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ABSTRACT 
Image mining is more than just an extension of data mining to 
image domain. Image mining is a technique commonly used to 
extract knowledge directly from image. Image segmentation is 

the first step in image mining. We treat image segmentation as 
graph partitioning problem. In this paper we propose a novel 
algorithm, Minimum Spanning Tree based Structural Similarity 
Clustering for Image Mining with Local Region Outliers 
(MSTSSCIMLRO) to segment the given image and to detect 
anomalous pattern (outliers). In MSTSSCIMLRO algorithm we 
use weighted Euclidean distance for edges, which is key element 
in building the graph from image.  MST-based image 

segmentation is fast and efficient method of generating a set of 
segments from an image. The algorithm uses a new cluster 
validation criterion based on the geometric property of data 
partition of the data set in order to find the proper number of 
segments. The algorithm works in two phases. The first phase of 
the algorithm creates optimal number of clusters/segments, 
where as the second phase of the algorithm further segments the 
optimal number of clusters/segments and detect local region 

outliers  
 
General Terms: Graph Based Algorithm; Information retrieval 
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Keywords: Euclidean minimum spanning tree, Clustering, 
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1. Introduction  

Image mining is a technique commonly used to extract 
knowledge directly from image. Image segmentation is the first 
step in image mining.  
 

Image segmentation is closely related to the clustering problem. 
In Image analysis finding groups in data is very useful. We can 
find pixels with similar intensities ie., automatically finds 
regions in images. We can also find anomalous objects, which 
are present in the image. Segmentation can be viewed as 
partition a given image into regions or segments such that pixels 
belonging to a region are more similar to each other than pixel 
belonging to different regions. We also require that these regions 

be connected so regions consist of contiguous or neighboring 
pixels.   
A large number of image segmentation techniques are available. 
These techniques are based on one of the following three 
approaches (i) clustering (ii) boundary deduction (iii) region 

growing. Image segmentation has the same relationship to image 
classification. In this paper we use Minimum Spanning Tree 
based clustering algorithm for segmenting images. 
 
One of the best known problems in the field of data mining is 
clustering. The problem of clustering is to partition a data set 
into groups (clusters) in such a way that the data elements within 

a cluster are more similar to each other than data elements in 
different clusters [13].  
 
We take a graph-based approach to segmentation. Let  G = (V, 

E) be an  undirected  graph  with  vertices  vi  V, the set of 

elements to be segmented, and edges (vi, vj)  E corresponding 

to pairs of neighboring vertices/pixels. Each edge (vi, vj)  E has 

a corresponding weight w (vi; vj), which is a non-negative 
measure of the dissimilarity between neighboring elements vi 
and vj. In the case of image segmentation, the elements in V are 
pixels and the weight of an edge is some measure of the 
dissimilarity between the two pixels connected by that edge 

(e.g., the difference in intensity, color, motion, location or some 
other local attribute). In the graph-based approach, a 
segmentation S is a partition of V into components such that 

each component (or region) C  S corresponds to a connected 

component in a graph G’ = (V, E’), where E’  E. In other 

words, any segmentation is induced by a subset of the edges in 
E. There are different ways to measure the quality of 
segmentation but in general we want the elements in a 
component to be similar, and elements in different components 
to be dissimilar. This means that edges between two vertices in 
the same component should have relatively low weights, and 
edges between vertices in different components should have 

higher weights. 
 
Geometric notion of centrality are closely linked to facility 
location problem. The distance matrix D can computed rather 
efficiently using Dijkstra’s algorithm with time complexity O (| 
V| 2 ln | V |) [30].  

The eccentricity of a vertex x in G and radius ρ (G), 
respectively are defined as  

 
e(x) = max d(x , y)   and    ρ(G)  = min e(x) 

                     yV                            xV 

 
The center of G is the set  

           C (G) = {x V | e(x) = ρ (G)} 

 
C (G) is the center to the “emergency facility location 
problem” which is always contain single block of G. The 
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length of the longest path in the graph is called diameter of 
the graph G. we can define diameter D (G) as 
                     D (G) = max e(x) 

                                    xV  

The diameter set of G is 

           Dia (G) = {xV | e(x) = D (G)} 

 
In this paper, we consider outliers as points, (pixels) which are 

far from the most of other data (pixels). The proposed approach 
integrates Minimum Spanning Tree based clustering and 
structural similarity (density-based) approach for cluster pixels 
and detecting outliers. Here a vertex (pixel) is defined as an 
outlier if it participates in at most TH neighborhoods in MST 
graph, where threshold TH is control parameter. We classify a 
(pixel) vertex as outlier on basis of its degree number in the 
MST graph.  

 
The paper is organized as follows. We review the related works 
on MST based clustering algorithms, image segmentation 
algorithms and different approaches of outlier detection in 
section 2. We formulize the notion of structure-connected 
clusters and describe the MSTSSCIMLRO algorithm in section 
3.  Finally in conclusion we summarize the strength of our 
method and possible improvements.      

 

2.  Related work 

 
In image analysis, clustering can be used to find groups of pixels 
with similar gray levels, colors or local textures in order to 
discover the various regions in the image. A number of 
clustering techniques are available. In our approach we use 
Minimum Spanning Tree based clustering algorithm for 

clustering pixels. 
 
Given a connected, undirected, weighted  graph, G = ( V, E ) , 
where V is the set of nodes, E is the set of edges between pairs 
of nodes, and a weight w (u, v) specifying weight of the edge (u, 

v) for each edge (u, v)  E. A spanning tree is an acyclic sub 

graph of a graph G, which contains all vertices from G. The 
Minimum Spanning Tree (MST) of a weighted graph is 
minimum weight spanning tree of that graph. Several well 
established MST algorithms exist to solve minimum spanning 

tree problem [24, 20, 27]. The cost of constructing a minimum 
spanning tree is O (m log n), where m is the number of edges in 
the graph and n is the number of vertices. More efficient 
algorithm for constructing MSTs has also been extensively 
researched [17, 13, 10]. These algorithms promise close to linear 
time complexity under different assumptions. A Euclidean 
minimum spanning tree (EMST) is a spanning tree of a set of n 
points in a metric space (En), where the length of an edge is the 

Euclidean distance between a pair of points in the point set. 
 
Zahn [34] proposes to construct MST of point set and delete 
inconsistent edges–the edges, whose weights are significantly 
larger than the average weight of the nearby edges in the tree. 
Zahn’s inconsistent measure is defined as follows. Let e denote 
an edge in the MST of the point set, v1 and v2 be the end nodes 
of e, w be the weight of e. A depth neighborhood N of an end 
node v of an edge e defined as a set of all edges that belong to all 

the path of length d originating from v, excluding the path that 
include the edge e. Let N1 and N2 be the depth d neighborhood 
of the node v1 and v2.  Let ŴN1 be the average weight of edges in 

N1 and σN1 be its standard deviation. Similarly, let ŴN2 be the 
average weight of edges in N2 and σN2  be its standard deviation. 
The inconsistency measure requires one of the three conditions 
hold: 
 

1. w > ŴN1 + c x σN1 or  w > ŴN2 + c x  σN2 
  
2. w > max(ŴN1 + c x σN1 , ŴN2 + c x σN2) 
       
3.     w    > f 
        max (c x σN1 , c x σN2)  
 
Where c and f are preset constant .All the edges of a tree that 

satisfy the inconsistency measure are considered inconsistent 
and are removed from the tree. This result in set of disjoint 
subtrees each represents a separate cluster.  

 
Clustering by Minimal Spanning Tree can be viewed as a 
hierarchical clustering algorithm which follows the divisive 
approach. Clustering algorithm based on minimum and 
maximum spanning tree were extensively studied. Zahn [34] 

proposes to construct MST of point set and delete inconsistent 
edges – the edges, whose weights are significantly larger than 
the average weight of the nearby edges in the tree. Asano, 
Bhattacharya, Keil and Yao [1] gave   optimal O (n log n) 
algorithm using maximum spanning trees for minimizing the 
maximum diameter of a bipartition. Asano, Bhattacharya, Keil 
and Yao also considered the clustering problem in which the 
goal to maximize the minimum inter-cluster distance. They gave 

a k-partition of point set removing the k-1 longest edges from 
the minimum spanning tree constructed from that point set [1]. 
The identification of inconsistent edges causes problem in the 
MST clustering algorithm. There exist numerous ways to divide 
clusters successively, but there is not suitable a suitable choice 
for all cases.   

 
MST-based image segmentation is based on selecting edges 
from the graph, where each pixel corresponds to a node in the 

graph. Weights on each edge measure the dissimilarity between 
pixels. The segmentation algorithm defines the boundaries 
between regions by comparing two quantities- Intensity 
difference across the boundary and Intensity difference between 
neighboring pixels with each region. This is useful knowing that 
the intensity differences across the boundary are important if 
they are large relative to the intensity difference inside the at 
least on of the regions.    

 
The min-max cut method [6] seeks to partition a graph G= {V, 
E} into two clusters A and B. The principle of min-max 
clustering is minimizing the number of connections between A 
and B and maximizing the number of connections within each. 
A cut is defined the number of edges that would have to be 
removed to isolate the vertices in cluster A from those in cluster 
B. The min-max cut algorithm searches for the clustering that 

creates two clusters whose cut is minimized and while 
maximizing the number of remaining edges.  
A normalized cut was proposed [29], which normalizes the cut 
by the total number connections between each cluster to the rest 
of the graph. Therefore, cutting out one vertex or some small 
part of the graph will no longer always yield an optimum. 
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Both min-max cut and normalized cut methods partition a graph 
into two clusters. To divide a graph into k clusters, one has to 
adopt a top-down approach, splitting the graph into two clusters, 
and further splitting these clusters and so on, until k clusters 
have been detected. There is no guarantee of the optimality of 

recursive clustering. There is no measure of the number of 
clusters that should be produced when k is unknown. There is no 
indicator to stop the bisection procedure. 
 
For segmenting the image, the method proposed in [9] uses 
simple but effective modification of Kruskal’s algorithm. This 
method addresses the problem of segmenting an image into 
regions by defining a predicate for measuring the evidence for 

boundary between two regions using a graph-based 
representation of the image. An important characteristic of the 
method is its ability to preserve detail in low-variability image 
region while ignoring detail in high-variability image region. 
The method [9] has several identified drawbacks. Firstly the 
internal difference is defined on the extreme values, which is not 
the accurate description of the components. Secondly the 
threshold function requires a user specified parameter k to 

control the size of the segmented regions. It is very difficult to 
choose an appropriate value for an expected segment size.  
 
Ming Zhang et al. [26] proposed major improvement to [9]. 
They propose the method for sensor devices which are used for 
monitoring purpose. The method contributes to the method in 
[28] by re-defining the internal difference which is used to 
define the property of components. The internal difference is re-

defined to give a more stable and accurate description of 
components. It also re-defines the threshold function which is 
the key element to determine the size of the components. 
 
The article on color metric [32] suggests the use of weighted 
Euclidean distance in RGB color space. Explicitly, the methods 
in [9] and [28] use Euclidean method to calculate the edge 
weight in the graph. It is one of the key elements in the 
construction of the graph, which determine the segmentation 

result. However, if color image are considered, it is not just 
enough to consider the distance between two points. If we 
consider image containing red, green & blue components, there 
is need to associate some weight to each of these components in 
RGB color space. So weighted Euclidean function defined in [5] 
is used in the proposed algorithm. This is to ensure that a 
definite weight is associated with each of the red, green & blue 
components. We use the weighted Euclidean distance in order to 

compute the edge weight. The following equation is used for 
computing the edge weight.                       
               ________________________ 
|ΔC| = √ (2 x ΔR2 + 4 x ΔG2 + 3 x ΔB2)         (1) 
 
where ΔR, ΔG and ΔB represent intensity the values of red, 
green & blue components in a two- dimensional space. 2, 4 & 3 
represent the weight associated for red, green & blue 

components respectively [5].  
 
Neighborhood-based Clustering (NBC) algorithm [36] proposed 
by Zhou S. G. et al is a good data clustering algorithm and can 
discover clusters of arbitrary shape and different densities using 
neighboring relationship among data points.  To apply NBC to 
segment an image fast and efficiently Grayscale k-neighborhood 
based Density Factor (GNDF) [19] is introduced, which 

characterizes the local density of a gray’s neighborhood in a 
relative sense.      
 
There is no single universally applicable or generic outlier 
detection approach [23, 21]. Therefore there is many approaches 

have been proposed to deduct outliers. These approaches are 
classified into four major categories as distribution-based, 
distance-based, density-based and clustering-based [35].  
 
Distribution-based approaches [11, 2] develop statistical models 
from the given data then apply a statistical test to determine if an 
object belongs to this model or not. Objects that have low 
probability to belong to the statistical model are declared as 

outliers. However, distribution-based approaches cannot be 
applied in multidimensional  
 
dataset because of the univariate in nature. In addition, prior 
knowledge of the data distribution is required. These limitations 
have restricted the ability to apply these types of methods to 
large real-world databases which typically have many different 
fields and have no easy way of characterizing the multivariate 

distribution.   
 
In the distance-based approach [21,22,23], outliers are detected 
using a given distance measure on feature space, A point q in a 
data set is an outlier with respect to  the parameters M and d, if 
there are less than M points within the distance d from q, where 
the values of M and d are determined by the user. The problem 
in distance–based approach is that it is difficult to determine the 

M and d values.  
 
In Density-based methods outlier is defined from local density 
of observation. These methods used different density estimation 
strategies. A low local density on the observation is an 
indication of a possible outlier. Brito et al [4] proposed a Mutual 
k-Nearest-Neighbor (MkNN) graph based approach. MkNN 
graph is a graph where an edge exits between vertices vi and vj if 
they both belong to each others k-neighborhood. MkNN graph 

is undirected and is special case of k-Nearest-Neighbor (kNN) 
graph, in which every node has pointers to its k nearest 
neighbors. Each connected component is considered as cluster, 
if it contains more than one vector and an outlier when 
connected component contains only one vector.   Connected 
component with just one vertex is defined as an outlier.  
 
Clustering-based approaches [25, 18, 16], consider clusters of 

small sizes as outliers. In these approaches, small clusters 
(clusters containing significantly less points than other clusters) 
are considered as outliers. The advantage of clustering- based 
approaches is that they do not have to be supervised.  
 
The selection of the correct number of clusters is actually a kind 
of validation problem. A large number of clusters provides a 
more complex “model” where as a small number may 

approximate data too much. Hence, several methods and indices 
have been developed for the problem of cluster validation and 
selection of the number of clusters [31, 15, 14] based on the 
within and between-group distance.  

 

3. MSTSSCIMLRO Algorithm                      
In this paper, we focus on simple, undirected and weighted 
graph. Let G = {V, E} be a graph, where V is a set of 
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vertices/pixeles; and E is a set of pairs of distinct vertices/pixels, 
called edges. W (u, v) is the weight of the edge (u, v). The 
hierarchical method starts by constructing a Minimum Spanning 
Tree (MST). The weight of the edge in the tree is Euclidean 
distance between the two end points (vertices/pixels). Given an 

image the hierarchical method starts by constructing a Minimum 
Spanning Tree (MST).  We named this MST as EMST1.  Next 
the average weight Ŵ of the edges in the entire EMST1 and its 
standard deviation σ are computed; any edge with W > Ŵ + σ or 
current longest edge is removed from the tree. This leads to a set 
of disjoint subtrees ST = {T1, T2 …}. Each of these subtrees Ti is 
treated as cluster/segment. The algorithm works in two phases. 
The first phase of the algorithm partitioned the EMST1 into sub 

trees (clusters/regions/segments). The centers of clusters or 
regions or segments are identified using eccentricity of points. 
These points are a representative point for the each subtree ST. A 

point ci is assigned to a cluster/segment i if ci  Ti.  The group of 

center points is represented as C = {c1, c2……ck}. These center 
points c1, c2 ….ck are connected and again minimum spanning 
tree EMST2 is constructed is shown in the Fig 4. Xiaowei et al 
[33] proposed a method to find clusters, outliers and hubs based 
on undirected and un-weighted graph (Networks). The MST 
ignores many possible connections between the data patterns, so 

the cost of clustering/segmenting can be decreased. We 
modified the approach using Minimum Spanning Tree (MST). 
We propose a new algorithm; Minimum Spanning Tree based 
Structural Similarity Clustering for Image Mining with Local 
Region Outliers (MSTSSCIMLRO) for segmenting image. Here 
the number of edges between the vertices (pixels) is 
considerably reduced. So the performance of our approach has 
been improved.  

 
Here, we use a cluster validation criterion based on the 
geometric characteristics of the clusters, in which only the inter-
cluster metric is used. The MSTSSCIMLRO algorithm is a 
nearest centroid-based algorithm, which creates region or 
subtrees (clusters/regions/segments) of the data space. The 
algorithm partitions a set S of data of data D in data space in to n 
regions (clusters). Each region is represented by a centroid 

reference vector. If we let p be the centroid representing a region 
(cluster/segment), all data within the region (cluster) are closer 
to the centroid p of the region than to any other centroid q: 
 

    R (p) = {x  D  dist(x, p)  dist(x, q) q}    (2) 

 
Thus, the problem of finding the proper number of clusters of a 
dataset can be transformed into problem of finding the proper 
region (clusters) of the dataset [8]. Here, we use the MST as a 
criterion to test the inter-cluster property. Based on this 

observation, we use a cluster validation criterion, called Cluster 
Separation (CS) in MSTSSCIMLRO algorithm. 
 
Cluster separation (CS) is defined as the ratio between 
minimum and maximum edge of MST. ie., 
 
                CS = Emin  / Emax                                 (3) 
 

where Emax is the maximum length edge of MST, which 
represents two centroids that are at maximum separation, and 
Emin is the minimum length edge in the MST, which represents 
two centroids that are nearest to each other. Then, the CS 
represents the relative separation of centroids. The value of CS 

ranges from 0 to 1. A low value of CS means that the two 
centroids are too close to each other and the corresponding 
partition is not valid. A high CS value means the partitions of 
the data is even and valid. In practice, we predefine a threshold 
to test the CS.  If the CS is greater than the threshold, the 

partition of the dataset is valid. Then again partitions the data set 
by creating subtree (cluster/region). This process continues until 
the CS is smaller than the threshold. At that point, the proper 
number of clusters will be the number of cluster minus one. The 
CS criterion finds the proper binary relationship among clusters 
in the data space. The value setting of the threshold for the CS 
will be practical and is dependent on the dataset. The higher the 
value of the threshold the smaller the number of clusters would 

be. Generally, the value of the threshold will be > 0.8[8].  Fig 3 
shows the CS value versus the number of clusters in hierarchical 
clustering. The CS value < 0.8 when the number of clusters is 5. 
Thus, the proper number of clusters for the data set is 4.  
Furthermore, the computational cost of CS is much lighter 
because the number of subclusters is small. This makes the CS 
criterion practical for the MSTSSCIMLRO algorithm when it is 
used for clustering/segmenting large dataset (image) and to 

detect outliers.  
 
Our goal is both to cluster/segment graph optimally and to 
identify and isolate outliers. Therefore both connectivity and 
local structure is used in our definition of optimal clustering. 
Here we formulize the notion of structure-connected 
cluster/segments, which extends that of a density based cluster 
[7] and can distinguish good clusters/segments and outliers from 

image graph.  
 
To detect the outliers from EMST, we use the degree number of 
points (objects/pixels) in the EMST. For any undirected graph G 
the degree of a vertex v, written as deg (v), is equal to the 
number of edges in G which contains v, that is, which are 
incident on v [12].  
 
We propose the following definition for outliers based on 

EMST, 
   
Definition 1: Given an EMST for a data set S, outlier is a 
vertex/pixel v, whose degree is equal to 1, with dist (v, Nearest-
Neighbor (v)) > TH. 
 
where TH is a threshold value used as control parameter.  
EMST is constructed from point set S (shown in Fig 1).Using 

graph partitioning method the subtrees (clusters) are created.  
For each of the subtrees vertices/pixels v, which have degree 1 
are identified. Then we find Nearest-Neighbor for the above 
vertices v. The distance between the vertices v and its nearest 
neighbor vertex/pixel is computed.  If the computed distance 
exceeds the threshold value TH then the corresponding 
vertices/pixels are identified as an outlier is shown in the Fig 2.  
 

When scanning the EMST, the edges are ordered from smaller 
to larger lengths. Then we define the threshold as: 
 
TH = max (Li - Li-1) * t                         (4) 
 

Where Li is largest in the order and t  [0,1] is a user defined 

parameter. 
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The structure of a vertex/pixel in EMST can be described by its 

neighborhood. Let v  V, the structure of v is defined by its 

neighborhood denoted by (v) 

 

(v) = {w  V | (v, w) E} {v}     (5)                

 
When a member of a cluster shares a similar structure with one 
of its neighbors, their computed structural similarity will be 

large. We apply a threshold  to the computed structural 

similarity when assigning cluster membership, formulized in the 

following -neighborhood definition. 
 

N (v) = {w  (v) | dist (v, w) ≥}      (6) 

 
When a vertex/pixel shares structural similarity with enough 
neighbors, it becomes a nucleus or seed for cluster. Such a 
vertex/pixel is called a core vertex/pixel.  Core vertices are 

special classes of vertices/pixels that have a minimum of  

neighbors with a structural similarity that exceeds the 

threshold.  From core vertices/pixels we grow the 

clusters/segments. In This way the parameters   and  

determine the clustering/segmenting of graph.  For a given. The 

minimal size of a cluster is determined by . Let  and, 

a vertex/pixel v  V is called a core w.r.t.  and , if its -

neighborhood contains at least  vertices.  

 

CORE,(v)  N(v) ≥           (7) 

 
We grow clusters from core vertices/pixels as follows. If a 

vertex/pixel is in -neighborhood of a core, it should be also in 

the same cluster/segment. They share a similar structure and are 
connected. This idea is formulized in the following definition of 
direct structure reachability. 
 

DirREACH, (v,w)CORE,(v)  wN(v)   (8) 

 

Direct structure reachabiltiy is symmetric for any pair of cores. 
However, it is asymmetric if one of the vertices/pixels is not a 
core. The following definition is a canonical extension of direct 
structure reachability. 
 

A vertex/pixel  wV is structure reachable from v  V w.r.t.  

and , if there is a chain of vertices/pixels v1,…..,vn  V,v1 = 

v,vn=  w such that v i+1 is directly structure reachable from vi, 
formally: 
 

REACH ,(v,w)  

v1,….vn  V : v1= v vn = w 

    i  {1,….n-1} : DirREACH , (vi, vi+1)    (9) 

 
The structure reachability is transitive, but it is asymmetric. It is 
only symmetric for a pair of cores. More specifically, the 

structure-reachability is a transitive closure of direct structure 

reachability. A non-empty subset C V is called a structure-

connected cluster w.r.t  and , if all vertices/pixels in C are 

structure-connected and C is maximal w.r.t structure 

reachability. A clustering P of graph G = {V, E}  w.r.t.  and  

consists of all structure connected clusters/segments  w.r.t.  

and in G. 

 

Algorithm: MSTSSCIMLRO ( ) 
 

Input      : An Image as point set S, ,  and TH 

Output   :  optimal number of clusters/regions with O  outliers   
                                  
Let e1 be an edge in the EMST1 constructed from S 

Let e2 be an edge in the EMST2 constructed from C 
Let We be the weight of e1 
Let σ be the standard deviation of the edge   
      weights in EMST1 

Let ST be the set of disjoint subtrees of EMST1 

Let O be set of outliers 
 
 1.  Construct an EMST1 from S  

 2.  Compute the average weight of Ŵ of all the  
      Edges from EMST1 
 3.  Compute standard deviation σ of the edges 
       from EMST1 
 4.  ST = ø; C = ø; O = ø; 
 5.  Repeat 

 6.    For each e1  EMST1 

 7.      If (We > Ŵ + σ) or (current longest edge e1) 
 8.          Remove e1 from EMST1  

 9.          ST = ST U { T’ } // T’’ is new disjoint    

              Subtree (regions) 
10.         Compute the center Ci of Ti using  
              eccentricity of points  

11.         C = UTi   ST {Ci}  

12.         Construct an EMST2 T from C 
13.         Emin = get-min-edge (T)  
14.         Emax = get-max-edge (T)  
15.         CS = Emin / Emax  
16.  Until CS < 0.8   
17. For each Ti  (cluster represented as EMST2) do 

18.      For m = 1 to |Ti| do 
19.           If deg (vm) == 1 and dist (vm, Nearest- 
                       Neighbor (vm)) > TH then  

                           O = O U {vm }    

20. For each  unclassified vertex vV in Ti  do   

21.   If CORE,(v) then  

22.          Generate new clusterID 

23.           Insert all x  N(v) in to queue Q 

24.           While Q  0 do 

25.                y = remove(Q) 

26.               R = {xV |   DirREACH, (y,x) } 

27.                     For x R do 

28.                        If x is unclassified or  
                                  non-member then  
                                assign current clusterID to x  
29.                        If x is unclassified then 
                             Insert x into queue Q. 

30. Else 

31.      label v as non-member 
32. Return optimal regions/segments with O  
 
Fig 1 shows a typical example of EMST1 constructed from 
image point set S, in which inconsistent edges are removed to 
create subtree (clusters/regions/segments).  Our algorithm finds 
the center of the each cluster/segment, which will be useful in 

many applications. Our algorithm will find optimal number of 
clusters/segments or cluster structures. Fig 2 shows the possible 
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distribution of the points in the three cluster structures with their 
center vertex/pixel as 5, 3 and 6.    

 

 

Fig 1: Pixels connected through points -EMST1         
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(c) 

 
Fig 2: Three Clusters/regions (EMST) with 
      center points 5 , 3 & 6 (outliers 2, 7 & 13)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  3: Number of Clusters vs. Cluster Separation 
 
Our MSTSSCIMLRO algorithm works in two phases. The first 
phase (lines 1-16) of the algorithm finds optimal number 
clusters/segments with their center. It first constructs EMST1 
from set of point S (line 1). Average weight of edges and 
standard deviation are computed (lines 2-3). Inconsistent edges 
are identified and removed from EMST1 to generate subtree T’ 

(lines 7-9). The center for each subtree (cluster/region) is 
computed at line 10. Using the cluster/region /segment center 
point again another minimum spanning tree EMST2 is 
constructed   (line 12). Using the new evaluation criteria, 
optimal number of clusters/regions/segments is identified (lines 
13-15). Lines 6-16 in the algorithm are repeated until optimal 
number of clusters/sements are obtained. The clusters/segments 
are well separated, shown in Fig 4. Here we describe the 
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MSTSSCIMLRO algorithm, which implements the search for 
clusters/segments and outliers. The MSTSSCIMLRO algorithm 
first generates optimal number of subtrees (clusters/segments). 
Then it visiting each vertex once to find structure-connected 
micro clusters/segments, and then it locate and identify outliers.  

 
The Second Phase of the algorithm first identifies the outliers 
(lines 17-19). Then it performs one pass of an EMST and finds 
all structure-connected clusters/segments for a given parameters 
settings. At the beginning all the vertices/pixels are labeled as 
unclassified. The MSTSSCIMLRO algorithm classifies each 
vertex/pixel either a member of a cluster/segment or non-
member. For each vertex/pixel that is not yet classified, 

MSTSSCIMLRO checks whether this vertex/pixel is a core 
(line 21). If the vertex/pixel is a core, a new cluster/segment is 
expanded from this vertex/pixel (lines 23-29). Otherwise the 
vertex/pixel is labeled as non-member (line 31). To find a new 
cluster MSTSSCIMLRO starts with an arbitrary core v and 
search for all vertices/pixels that are structure-reachable from v 
(line 25). New ClusterID is generated which will be assigned to 
all vertices found in (line 22). MSTSSCIMLRO begins by 

inserting all vertices/pixels in -neighborhood of vertex/pixel v 
in to a queue. For each vertex/pixel in a queue it computes all 

directly reachable vertices/pixels and inserts those vertices into 
queue which are still unclassified. This is repeated until the 
queue is empty.  

 
 
 
 
 

 
 
 
 
 
 
 
  

     
Fig 4: EMST2 From 4 region/cluster center points 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Four Clusters/regions with outliers as black spots 

 

4. CONCLUSION 
 
Our MSTSSCIMLRO algorithm gradually finds optimal 

number of clusters with segmentation for each cluster. Our 

algorithm does not require the users to select and try various 
parameters combinations in order to get the desired output. The 
benefit of the algorithm is to find similarity structures 
(segments) within clusters. Outliers have little or no influence, 
and may not be isolated as noise in the data. In this paper, we 

proposed MSTSSCIMLRO algorithm used to segments/ 
clusters image and detect outliers in graphs. The 
MSTSSCIMLRO clusters vertices /pixels based on their 
common neighbors. Two vertices/pixels are assigned to a cluster 
according to how they share neighbors. Our algorithm does not 
assume fixed number of segments. According to how different 
pixels in the same cluster are allowed, the algorithm determines 
the number of segments through the processes. We do think that 

this is more natural way to segment image. All of these look 
nice from theoretical point of view. However from practical 
point of view, there is still some room for improvement for 
running time of the clustering algorithm. This could perhaps be 
accomplished by using some appropriate data structure. In this 
paper we consider only theoretical aspects for image 
segmentation. We hope the algorithm will produce better result 
for segmenting color images. 
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