
International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

5

OpenMP Optimization and its Translation to OpenGL

 Santosh Kumar
SITRC-Nashik, India

Dr. V.M.Wadhai
MAE-Pune, India

 Prasad S.Halgaonkar
 MITCOE-Pune, India

 Kiran P.Gaikwad
 GHRIEC-Pune, India

ABSTRACT

For general purpose high-performance computing, recently

GPGPUs have emerged as powerful vehicles. Programming

GPGPUs is complex when compared to programming general

purpose CPUs and parallel programming models such as

OpenMP. Goal of our translation is to improve programmability

and make existing OpenMP applications to be able to execute on

GPGPUs. OpenMP has established itself as an important method

and language extension for programming shared-memory parallel

computers. Our translator works well on regular applications,

leading to performance improvements of up to 50X over the un-

optimized translation.

Keywords

OpenMP, GPU, Brook+, Automatic translation

1. INTRODUCTION
Hardware accelerators, such as General-Purpose Graphics

Processing Units (GPGPUs), are promising parallel platforms for

high performance computing. While a GPGPU provides an

inexpensive, highly parallel system to application developers, its

programming complexity poses a significant challenge for

developers. There has been growing research and industry

interest in lowering the barrier of programming these devices.

Programming GPGPUs is still complex and error-prone,

compared to programming general-purpose CPUs and parallel

programming models such as OpenMP.

OpenMP [1] has established itself as an important

method and language extension for programming shared-memory

parallel computers. There are several advantages of OpenMP as

a programming paradigm for GPGPUs.

 OpenMP is efficient at expressing loop-level parallelism

in applications, which is an ideal target for utilizing

GPUs highly parallel computing units to accelerate data

parallel computations.

 The concept of a master thread and a pool of worker

threads in OpenMPs fork-join model represent well the

relationship between the master thread running in a host

CPU and a pool of threads in a GPU device.

 Incremental parallelization of applications, which is one

of OpenMPs features, can add the same benefit to

GPGPU programming.

 Its programming complexity poses a significant challenge

for developers, converting the source code to GPGPU.

 To convert OpenMP parallelism, especially loop-level

parallelism, into the forms that optimal parallelism in

GPGPU.

 The interpretation of OpenMP semantics under the

GPGPU programming model.

 To extract regions to be executed on GPU’s i.e. kernel

function.

 Baseline translation of existing OpenMP programs does

not always yield good performance.

OpenMP input Optimized GPU

program OpenMP for program

 GPU

 Phase 1 Phase 2

Figure 1: Two-phase OpenMP-to-GPGPU compilation system. Phase 1

is an OpenMP stream optimizer to generate optimized OpenMP

programs for GPGPU architectures; phase 2 is an OpenMP-to-

GPGPU (O2G) translator

The baseline translation of existing OpenMP programs does not

always yield good performance. Performance gaps are due to

architectural differences between traditional shared-memory

multiprocessors (SMPs), served by OpenMP, and stream

architectures, adopted by most GPUs. Even though the OpenMP

programming model is platform-independent, most existing

OpenMP programs were tuned to traditional shared-memory

multiprocessors. We refer to stream architectures as those that

operate on a large data space (or stream) in parallel.

The OpenMP stream optimizer transforms traditional

CPU oriented OpenMP programs into OpenMP programs

optimized for GPGPUs, using our high-level optimization

techniques: parallel loop-swap and loop-collapsing. The O2G

translation converts the output of the OpenMP stream optimizer

into OpenGL GPGPU programs.

This paper makes the following contributions:

 Our framework is automatic source-to-source translation

of standard OpenMP applications into OpenGL-based

GPGPU applications. It includes (1) the interpretation of

OpenMP semantics under the OpenGL programming

model, (2) an algorithm to extract regions to be executed

on GPUs, and (3) an algorithm for reducing CPU-GPU

memory transfers.

 Identified the several compile-time transformation

techniques to optimize GPU global memory

access: parallel loop-swap and matrix transpose

techniques for regular applications.

OpenMP

Stream

Optimizer

O2G Baseline

Translator +

Optimizer

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

6

2. RELATED WORK
Prior to the advent of the CUDA programming model [2],

programming GPUs was highly complex, requiring deep

knowledge of the underlying hardware and graphics

programming interfaces. Although the CUDA programming

model provides improved programmability, achieving high

performance with CUDA programs is still challenging. Several

studies have been conducted to optimize the performance of

CUDA-based GPGPU applications; an optimization space

pruning technique [3] has been proposed, using a Pareto-optimal

curve, to find the optimal configuration for a GPGPU application.

Also, an experimental study on general optimization strategies

for programs on a CUDA-supported GPU has been presented [4].

In these contributions, optimizations were performed manually.

For the automatic optimization of CUDA programs, a

compile time transformation scheme [5] has been developed,

which finds program transformations that can lead to efficient

global memory access. The proposed compiler framework

optimizes affine loop nests using a polyhedral compiler model.

By contrast, our compiler framework optimizes irregular loops,

as well as regular loops.

CUDA-lite relies on information that a programmer

provides via annotations, to perform transformations. Our

approach is similar to CUDA-lite in that we also support special

annotations provided by a programmer. In our compiler

framework, however, the necessary information is automatically

extracted from the OpenMP directives, and the annotations

provided by a programmer are used for fine tuning.

OpenMP is an industry standard directive language,

widely used for parallel programming on shared memory

systems. Due to its well established model and convenience of

incremental parallelization, the OpenMP programming model

has been ported to a variety of platforms. Previously, we have

developed compiler techniques to translate OpenMP applications

into a form suitable for execution on a Software Distributed

Shared Memory (DSM) system [6, 7] and another compile-time

translation scheme to convert OpenMP programs into MPI

message-passing programs for execution on distributed memory

systems [8]. Recently, there have been several efforts to map

OpenMP to Cell architectures [9, 10]. Our approach is similar to

the previous work in that OpenMP parallelism, specified by

work-sharing constructs, is exploited to distribute work among

participating threads or processes, and OpenMP data

environment directives are used to map data into underlying

memory systems. However, different memory architectures and

execution models among the underlying platforms pose various

challenges in mapping data and enforcing synchronization for

each architecture, resulting in differences in optimization

strategies.

To our knowledge, the proposed work is the first to

present an automatic OpenMP to GPGPU translation scheme and

related compile-time techniques. MCUDA [11] is an opposite

approach, which maps the CUDA programming model onto

conventional shared-memory CPU architecture. MCUDA can be

used as a tool to apply the CUDA programming model for

developing data-parallel applications running on traditional

shared-memory parallel systems. By contrast, our motivation is to

reduce the complexity residing in the CUDA programming

model, with the help of OpenMP, which we consider to be an

easier model. In addition to the ease of creating CUDA programs

with OpenMP, our system provides several compiler

optimizations to reduce the performance gap between hand-

optimized programs and auto-translated ones.

To bridge the abstraction gap between domain-specific

algorithms and current GPGPU programming models such as

CUDA, a framework for scalable execution of domain-specific

templates on GPUs has been proposed [12]. This work is

complementary to our work in that it addresses the problem of

partitioning the computations that do not fit into GPU memory.

The compile-time transformations proposed in this paper are not

fundamentally new ones; vector systems use similar

transformations. However, the architectural differences between

GPGPUs and vector systems pose different challenges in

applying these techniques, leading to different directions;

parallel loop-swap and loop collapsing transformations are

enabling techniques to expose stride-one accesses in a program

so that concurrent GPU threads can use the coalesced memory

accesses to optimize the offchip memory performance. On the

other hand, loop interchange in vectorizing compilers is to enable

vectorization of certain loops within a single thread.

3. OVERVIEW OF THE BROOK+

 PROGRAMMING MODEL
The Brook+ programming model is a general-purpose

multi-threaded SIMD model for GPGPU programming. In the

Brook+ programming model, a GPU is viewed as a parallel

computing coprocessor, which can execute a large number of

threads concurrently. A Brook+ program consists of a series of

parallel execution phases. Parallel phases that exhibit rich data

parallelism are implemented as a set of kernel functions, which

are executed on the GPU. Brook GPU, as it normally called, is

compiler and runtime implementation for General Purpose

Stream Computing. With brook GPU, General purpose

computing can be done on graphics card. Brook can be compiled

for ATI-AMD graphics card as well as for nvidia card.

4. BASELINE TRANSLATION OF

OPENMP INTO BROOK+
This section presents a baseline translator, which performs a

source-to-source conversion of an OpenMP program to a Brook

based GPGPU program. The translation consists of several

steps: (1) interpreting OpenMP semantics under the Brook+

programming model and identifying kernel regions (code sections

executed on the GPU), (2) outlining (extracting into subroutines)

kernel regions and transforming them into kernel functions.

4.1. Interpretation of OpenMP Semantics under the Brook+

Programming Model

OpenMP directives can be classified into four

categories:

1) Parallel constructs these are the fundamental constructs that

specify parallel regions. The compiler identifies these

regions as candidate kernel regions, outlines them, and

transforms them into GPU kernel functions.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

7

2) Work-sharing constructs (omp for, omp sections) the

compiler interprets these constructs to partition work among

threads on the GPU device. Each iteration of an omp for

loop is assigned to a thread, and each section of

omp sections is mapped to a thread.

3) Synchronization constructs (omp barrier, omp flush,

omp critical, etc.) these constructs constitute split points,

points where a parallel region must be split into two

sub-regions; each of the resulting sub-regions becomes a

kernel region.

4) Directives specifying data properties (omp shared,

omp private, omp thread private, etc.) these constructs are

used to map data into GPU memory spaces.

OpenMP shared data are shared by all threads and OpenMP

private data are accessed by a single thread. In the GPU memory

model, the shared data can be mapped to global memory, and the

private data can be mapped to registers or local memory assigned

for each thread. OpenMP thread-private data are private to each

thread, but they have global lifetimes, as do static data. The

semantics of thread-private data can be implemented by

expansion, which allocates copies of the thread-private data on

global memory for each thread. Because the GPU memory model

allows several specialized memory spaces, certain data can take

advantage of the specialized memory resources; read-only shared

data can be assigned to either constant memory or texture

memory to exploit temporal locality through dedicated caches,

and frequently reused shared data can use fast memory spaces,

such as registers and shared memory, as a cache.

4.2. OpenMP to Brook Baseline Translation

The previous subsection described the interpretation of

OpenMP semantics under the Brook programming model. The

next step performs the actual translation into a brook program.

A simple translation scheme might convert all code sections

specified by work-sharing constructs into kernel functions, since

work-sharing constructs contain the only true parallel code in

OpenMP. Other sub-regions, within an omp parallel but outside

of work-sharing constructs, are executed by one thread (omp

master and omp single), serialized among threads (omp ordered

and omp critical), or executed redundantly among participating

threads. However, our compiler includes some of these sub-

regions into kernel regions, thus redundantly executing them;

this method can reduce expensive memory transfers between the

CPU and the GPU.

4.2.1. Identifying Kernel Regions:

The compiler targets OpenMP parallel regions as

potential kernel regions. As explained above, these regions may

be split at synchronization constructs. Among the resulting

sub-regions, the ones containing at least one work-sharing

construct become kernel regions.

The translator must consider that split operations may

break the control flow semantics of the OpenMP programming

model, if the split points lie within control structures. In the

OpenMP programming model, most directives work only on a

structured block a block of code with one entry and one exit

point. If a parallel region is split in the middle of a control

structure, the resulting kernel regions may become an

unstructured block.

Both the OpenMP and GPGPU models are suitable for

expressing data parallelism. However, there are important

differences. GPUs are designed as massively parallel machines

for concurrent execution of thousands of threads. OpenMP

threads are more autonomous, typically execute coarse-grain

parallelism, and are able to handle MIMD computation.

4.2.2. Transforming a Kernel Region into a Kernel Function:

The translator outlines the identified kernel regions

into CUDA kernel functions and replaces the original regions

with calls to these functions.

Two important translation steps are involved: work

partitioning and data mapping. For work partitioning, iterations

of omp for loops are partitioned among threads using the rules of

figure 2. Parallel region example shows how multiple splits are

applied to identify kernel regions. sp0 - sp4 are split points

enforced to preserve OpenMP semantics, and KR1 and KR2 are

kernel regions to be converted into kernel functions.

The OpenMP schedule clause, each section in omp sections

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

8

is mapped to a thread, and remaining code sections in the kernel

region are executed redundantly by all threads. The compiler

decides the number of threads to be invoked for the kernel

execution as the maximum number of threads needed for each

work-sharing sub-region contained in the kernel region. Once the

compiler figures out the total number of threads, the number of

thread blocks is also calculated using default thread block size,

which can be set through a command line option.

After work partitioning, the compiler constructs the sets of

shared data and private data used in the kernel region, using the

information specified by data property constructs. In the OpenMP

programming model, data is shared by default, including data

with global scope or with heap-allocated storage. For the data

that are referenced in the region, but not in a construct, the

compiler can determine their sharing attributes using OpenMP

data sharing rules. Shared data are mapped to global memory,

thread-private data are replicated and allocated on global

memory for each thread, and private data are mapped to register

banks assigned for each thread.

As a part of the data mapping step, the compiler inserts

necessary memory transfer calls for the shared and thread-private

data accessed by each kernel function. A basic strategy is to

move all the shared data that are accessed by kernel functions,

and copy back the shared data that are modified by kernel

functions. (Thread-private data transfers are decided by OpenMP

semantics.) However, not all shared data are used by the CPU

after the kernel completes. Also, data in the GPU global memory

are persistent across kernel calls. Therefore, not all these data

transfers are needed. The compiler optimization technique to

eliminate redundant data transfers will be discussed in the

following section.

Additionally, during this translation, if a omp for loop

contains a reduction clause, the compiler replaces the reduction

operation with the two-level tree reduction form proposed

in [1]: a local parallel reduction within each thread block,

followed by a host-side global reduction across thread blocks.

In the baseline translation scheme, omp critical regions are

executed on the host CPU since the omp critical construct

involves global synchronizations, which are expensive on GPU

kernel executions due to kernel splits, and the semantic of omp

critical requires serialized execution of the specified region.

However, if the critical regions have reduction forms, the same

transformation technique used to interpret a reduction clause [1]

can be applied.

TABLE I

GPU AND OPENMP PROGRAM EXECUTION TIME OF

MATRIX MULTIPLICATION

Size of matrix

Execution time of

GPU program

Execution time of

openMP program

256 by 256 0.960201 1.184087 sec

512 by 512 3.102356 8.817162 sec

256 by 512 1.099560 1.706772 sec

256 by 712 1.965801 4.103025 sec

5. PERFORMANCE EVALUATION

This section presents the performance of the presented

OpenMP to GPGPU translator and compiler optimizations. In our

experiments, regular OpenMP programs (Matrix Multiplication).

The baseline translations were performed automatically by the

compiler framework. We used an ATI Fire GL V5600 GPU as

an experimental platform. The device has a clock rate of 1.35

GHz and 512 MB of DRAM. Each multiprocessor is

equipped with 8 SIMD processing units, totaling 128

processing units. The device is connected to a host system

consisting of Dual-Core AMD 3 GHz Opteron processors.

Because the tested GPU does not support double precision, we

manually converted the OpenMP source programs into single

precision before feeding them to our translator. NVIDIA recently

announced GPUs supporting double precision computations. We

compiled the translated Brook programs with the Brook

Compiler (brcc) to generate device code.

5.1. Performance of Regular Applications

Matrix Multiplication is a widely used kernel

containing the main loop of an iterative solver for regular

scientific applications. Due to its simple structure, the Matrix

kernel is easily parallelized in many parallel programming

models. Baseline in the figure represents the execution GPU

version over serial on the CPU. This performance degradation is

mostly due to the overhead in large, uncoalesced global memory

access patterns. These uncoalesced access patterns can be

changed to coalesced ones by applying parallel loop-swap. These

results demonstrate that, in regular programs, uncoalesced global

memory accesses may be converted to coalesced accesses by loop

transformation optimizations.

After making the comparison between serial and

parallel, we have to make the comparison between OpenMp

program and GPU (brook+) program. Table 1 shows the

execution time of both the programs.

6. CONCLUSION

OpenMP appears to be a good fit for GPGPUs. It also

identified several key transformation techniques to enable

efficient GPU global memory access: parallel loop-swap and

matrix transpose techniques for regular applications, and loop

collapsing for irregular ones.

Our proposed translation aims at offering an easier

programming model for general computing on GPGPUs. By

applying OpenMP as a front-end programming model, the

proposed translator could convert the loop-level parallelism of

the OpenMP programming model into the data parallelism of the

OpenGL programming model in a natural way. Ongoing work

focuses on transformation techniques for efficient GPU global

memory access which includes automatic tuning of optimizations

to exploit shared memory and other special memory units.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.5, October 2010

9

7. REFERENCES
[1] OpenMP [online]. available: http://openmp.org/wp/NVIDIA

CUDA [online]. Available:

http://developer.nvidia.com/object/cuda home.html

[2] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.

Ueng, J. A. Stratton, and W. W. Hwu. Program optimization

space pruning for a multithreaded GPU. International

Symposium on Code Generation and Optimization (CGO),

2008.

[3] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D.

B. Kirk, andW.W. Hwu. Optimization principles and

application performance evaluation of a multithreaded GPU

using CUDA. ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP), pages 73–

82, 2008.

[4] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J.

Ramanujam, A. Rountev, and P. Sadayappan. A compiler

framework for optimization of affine loop nests for

GPGPUs. ACM International Conference on

Supercomputing (ICS), 2008.

[5] Seung-Jai Min, Ayon Basumallik, and Rudolf Eigenmann.

Optimizing OpenMP programs on software distributed

shared memory systems. International Journel of Parallel

Programming (IJPP), 31:225–249, June 2003.

[6] Seung-Jai Min and Rudolf Eigenmann. Optimizing irregular

sharedmemory applications for clusters. ACM International

Conference on Supercomputing (ICS), pages 256–265,

2008.

[7] Ayon Basumallik and Rudolf Eigenmann. Towards

automatic translation of OpenMP to MPI. ACM

International Conference on Supercomputing (ICS), pages

189–198, 2005.

[8] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang.

Supporting OpenMP on Cell. International Journel of

Parallel Programming (IJPP), 36(3):289–311, June 2008.

[9] Haitao Wei and Junqing Yu. Mapping OpenMP to Cell: An

effective compiler framework for heterogeneous multi-core

chip. International Workshop on OpenMP (IWOMP), 2007.

[10] J. A. Stratton, S. S. Stone, and W. W. Hwu. MCUDA: An

efficient implementation of CUDA kernels for multi-core

CPUs. International Workshop on Languages and Compilers

for Parallel Computing (LCPC), 2008.

[11] Narayanan Sundaram, Anand Raghunathan, and Srimat T.

Chakradhar. A framework for efficient and scalable

execution of domainspecific templates on GPUs. IEEE

International Parallel and Distributed Processing

Symposium (IPDPS), May 2009.

http://openmp.org/wp/

