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ABSTRACT 

The existing system consisted of files with literally no file 

security.  The main issue of Reading or tapping data   is 

secrecy and confidentiality. Confidentiality has always played 

an important role in diplomatic and military matters. Often 

Information must be stored or transferred from one place to 

another without being exposed to an opponent or enemy. The 

main aim of presenting this paper is to encrypt a java file using 

Rijndael Algorithm. The first aspect that has to be considered 

in our paper is file security and the need for file security. Key 

management is also related to Confidentiality. This deals with 

generating, distributing and storing keys .File security must be 

implemented so as to eliminate the problems like unauthorized 

access, execution of commands illicitly, destructive behavior 

and confidentiality reaches.   
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1. INTRODUCTION 
Standards like Rijndael was to be implemented due to the 

following factors against which several security measures had 

to be taken up like. Reading or tapping data, Manipulating and 

modifying data and Illegal use of files, Corrosion of data files, 

Distortion of data transmission and Disturbance of the 

operation of equipment or systems. Also Computer files and 

networks must be protected against intruders and 

Unauthorized. That includes File Security, Cryptography and 

Private-Key-Encryption, Key Management.  

1.1 Rijndael Features 
Designed to be efficient in both hardware and software across 

a variety of platforms. Uses a variable block size, 128, 192, 

256-bits, key size of 128, 192-, or 256- bits.  

Variable number of rounds (10,12, 14) 

128-bit round key used for each round: 

 – 128 bits = 16 bytes = 4 words 

 – needs Nr+1 round keys for Nr rounds  – needs 44 

words for 128-bit key (10 rounds) 

2. IMPLEMENTING RIJNDAEL 

2.1 Notation and Conventions 

2.2 Rijndael Inputs and Outputs 
The input, the output and the cipher key for Rijndael are each 

bit sequences containing 128, 192 or 256 bits with the 

constraint that the input and output sequences have the same 

length. A bit is a binary digit, 0 or 1, while the term „length‟ 

refers to the number of bits in a sequence. In general the length 

of the input and output sequences can be any of the three 

allowed values but for the Advanced Encryption Standard 

(AES) the only length allowed is 128. However, both Rijndael 

and AES allow cipher keys of all three lengths. The individual 

bits within sequences will be enumerated starting at zero and 

increasing to one less than the length of the sequence. The 

number i associated with a bit, called its index, is hence in one 

of the three ranges 0 £ i < 128, 0 £ i < 192 or 0 £ i < 256 

depending on the length of the particular sequence in question.  

2.3 Bytes 
A byte in Rijndael is a group of 8 bits and is the basic data unit 

for all cipher operations. Such bytes are interpreted as finite 

field elements using polynomial representation, where a byte b 

with bits b0 b1 …b7represents the finite field element: 

 

The values of bytes will be presented in binary as a 

concatenation of their inputs (0 or 1) between braces. Hence 

{011000011} identifies a specific finite field element. Unless 

specifically indicated, bit patterns will be presented with 

higher numbered bits to the left. It is also convenient to denote 

byte values using hexadecimal notation, with each of two 

groups of four bits being denoted by a character as follows 

 

Hence the value {011000011} can also be written as {63}, 

where the character denoting the 4-bit group containing the 

higher numbered bits is again to the left. Some finite field 

operations utilize a single additional bit (b8) to the left of an 8-

bit byte. Where this bit is present it will appear immediately to 

the left of the left brace, for example, as in 1{1b}. 

2.4 Arrays of Bytes 
All input, output and cipher key bit sequences are represented 

as one-dimensional arrays of bytes where byte n consists of 

bits 8n to 8n+7 from the sequence with bit 8n+i in the 

sequence mapped to bit 7-i in the byte for 0 <= i < 8. For a 

sequence denoted by the symbol a, the n‟th byte will be 

referred to using either of the two notations an or a[n], with n 

in one of the ranges 0 <=n < 16, 0 <=n < 24 or 0 <=n < 32. 

2.5 The Rijndael State 
Internally Rijndael operates on a two dimensional array of 

bytes called the state that contains 4 rows and Nc columns, 

where Nc is the input sequence length divided by 32. In this 

state array, denoted by the symbol s, each individual byte has 

two indexes: its row number r, in the range 0 <=r < 4, and its 

column number c, in the range 0 <=c < Nc, hence allowing it 

to be referred to either as c r s , or s[r, c]. For AES the range 

for c is 0 <=c < 4 since Nc has a fixed value of 4. At the start 

(end) of an encryption or decryption operation the bytes of the 

cipher input (output) are copied to (from) this state array in the 

order shown in Figure 1. 
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Hence at the start of encryption or decryption the input array in 

is copied to the state array according to the scheme: 

s[r, c] = in[r + 4c] for 0 £ r < 4 and 0 £ c < Nc 

and when the cipher is complete the state is copied to the 

output array out according to: 

out[r + 4c] = s[r, c] for 0 £ r < 4 and 0 £ c < Nc 

Arrays of 32-bit Words 

The four bytes in each column of the state can be thought of as 

an array of four bytes indexed by the row number r or as a 

single 32-bit word (bytes within all 32-bit words will always 

be enumerated using the index r). The state can hence be 

considered as a one dimensional array of words for which the 

column number c provides the array index. The key schedule 

for Rijndael, described below, is an array of 32-bit words, 

denoted by the symbol k, with the lower elements initialized 

from the cipher key input so that byte 4i+r of the key is copied 

into byte r of key schedule word k[i]. The cipher iterates 

through a number of cycles, called rounds, each of which uses 

Nc words from this key schedule. Hence the key schedule can 

also be viewed as an array of round keys, each of which 

consists of an Nc word sub-array. Hence word c of round key 

n, which is k[Nc * n + c], will also be referred to using two 

dimensional array notation as either k[n,c] or kn,c . Here the 

round key for round n as a whole, an Nc word sub-array, will 

sometimes be referred to by replacing the second index with „-

‟ as in k[n,-] and -, n k. 

3. ECRYPTION 

3.1 Finite Field Addition 
The addition of two finite field elements is achieved by adding 

the coefficients for corresponding powers in their polynomial 

representations, this addition being performed in GF(2), that 

is, modulo 2, so that 1 + 1 = 0. Consequently, addition and 

subtraction are both equivalent to an exclusive-or operation on 

the bytes that represent field elements. Addition operations for 

finite field elements will be denoted by the symbol Å. For 

example, the following expressions are equivalent. 

 

(polynomial notation) 

{01010111} Å {10000011} _ {11010100} 

(binary notation) 

{57} Å {83} _ {d4}     (Hex Notation) 

3.2 Finite Field Multiplication 
Finite field multiplication is more difficult than addition and is 

achieved by multiplying the polynomials for the two elements 

concerned and collecting like powers of x in the result. Since 

each polynomial can have powers of x up to 7, the result can 

have powers of x up to 14 and will no longer fit, within a 

single byte.  This situation is handled by replacing the result 

with the remainder polynomial after division by a special 

eighth order irreducible polynomial, which, for Rijndael, is: 

 

Since this polynomial has powers of x up to 8 it cannot be 

represented    by a single byte and will be written as either 

1{00011011} or 1{1b} as indicated earlier. This process is 

illustrated in the following example of the product {57} · {83} 

_ {c1} (where · is used to represent finite field multiplication): 

 

This intermediate result is now divided by m(x) above: 

 

Multiplication is associative, and there is a neutral element 

{01}; for any binary polynomial b(x) of degree less than 8, the 

extended Euclidean algorithm can be used to compute 

polynomials a(x) and c(x), such that: 

 

Which shows that the polynomials a(x) and b(x) are mutual 

inverses. Furthermore: 

 

It hence follows that the set of 256 byte values, with the XOR 

as addition and multiplication as defined above has the 

structure of the finite field GF(256). 

3.3 Multiplication by Repeated Shifts 
The finite field element {00000010} is the polynomial x, 

which means that multiplying another element by this value 

increases all its powers of x by 1. This is equivalent to shifting 

its byte representation up by one bit so that the bit at position i 

move to position i+1. If the top bit is set prior to this move it 

will overflow to create an x8 term, in which case the modular 

polynomial is added to cancel this additional bit, leaving a 

result that fits within a single byte. For example, multiplying 

{11001000} by x, that is {00000010}, the initial result is 

1{10010000}. The „overflow‟ bit is then removed by adding 

1{00011011}, the modular polynomial, using an exclusive-or 

operation to give a final result of {10001011}.By repeating 

this process, a finite field element can be multiplied by all 

powers of x from 0 to 7. Multiplication of this element by any 

other field element can then be achieved by adding the results 

for the appropriate powers of x. For example, Table 1 carries 

out this calculation for the product of the field elements 57} 

and {83} to give {c1}. 
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3.4 Finite Field Multiplication Using Tables 
When certain finite field elements (known as generators) are 

repeatedly multiplied to produce a list of their powers, gp, they 

progressively generate all 255 non-zero elements in the field. 

When p reaches 256 the original field element recurs, 

indicating that g255 is equal to {01}. The p values for each 

field element can be thought of as logarithms and these 

provide a way of converting multiplication into addition. 

Hence the two elements a = g a and b = g b have the product a 

· b = g a + b. With a „logarithm‟ table listing the power of the 

generator for each finite field element can hence find the 

powers a and b corresponding to the elements a and b and add 

these values to find the power of g for the result. A reverse 

table can then be used to look up the product element. Since 

the two initial power values can each be as high as 255, their 

sum may be greater than 255 but if this occurs, 255 can be 

subtracted from the value to bring it into the range of the tables 

because g255 = {01}. Although decimal exponents have been 

used in this explanation, all exponents in what follows are in 

hexadecimal notation. 

 

For the Rijndael field {03} is a generator that yields Table 2 . 

Using the previous example, Table 2 shows that {57} = 

{03}(62) and {83} = {03}(50) (where the brackets on the 

exponents identify them as hexadecimal numbers). This gives 

the product as {57} · {83} = {03}(62) + (50) and since (62) + 

(50) = (b2) in hexadecimal, These tables can also be used to 

find the inverses of field  elements since g(X) has the inverse 

g(ff)-(X). Hence the element {af} = {03}(b7) has the inverse 

g(ff)-(b7) = g(48) = {62}. All elements except {00} have 

inverses. 

3.5 Polynomials with Coefficients in GF 

(256) 
Four term polynomials can be defined with coefficients that are 

finite field elements as: 

 

where the four coefficients, each represented by a byte, will be 

denoted as a 32-bit word in the form [a3 , a2 , a1 , a0]. With a 

second polynomial: 

 

addition can be performed by adding the finite field 

coefficients of like powers of x, which corresponds to an XOR 

operation between the corresponding bytes in each of the 

words or an XOR of the complete 32-bit word values 

Multiplication is achieved by algebraically expanding the 

polynomial product and collecting like powers of x to give: 

 

where:  

 

with · and Å representing finite field multiplication and 

addition (XOR) respectively. This result requires six bytes to 

represent its coefficients but it can be reduced modulo a degree 

4 polynomial to produce a result that is of degree less than 4. 

In Rijndael the polynomial used is x4 + 1 and reduction 

produces the following polynomial coefficients: 

 

If one of the polynomials is fixed, this can conveniently be 

written in matrix form as: 

 

Because x4 + 1 is not an irreducible polynomial, not all 

polynomial multiplications are invertible. For Rijndael, 

however, a polynomial that has an inverse has been chosen: 

 

Another polynomial that Rijndael uses has a0 = a2 = a3 = {00} 

and a1 = {01}, which is the polynomial x. Inspection of above 

will show that its effect is to form the output word by rotating 

the bytes in the input word so that [b3 , b2 , b1 , b0] is 

transformed into [b2 , b1 , b0 , b3], with bytes moving to 

higher index positions and the top byte wrapping round to the 

lowest position. Higher powers of x correspond to the other 

cyclic permutations of the four bytes within a 32-bit word. The 

RootWord function that is used in the key schedule 

corresponds to x3. 

3.6 The Cipher 
At the start of the cipher the cipher input is copied into the 

internal state using the conventions described in above. An 

initial round key is then added and the state is then 

transformed by iterating a round function in a number of 

cycles. The number of cycles Nn varies with the key length and 

block size. On completion the final state is copied into the 

cipher output using the same conventions. The round function 

is parameterized using a round key which consists of an Nc 

word sub array from the key schedule. The latter is considered 

either as a one-dimensional array of 32-bit words or an array of 

round keys with a structure and initialization as described in 

above. In general the length of the cipher input, the cipher 

output and the cipher state, Nc, measured in multiples of 32 

bits, is 4, 6 or 8 but the AES standard only allows a length of 

4. The length of the cipher key, Nk, again measured in 

multiples of 32 bits, is also 4, 6 or 8, all of which are allowed 

by both Rijndael and the AES standard. Here the key schedule 

is treated as an array of Nn + 1 individual round keys, each of 

which is itself an array of Nc words. The number of rounds for 

the cipher (Nn) varies with the block length and the key length 

as shown in the following table. 
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3.7 The SubBytes Transformation 
The SubBytes transformation is a non-linear byte substitution 

that acts on every byte of the state in isolation to produce a 

new byte value using an S-box substitution table. The action of 

this transformation is illustrated in Figure 2 for a block size of 

6. 

 

This substitution, which is invertible, is constructed by 

composing two transformations: 

First the multiplicative inverse in the finite field 

described earlier (with element {00} mapped to itself). 

Second the affine transformation over GF(2) defined by: 

 

For 0 £ i < 8 where bi is bit i of the byte and ci is bit i of a byte 

c with the value {63} or {01100011}. Here and elsewhere a 

prime on a variable on the left of an equation indicates that its 

value is to be updated with the value on the right. In matrix 

form the latter component of the S-box transformation can be 

expressed as: 

 

The final result of this two stage transformation is given in the 

following table. 

 

3.8 The ShiftRows Transformation 
The ShiftRows transformation operates individually on each of 

the last Three rows of the state by cyclically shifting the bytes 

in the row such that: 

 

Where the shift amount h(r, Nc) depends on row number r and 

block length as follows: 

 

This has the effect of moving bytes to lower positions in the 

row except that the lowest bytes wrap around into the top of 

the row (note that a prime on a variable indicates an updated 

value). The action of this transformation is illustrated in Figure 

3 for a cipher block size of 6. 

 

3.9 The MixColumns Transformation 
The MixColumns transformation acts independently on every 

column of the state and treats each column as a four-term 

polynomial. 

In matrix form the transformation used given in equation, 

where all the values are finite field elements as discussed in 

 

The action of this transformation is illustrated in Figure 4 for a 

cipher block size of 6. 

 

3.10 The Xor RoundKey Transformation 
In the Xor RoundKey transformation Nc words from the key 

schedule (the round key described later) are each added (XOR‟ 

d) into the columns of the state so that: 

 

where the round key words K round, c (shortened to k r c in 

the diagram below) will be described later. The round number, 

round, is in the range 0 £ round £ Nn, with the value of 0 being 

used to denote the initial round key that is applied before the 

round function. 

 

The action of this transformation is illustrated in Figure 5 for a 

cipher block size of 6. The byte address within each word of 

the key schedule is that described in above. 

The Key Schedule 

The round keys are derived from the cipher key by means of a 

key schedule with each round requiring Nc words of key data 

which, with an additional initial set, makes a total of Nc (Nn + 

1) words, where Nn is the number of cipher rounds. This key 

schedule is considered either as a one dimensional array k of 

Nc (Nn + 1) 32-bit words with an index I in the range 0 £ i < 

Nc (Nn + 1) or as a two dimensional array k [n,c] of Nn + 1 
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round keys, each or which individually consists of a sub-array 

of Nc words. 

The expansion of the input key into the key schedule proceeds 

according to the following pseudo code. The function 

SubWord(x) gives an output word for which the S-box 

substitution has been individually applied to each of the four 

bytes of its input x. The function RotWord(x) converts an input 

word [b3,b2,b1,b0 ] to an output [b0,b3,b2,b1 ] . The word 

array Rcon[i] contains the values [0, 0, 0, xi-1] with xi-1 being 

the powers of x in the field GF(256) discussed above (note that 

the index i starts at 1). 

Note that this key schedule, which is illustrated in Figure 6 for 

Nk = 4 and Nc = 6, can be generated „on-the fly‟ if necessary 

using a buffer of max(Nc, Nk) words. It can also be split into 

separate, somewhat simpler, key schedules for Nk _ 6 and Nk 

> 6 respectively. 

 

4. DECRYPTION 

4.1 The Inverse Cipher 
The inversion of the cipher code presented above is 

straightforward. 

4.2 The Inverse ShiftRows Transformation 
The Inverse ShiftRows transformation operates individually on 

each of the last three rows of the state cyclically shifting the 

bytes in the row such that  

 

where the cyclic shift values h(r, Nc) are given in Table 6.  

4.3 The Inverse SubBytes Transformation 
The inverse S-box table needed for the inverse Inverse 

SubBytes transformation is given above. 

 

4.4 The Inverse Xor RoundKey 

Transformation 
The XorRoundKey transformation is its own inverse. 

4.5 The Inverse MixColumns 

Transformation 
The InvMixColumns transformation acts independently on 

every column of the state and treats each column as a four-term 

polynomial as described above. In matrix form the 

transformation used is given in equation, where all the values 

are finite field elements as discussed above. 

 

5. CONCLUSION 
Cryptography has got it‟s own depth in computer science. 

Better algorithms are the future requirement for Cryptography. 

Like any technology, encryption software isn't perfect. Even the 

best products consume both processor speed and storage space. 

Bad encryption software can be confusing to use or easily 

compromised. The main aim of presenting this paper is to 

encrypt a java file using Rijndael Algorithm. The first aspect 

that has to be considered in our paper is file security and the 

need for file security. Key management is also related to 

Confidentiality. This deals with generating, distributing and 

storing keys File security must be implemented so as to 

eliminate the problems like unauthorized access, execution of 

commands illicitly, destructive behavior and confidentiality 

reaches. This can be implemented in future in various projects 

regarding computer security  Like digital certificates, 

electronic signatures and hyper Encryption. 
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