and b(x) are mutual

inverses. Furthermore:

It hence follows that the set of 256 byte values, with the XOR

as addition and multiplication as defined above has the

structure of the finite field GF(256).

3.3 Multiplication by Repeated Shifts
The finite field element {00000010} is the polynomial x,

which means that multiplying another element by this value

increases all its powers of x by 1. This is equivalent to shifting

its byte representation up by one bit so that the bit at position i

move to position i+1. If the top bit is set prior to this move it

will overflow to create an x8 term, in which case the modular

polynomial is added to cancel this additional bit, leaving a

result that fits within a single byte. For example, multiplying

{11001000} by x, that is {00000010}, the initial result is

1{10010000}. The „overflow‟ bit is then removed by adding

1{00011011}, the modular polynomial, using an exclusive-or

operation to give a final result of {10001011}.By repeating

this process, a finite field element can be multiplied by all

powers of x from 0 to 7. Multiplication of this element by any

other field element can then be achieved by adding the results

for the appropriate powers of x. For example, Table 1 carries

out this calculation for the product of the field elements 57}

and {83} to give {c1}.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

33

3.4 Finite Field Multiplication Using Tables
When certain finite field elements (known as generators) are

repeatedly multiplied to produce a list of their powers, gp, they

progressively generate all 255 non-zero elements in the field.

When p reaches 256 the original field element recurs,

indicating that g255 is equal to {01}. The p values for each

field element can be thought of as logarithms and these

provide a way of converting multiplication into addition.

Hence the two elements a = g a and b = g b have the product a

· b = g a + b. With a „logarithm‟ table listing the power of the

generator for each finite field element can hence find the

powers a and b corresponding to the elements a and b and add

these values to find the power of g for the result. A reverse

table can then be used to look up the product element. Since

the two initial power values can each be as high as 255, their

sum may be greater than 255 but if this occurs, 255 can be

subtracted from the value to bring it into the range of the tables

because g255 = {01}. Although decimal exponents have been

used in this explanation, all exponents in what follows are in

hexadecimal notation.

For the Rijndael field {03} is a generator that yields Table 2 .

Using the previous example, Table 2 shows that {57} =

{03}(62) and {83} = {03}(50) (where the brackets on the

exponents identify them as hexadecimal numbers). This gives

the product as {57} · {83} = {03}(62) + (50) and since (62) +

(50) = (b2) in hexadecimal, These tables can also be used to

find the inverses of field elements since g(X) has the inverse

g(ff)-(X). Hence the element {af} = {03}(b7) has the inverse

g(ff)-(b7) = g(48) = {62}. All elements except {00} have

inverses.

3.5 Polynomials with Coefficients in GF

(256)
Four term polynomials can be defined with coefficients that are

finite field elements as:

where the four coefficients, each represented by a byte, will be

denoted as a 32-bit word in the form [a3 , a2 , a1 , a0]. With a

second polynomial:

addition can be performed by adding the finite field

coefficients of like powers of x, which corresponds to an XOR

operation between the corresponding bytes in each of the

words or an XOR of the complete 32-bit word values

Multiplication is achieved by algebraically expanding the

polynomial product and collecting like powers of x to give:

where:

with · and Å representing finite field multiplication and

addition (XOR) respectively. This result requires six bytes to

represent its coefficients but it can be reduced modulo a degree

4 polynomial to produce a result that is of degree less than 4.

In Rijndael the polynomial used is x4 + 1 and reduction

produces the following polynomial coefficients:

If one of the polynomials is fixed, this can conveniently be

written in matrix form as:

Because x4 + 1 is not an irreducible polynomial, not all

polynomial multiplications are invertible. For Rijndael,

however, a polynomial that has an inverse has been chosen:

Another polynomial that Rijndael uses has a0 = a2 = a3 = {00}

and a1 = {01}, which is the polynomial x. Inspection of above

will show that its effect is to form the output word by rotating

the bytes in the input word so that [b3 , b2 , b1 , b0] is

transformed into [b2 , b1 , b0 , b3], with bytes moving to

higher index positions and the top byte wrapping round to the

lowest position. Higher powers of x correspond to the other

cyclic permutations of the four bytes within a 32-bit word. The

RootWord function that is used in the key schedule

corresponds to x3.

3.6 The Cipher
At the start of the cipher the cipher input is copied into the

internal state using the conventions described in above. An

initial round key is then added and the state is then

transformed by iterating a round function in a number of

cycles. The number of cycles Nn varies with the key length and

block size. On completion the final state is copied into the

cipher output using the same conventions. The round function

is parameterized using a round key which consists of an Nc

word sub array from the key schedule. The latter is considered

either as a one-dimensional array of 32-bit words or an array of

round keys with a structure and initialization as described in

above. In general the length of the cipher input, the cipher

output and the cipher state, Nc, measured in multiples of 32

bits, is 4, 6 or 8 but the AES standard only allows a length of

4. The length of the cipher key, Nk, again measured in

multiples of 32 bits, is also 4, 6 or 8, all of which are allowed

by both Rijndael and the AES standard. Here the key schedule

is treated as an array of Nn + 1 individual round keys, each of

which is itself an array of Nc words. The number of rounds for

the cipher (Nn) varies with the block length and the key length

as shown in the following table.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

34

3.7 The SubBytes Transformation
The SubBytes transformation is a non-linear byte substitution

that acts on every byte of the state in isolation to produce a

new byte value using an S-box substitution table. The action of

this transformation is illustrated in Figure 2 for a block size of

6.

This substitution, which is invertible, is constructed by

composing two transformations:

First the multiplicative inverse in the finite field

described earlier (with element {00} mapped to itself).

Second the affine transformation over GF(2) defined by:

For 0 £ i < 8 where bi is bit i of the byte and ci is bit i of a byte

c with the value {63} or {01100011}. Here and elsewhere a

prime on a variable on the left of an equation indicates that its

value is to be updated with the value on the right. In matrix

form the latter component of the S-box transformation can be

expressed as:

The final result of this two stage transformation is given in the

following table.

3.8 The ShiftRows Transformation
The ShiftRows transformation operates individually on each of

the last Three rows of the state by cyclically shifting the bytes

in the row such that:

Where the shift amount h(r, Nc) depends on row number r and

block length as follows:

This has the effect of moving bytes to lower positions in the

row except that the lowest bytes wrap around into the top of

the row (note that a prime on a variable indicates an updated

value). The action of this transformation is illustrated in Figure

3 for a cipher block size of 6.

3.9 The MixColumns Transformation
The MixColumns transformation acts independently on every

column of the state and treats each column as a four-term

polynomial.

In matrix form the transformation used given in equation,

where all the values are finite field elements as discussed in

The action of this transformation is illustrated in Figure 4 for a

cipher block size of 6.

3.10 The Xor RoundKey Transformation
In the Xor RoundKey transformation Nc words from the key

schedule (the round key described later) are each added (XOR‟

d) into the columns of the state so that:

where the round key words K round, c (shortened to k r c in

the diagram below) will be described later. The round number,

round, is in the range 0 £ round £ Nn, with the value of 0 being

used to denote the initial round key that is applied before the

round function.

The action of this transformation is illustrated in Figure 5 for a

cipher block size of 6. The byte address within each word of

the key schedule is that described in above.

The Key Schedule

The round keys are derived from the cipher key by means of a

key schedule with each round requiring Nc words of key data

which, with an additional initial set, makes a total of Nc (Nn +

1) words, where Nn is the number of cipher rounds. This key

schedule is considered either as a one dimensional array k of

Nc (Nn + 1) 32-bit words with an index I in the range 0 £ i <

Nc (Nn + 1) or as a two dimensional array k [n,c] of Nn + 1

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

35

round keys, each or which individually consists of a sub-array

of Nc words.

The expansion of the input key into the key schedule proceeds

according to the following pseudo code. The function

SubWord(x) gives an output word for which the S-box

substitution has been individually applied to each of the four

bytes of its input x. The function RotWord(x) converts an input

word [b3,b2,b1,b0] to an output [b0,b3,b2,b1] . The word

array Rcon[i] contains the values [0, 0, 0, xi-1] with xi-1 being

the powers of x in the field GF(256) discussed above (note that

the index i starts at 1).

Note that this key schedule, which is illustrated in Figure 6 for

Nk = 4 and Nc = 6, can be generated „on-the fly‟ if necessary

using a buffer of max(Nc, Nk) words. It can also be split into

separate, somewhat simpler, key schedules for Nk _ 6 and Nk

> 6 respectively.

4. DECRYPTION

4.1 The Inverse Cipher
The inversion of the cipher code presented above is

straightforward.

4.2 The Inverse ShiftRows Transformation
The Inverse ShiftRows transformation operates individually on

each of the last three rows of the state cyclically shifting the

bytes in the row such that

where the cyclic shift values h(r, Nc) are given in Table 6.

4.3 The Inverse SubBytes Transformation
The inverse S-box table needed for the inverse Inverse

SubBytes transformation is given above.

4.4 The Inverse Xor RoundKey

Transformation
The XorRoundKey transformation is its own inverse.

4.5 The Inverse MixColumns

Transformation
The InvMixColumns transformation acts independently on

every column of the state and treats each column as a four-term

polynomial as described above. In matrix form the

transformation used is given in equation, where all the values

are finite field elements as discussed above.

5. CONCLUSION
Cryptography has got it‟s own depth in computer science.

Better algorithms are the future requirement for Cryptography.

Like any technology, encryption software isn't perfect. Even the

best products consume both processor speed and storage space.

Bad encryption software can be confusing to use or easily

compromised. The main aim of presenting this paper is to

encrypt a java file using Rijndael Algorithm. The first aspect

that has to be considered in our paper is file security and the

need for file security. Key management is also related to

Confidentiality. This deals with generating, distributing and

storing keys File security must be implemented so as to

eliminate the problems like unauthorized access, execution of

commands illicitly, destructive behavior and confidentiality

reaches. This can be implemented in future in various projects

regarding computer security Like digital certificates,

electronic signatures and hyper Encryption.

6. REFERENCES
[1] James, N., E. Barker, L. Bassham, W. Burr, M.Dworkin,

J. Foti and E. Roback, 2000. Report on the development

of the advanced encryption standard (AES). Computer

Security Division, Information Technology Laboratory,

National Institute of Standards and Technology,

Technology Administration, U.S. Department of

Commerce.

[2] Srdjan, C., L. Buttyan and J.-P. Hubaux, 2003. Self-

organized public-key management for mobile ad hoc

Networks. IEEE Trans. Mobile Computing: pp: 52-64.

[3] Philip, R., M. Bellare and J. Black OCB, 2003. A block-

cipher mode of operation for efficient authenticated

encryption. ACM Trans. Information System and

Security, pp: 365-403.

[4] Mary, R.T., A. Essiari and S. Mudumbai, 2003.

Certificate-based authorization policy in a PKI

environment. ACM Trans. Information System and

Security, pp:566-88.

[5] D. Alessandri, C. Cachin, M. Dacier, et al, “Towards a

Taxonomy of Tntrusion Detection Systems and Attacks.

MAFTIA deliverable D3”. 2001

[6] Custom Attack Simulation Language, Secure Networks.

1998.

[7] L.Me.Gassata, “A genetic algorithm as an alternative

tools for security audit trails analysis”, RAID'98, 1998.

[8] S.Kumar, Classification and Detection of Computer

Instructions. PhD thesis, Purdue University, 1995.

