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ABSTRACT 

For general purpose high-performance computing, recently 

GPGPUs have emerged as powerful vehicles. Programming 

GPGPUs is complex when compared to programming general 

purpose CPUs and parallel programming models such as 

OpenMP. Goal of our translation is to improve programmability 

and make existing OpenMP applications to be able to execute on 

GPGPUs. OpenMP has established itself as an important method 

and language extension for programming shared-memory parallel 

computers. Our translator works well on regular applications, 

leading to performance improvements of up to 50X over the un-

optimized translation. 
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1. INTRODUCTION 
Hardware accelerators, such as General-Purpose Graphics 

Processing Units (GPGPUs), are promising parallel platforms for 

high performance computing. While a GPGPU provides an 

inexpensive, highly parallel system to application developers, its 

programming complexity poses a significant challenge for 

developers. There has been growing research and industry 

interest in lowering the barrier of programming these devices. 

Programming GPGPUs is still complex and error-prone, 

compared to programming general-purpose CPUs and parallel 

programming models such as OpenMP. 

OpenMP [1] has established itself as an important 

method and language extension for programming shared-memory 

parallel computers. There are several advantages of OpenMP as 

a programming paradigm for GPGPUs. 

 OpenMP is efficient at expressing loop-level parallelism 

in applications, which is an ideal target for utilizing 

GPUs highly parallel computing units to accelerate data 

parallel computations. 

 The concept of a master thread and a pool of worker 

threads in OpenMPs fork-join model represent well the 

relationship between the master thread running in a host 

CPU and a pool of threads in a GPU device. 

 Incremental parallelization of applications, which is one 

of OpenMPs features, can add the same benefit to 

GPGPU programming. 

 Its programming complexity poses a significant challenge 

for developers, converting the source code to GPGPU. 

 To convert OpenMP parallelism, especially loop-level 

parallelism, into the forms that optimal parallelism in 

GPGPU. 

 The interpretation of OpenMP semantics under the 

GPGPU programming model. 

 To extract regions to be executed on GPU’s i.e. kernel 

function. 

 Baseline translation of existing OpenMP programs does 

not always yield good performance. 
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Figure 1: Two-phase OpenMP-to-GPGPU compilation system. Phase 1 

is an OpenMP stream optimizer to generate optimized OpenMP 

programs for GPGPU architectures; phase 2 is an OpenMP-to-

GPGPU (O2G) translator 

 

The baseline translation of existing OpenMP programs does not 

always yield good performance. Performance gaps are due to 

architectural differences between traditional shared-memory 

multiprocessors (SMPs), served by OpenMP, and stream 

architectures, adopted by most GPUs. Even though the OpenMP 

programming model is platform-independent, most existing 

OpenMP programs were tuned to traditional shared-memory 

multiprocessors. We refer to stream architectures as those that 

operate on a large data space (or stream) in parallel. 

The OpenMP stream optimizer transforms traditional 

CPU oriented OpenMP programs into OpenMP programs 

optimized for GPGPUs, using our high-level optimization 

techniques: parallel loop-swap and loop-collapsing. The O2G 

translation converts the output of the OpenMP stream optimizer 

into OpenGL GPGPU programs. 

 

This paper makes the following contributions: 

 Our framework is automatic source-to-source translation 

of standard OpenMP applications into OpenGL-based 

GPGPU applications. It includes (1) the interpretation of 

OpenMP semantics under the OpenGL programming 

model, (2) an algorithm to extract regions to be executed 

on GPUs, and (3) an algorithm for reducing CPU-GPU 

memory transfers. 

 

 Identified the several compile-time transformation 

techniques to optimize GPU global memory             

access: parallel loop-swap and matrix transpose 

techniques for regular applications. 
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2. RELATED WORK 
Prior to the advent of the CUDA programming model [2], 

programming GPUs was highly complex, requiring deep 

knowledge of the underlying hardware and graphics 

programming interfaces. Although the CUDA programming 

model provides improved programmability, achieving high 

performance with CUDA programs is still challenging. Several 

studies have been conducted to optimize the performance of 

CUDA-based GPGPU applications; an optimization space 

pruning technique [3] has been proposed, using a Pareto-optimal 

curve, to find the optimal configuration for a GPGPU application. 

Also, an experimental study on general optimization strategies 

for programs on a CUDA-supported GPU has been presented [4]. 

In these contributions, optimizations were performed manually. 

For the automatic optimization of CUDA programs, a 

compile time transformation scheme [5] has been developed, 

which finds program transformations that can lead to efficient 

global memory access. The proposed compiler framework 

optimizes affine loop nests using a polyhedral compiler model. 

By contrast, our compiler framework optimizes irregular loops, 

as well as regular loops. 

CUDA-lite relies on information that a programmer 

provides via annotations, to perform transformations. Our 

approach is similar to CUDA-lite in that we also support special 

annotations provided by a programmer. In our compiler 

framework, however, the necessary information is automatically 

extracted from the OpenMP directives, and the annotations 

provided by a programmer are used for fine tuning. 

OpenMP is an industry standard directive language, 

widely used for parallel programming on shared memory 

systems. Due to its well established model and convenience of 

incremental parallelization, the OpenMP programming model 

has been ported to a variety of platforms. Previously, we have 

developed compiler techniques to translate OpenMP applications 

into a form suitable for execution on a Software Distributed 

Shared Memory (DSM) system [6, 7] and another compile-time 

translation scheme to convert OpenMP programs into MPI 

message-passing programs for execution on distributed memory 

systems [8]. Recently, there have been several efforts to map 

OpenMP to Cell architectures [9, 10]. Our approach is similar to 

the previous work in that OpenMP parallelism, specified by 

work-sharing constructs, is exploited to distribute work among 

participating threads or processes, and OpenMP data 

environment directives are used to map data into underlying 

memory systems. However, different memory architectures and 

execution models among the underlying platforms pose various 

challenges in mapping data and enforcing synchronization for 

each architecture, resulting in differences in optimization 

strategies. 

To our knowledge, the proposed work is the first to 

present an automatic OpenMP to GPGPU translation scheme and 

related compile-time techniques. MCUDA [11] is an opposite 

approach, which maps the CUDA programming model onto 

conventional shared-memory CPU architecture. MCUDA can be 

used as a tool to apply the CUDA programming model for 

developing data-parallel applications running on traditional 

shared-memory parallel systems. By contrast, our motivation is to 

reduce the complexity residing in the CUDA programming 

model, with the help of OpenMP, which we consider to be an 

easier model. In addition to the ease of creating CUDA programs 

with OpenMP, our system provides several compiler 

optimizations to reduce the performance gap between hand-

optimized programs and auto-translated ones. 

To bridge the abstraction gap between domain-specific 

algorithms and current GPGPU programming models such as 

CUDA, a framework for scalable execution of domain-specific 

templates on GPUs has been proposed [12]. This work is 

complementary to our work in that it addresses the problem of 

partitioning the computations that do not fit into GPU memory. 

The compile-time transformations proposed in this paper are not 

fundamentally new ones; vector systems use similar 

transformations. However, the architectural differences between 

GPGPUs and vector systems pose different challenges in 

applying these techniques, leading to different directions; 

parallel loop-swap and loop collapsing transformations are 

enabling techniques to expose stride-one accesses in a program 

so that concurrent GPU threads can use the coalesced memory 

accesses to optimize the offchip memory performance. On the 

other hand, loop interchange in vectorizing compilers is to enable 

vectorization of certain loops within a single thread. 

 

3. OVERVIEW OF THE BROOK+ 

 PROGRAMMING MODEL 
The Brook+ programming model is a general-purpose              

multi-threaded SIMD model for GPGPU programming. In the 

Brook+ programming model, a GPU is viewed as a parallel 

computing coprocessor, which can execute a large number of 

threads concurrently. A Brook+ program consists of a series of 

parallel execution phases. Parallel phases that exhibit rich data 

parallelism are implemented as a set of kernel functions, which 

are executed on the GPU. Brook GPU, as it normally called, is 

compiler and runtime implementation for General Purpose 

Stream Computing. With brook GPU, General purpose 

computing can be done on graphics card. Brook can be compiled 

for ATI-AMD graphics card as well as for nvidia card. 

 

 

4. BASELINE TRANSLATION OF 

OPENMP INTO BROOK+ 
This section presents a baseline translator, which performs a 

source-to-source conversion of an OpenMP program to a Brook 

based GPGPU program. The translation consists of several    

steps: (1) interpreting OpenMP semantics under the Brook+ 

programming model and identifying kernel regions (code sections 

executed on the GPU), (2) outlining (extracting into subroutines) 

kernel regions and transforming them into kernel functions. 

 

4.1. Interpretation of OpenMP Semantics under the Brook+ 

Programming Model 

OpenMP directives can be classified into four 

categories: 

1) Parallel constructs these are the fundamental constructs that 

specify parallel regions. The compiler identifies these 

regions as candidate kernel regions, outlines them, and 

transforms them into GPU kernel functions. 
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2) Work-sharing constructs (omp for, omp sections) the 

compiler interprets these constructs to partition work among 

threads on the GPU device. Each iteration of an omp for 

loop is assigned to a thread, and each section of              

omp sections is mapped to a thread. 

3) Synchronization constructs (omp barrier, omp flush,       

omp critical, etc.) these constructs constitute split points, 

points where a parallel region must be split into two       

sub-regions; each of the resulting sub-regions becomes a 

kernel region. 

4) Directives specifying data properties (omp shared,          

omp private, omp thread private, etc.) these constructs are 

used to map data into GPU memory spaces. 

OpenMP shared data are shared by all threads and OpenMP 

private data are accessed by a single thread. In the GPU memory 

model, the shared data can be mapped to global memory, and the 

private data can be mapped to registers or local memory assigned 

for each thread. OpenMP thread-private data are private to each 

thread, but they have global lifetimes, as do static data. The 

semantics of thread-private data can be implemented by 

expansion, which allocates copies of the thread-private data on 

global memory for each thread. Because the GPU memory model 

allows several specialized memory spaces, certain data can take 

advantage of the specialized memory resources; read-only shared 

data can be assigned to either constant memory or texture 

memory to exploit temporal locality through dedicated caches, 

and frequently reused shared data can use fast memory spaces, 

such as registers and shared memory, as a cache. 

 

4.2.  OpenMP to Brook Baseline Translation 

The previous subsection described the interpretation of 

OpenMP semantics under the Brook programming model. The 

next step performs the actual translation into a brook program.     

A simple translation scheme might convert all code sections 

specified by work-sharing constructs into kernel functions, since 

work-sharing constructs contain the only true parallel code in 

OpenMP. Other sub-regions, within an omp parallel but outside 

of work-sharing constructs, are executed by one thread (omp 

master and omp single), serialized among threads (omp ordered 

and omp critical), or executed redundantly among participating 

threads. However, our compiler includes some of these sub-

regions into kernel regions, thus redundantly executing them; 

this method can reduce expensive memory transfers between the 

CPU and the GPU. 

 

4.2.1. Identifying Kernel Regions:  

The compiler targets OpenMP parallel regions as 

potential kernel regions. As explained above, these regions may 

be split at synchronization constructs. Among the resulting      

sub-regions, the ones containing at least one work-sharing 

construct become kernel regions. 

The translator must consider that split operations may 

break the control flow semantics of the OpenMP programming 

model, if the split points lie within control structures. In the 

OpenMP programming model, most directives work only on a 

structured block a block of code with one entry and one exit 

point. If a parallel region is split in the middle of a control 

structure, the resulting kernel regions may become an 

unstructured block. 

Both the OpenMP and GPGPU models are suitable for 

expressing data parallelism. However, there are important 

differences. GPUs are designed as massively parallel machines 

for concurrent execution of thousands of threads. OpenMP 

threads are more autonomous, typically execute coarse-grain 

parallelism, and are able to handle MIMD computation. 

 

4.2.2. Transforming a Kernel Region into a Kernel Function: 

The translator outlines the identified kernel regions 

into CUDA kernel functions and replaces the original regions 

with calls to these functions. 

Two important translation steps are involved: work 

partitioning and data mapping. For work partitioning, iterations 

of omp for loops are partitioned among threads using the rules of 

figure 2. Parallel region example shows how multiple splits are 

applied to identify kernel regions. sp0 - sp4 are split points 

enforced to preserve OpenMP semantics, and KR1 and KR2 are 

kernel regions to be converted into kernel functions. 

The OpenMP schedule clause, each section in omp sections 
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is mapped to a thread, and remaining code sections in the kernel 

region are executed redundantly by all threads. The compiler 

decides the number of threads to be invoked for the kernel 

execution as the maximum number of threads needed for each 

work-sharing sub-region contained in the kernel region. Once the 

compiler figures out the total number of threads, the number of 

thread blocks is also calculated using default thread block size, 

which can be set through a command line option. 

After work partitioning, the compiler constructs the sets of 

shared data and private data used in the kernel region, using the 

information specified by data property constructs. In the OpenMP 

programming model, data is shared by default, including data 

with global scope or with heap-allocated storage. For the data 

that are referenced in the region, but not in a construct, the 

compiler can determine their sharing attributes using OpenMP 

data sharing rules. Shared data are mapped to global memory, 

thread-private data are replicated and allocated on global 

memory for each thread, and private data are mapped to register 

banks assigned for each thread. 

As a part of the data mapping step, the compiler inserts 

necessary memory transfer calls for the shared and thread-private 

data accessed by each kernel function. A basic strategy is to 

move all the shared data that are accessed by kernel functions, 

and copy back the shared data that are modified by kernel 

functions. (Thread-private data transfers are decided by OpenMP 

semantics.) However, not all shared data are used by the CPU 

after the kernel completes. Also, data in the GPU global memory 

are persistent across kernel calls. Therefore, not all these data 

transfers are needed. The compiler optimization technique to 

eliminate redundant data transfers will be discussed in the 

following section. 

Additionally, during this translation, if a omp for loop 

contains a reduction clause, the compiler replaces the reduction 

operation with the two-level tree reduction form proposed         

in [1]: a local parallel reduction within each thread block, 

followed by a host-side global reduction across thread blocks. 

In the baseline translation scheme, omp critical regions are 

executed on the host CPU since the omp critical construct 

involves global synchronizations, which are expensive on GPU 

kernel executions due to kernel splits, and the semantic of omp 

critical requires serialized execution of the specified region. 

However, if the critical regions have reduction forms, the same 

transformation technique used to interpret a reduction clause [1] 

can be applied. 

 

TABLE I 

GPU AND OPENMP PROGRAM EXECUTION TIME OF 

MATRIX MULTIPLICATION 

Size of matrix 

 

Execution time of 

GPU program 

Execution time of 

openMP program 

256 by 256 0.960201 1.184087 sec 

512 by 512 3.102356 8.817162 sec 

256 by 512 1.099560 1.706772 sec 

256 by 712 1.965801 4.103025 sec 

 

 
 
 
 

5. PERFORMANCE EVALUATION 
 

This section presents the performance of the presented 

OpenMP to GPGPU translator and compiler optimizations. In our 

experiments, regular OpenMP programs (Matrix Multiplication). 

The baseline translations were performed automatically by the 

compiler framework. We used an ATI Fire GL V5600 GPU as 

an experimental platform. The device has a clock rate of 1.35 

GHz and 512 MB of DRAM. Each multiprocessor is 

equipped with 8 SIMD processing units, totaling 128 

processing units. The device is connected to a host system 

consisting of Dual-Core AMD 3 GHz Opteron processors. 

Because the tested GPU does not support double precision, we 

manually converted the OpenMP source programs into single 

precision before feeding them to our translator. NVIDIA recently 

announced GPUs supporting double precision computations. We 

compiled the translated Brook programs with the Brook 

Compiler (brcc) to generate device code. 

 

 

5.1. Performance of Regular Applications 

Matrix Multiplication is a widely used kernel 

containing the main loop of an iterative solver for regular 

scientific applications. Due to its simple structure, the Matrix 

kernel is easily parallelized in many parallel programming 

models. Baseline in the figure represents the execution GPU 

version over serial on the CPU. This performance degradation is 

mostly due to the overhead in large, uncoalesced global memory 

access patterns. These uncoalesced access patterns can be 

changed to coalesced ones by applying parallel loop-swap. These 

results demonstrate that, in regular programs, uncoalesced global 

memory accesses may be converted to coalesced accesses by loop 

transformation optimizations. 

After making the comparison between serial and 

parallel, we have to make the comparison between OpenMp 

program and GPU (brook+) program. Table 1 shows the 

execution time of both the programs. 

 

 

6. CONCLUSION 
 

OpenMP appears to be a good fit for GPGPUs. It also 

identified several key transformation techniques to enable 

efficient GPU global memory access: parallel loop-swap and 

matrix transpose techniques for regular applications, and loop 

collapsing for irregular ones. 

Our proposed translation aims at offering an easier 

programming model for general computing on GPGPUs. By 

applying OpenMP as a front-end programming model, the 

proposed translator could convert the loop-level parallelism of 

the OpenMP programming model into the data parallelism of the 

OpenGL programming model in a natural way. Ongoing work 

focuses on transformation techniques for efficient GPU global 

memory access which includes automatic tuning of optimizations 

to exploit shared memory and other special memory units. 
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