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ABSTRACT 

In this paper, we define the notions of inverse split and non split 
domination in graphs. We get many bounds on inverse split and 
non split domination numbers. Nordhaus-Gaddum type results 

are also obtained for these new parameters. 
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1.1 INTRODUCTION 

Kulli V.R. et al introduced the concept of split domination and 
non-split domination in graphs. Kulli V.R. et al introduced the 
concept of Inverse domination in graphs.  Let G=(V,E) be a 
simple, finite, undirected, connected graph. Any undefined term 
in this paper may be found in Haynes T. W et al (1998).  A non-

empty set D  V of a graph G is a dominating set of G if every 

vertex in V-D is adjacent to some vertex in D.  The domination 

number (G) is the minimum cardinality taken over all the 
minimal dominating sets of G.  Let D be the minimum 

dominating set of G.  If  V-D contains a dominating set D  then 

D  is called the Inverse dominating set of G w.r.to D.  The 

Inverse dominating number (G) is the minimum cardinality 

taken over all the minimal inverse dominating sets of G.  A 

dominating set D of G is a connected dominating set if the 
induced subgraph <D> is connected [Sampathkumar E. and 

Walikar H.B. (1979)].  The connected domination number c(G) 

is the minimum cardinality of a connected dominating set.  
Unless stated, the graph G has n vertices and m edges.  A 

dominating set D  V of a graph G is a split (non-split) 

dominating set if the induced subgraph <V-D> is disconnected 

(connected).  The split (non-split) domination number s(G) 

( ns(G)) is the minimum cardinality of a split (non-split) 

dominating set. 

The purpose of this paper is to introduce the concept 
of Inverse split domination and Inverse non-split domination in 

graphs.  Let D  be the minimum Inverse dominating set of G 

w.r.to. D.  Then D  is called an Inverse split   (non-split) 

dominating set of G if the induced subgraph <V-D > is 

disconnected (connected).  The inverse split (non-split) 

domination number is denoted by s (G) ( ns(G)) and it is the 

minimum cardinality taken over all the minimal inverse split 
(non-split) dominating sets of G.  In this paper, many bounds on 

s (G) and ns(G) are obtained and their exact values for some 

standard graphs are found.  Also their relationships with other 
parameters are investigated.  Nordhaus-Gaddum type results are 

also obtained for these parameters. 

    - set is the set of all vertices in a dominating set 

with # (G) 

   - set is the set of all vertices in an inverse 

dominating set with # (G) 
  

c  - set is the set of all vertices in a connected 

dominating set with # c(G) 

 s  - set is the set of all vertices in a split dominating 

set with # s(G) 

 s - set is the set of all vertices in an inverse split 

dominating set with # s(G) 

 ns - set is the set of all vertices in a non-split 

dominating set with # ns(G) 

 ns - set is the set of all vertices in an inverse non-

split dominating set with # ns(G) 

 

1.2 RESULTS AND BOUNDS 

1.2.1 Observation and Results 

Here we observed the exact values of s(G) and 

ns(G) for some standard graphs  and proved some standard 

results. 

(a) Observation 

(i) For any complete graph Kn with n  2 vertices, 

 s(Kn)=0; ns(Kn)=1 

(ii) For any cycle Cn with n  3, 

 s(Cn) = 
n

3
; ns(Cn) = 0 

Example 1.2.2 

 Consider the following graph in figure 1. 

6 2

4 2

5 1

 

Graph G : Figure 1. 

 Here D= {2,4},  D  = {1,5}, V-D  = {2,3,4,6} 

 (G)=2 

  (G)=2 

ns(G)=2 

When D = {1,5},  D ={2,4}, V-D  = {1,3,5,6} 

Here  (G)=2 

 (G)=2        s(G)=2 

Theorem 1.2.3.: For any graph G, 

  (G)  s  (G) 

  (G)  ns(G) 
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Proof  

 Since every inverse split dominating set of G is an 

inverse dominating set of G, we have   (G)  s(G). 

 Similarly, every inverse non-split dominating set of G 

is an inverse dominating set of G, we have  (G)  ns(G). 

Theorem 1.2.4.: For any graph G, 

 (G)  min{ s(G), ns(G)} 

Proof 

  Since every inverse split dominating set and every 
inverse non-split dominating set of G are the inverse 

dominating sets of G, we have  (G)  s (G) and  (G)  ns 

(G) and hence (G)  min{ s(G), ns(G)}. 

Theorem 1.2.5.  

Let T be a tree such that any two adjacent cut vertices 
u and v with atleast one of u and v is adjacent to an end vertex 
then  

 (T) = s(T)  

Proof  

Let D  be a -set of T, then we consider the following 

two cases: 

Case (i) 

Suppose that atleast one of u, v  D , then <V-D > is 

disconnected with atleast one vertex.  Hence D  is a s-set of T.  

Thus the theorem is true. 

Case (ii) 

Suppose u, v  V-D . Since there exists an end vertex 

 adjacent to either u or v say u, it implies that   D .  Thus it 

follows that D =D -{ }  {u} is a -set of T. 

Hence by case(i), the theorem is true. 

Theorem 1.2.6 : For any tree T, 

 ns(T) = n-p 

 where p is the number of vertices adjacent to end 
vertices. 

Theorem 1.2.7 : For any graph G, 

 ns(G)  n- (G) 

 where (G) is the minimum degree among the 
vertices of G. 

Note 1.2.8. 

 For any tree T,  (T) =1 

Hence ns(T)  n-1 

 

Remark 1.2.9  

We obtained the relationship between ns(G) and 

ns(H) where H is any connected spanning subgraph of G.  

Similar result for s(G) and s(H). 

If H is any connected Spanning subgraph of G then 

(G)     (H)  

Theorem 1.2.10 

Let G be a graph which is not a cycle with atleast 5 
vertices. Let H be a connected spanning subgraph of G then 

(i) s(G)  s(H) 

(ii) ns(G)  ns(H) 

Proof  

 Since G is connected then any spanning tree T of G is 

minimally connected subgraph of G such that s(G)  s(T)  

s(H). 

In a similar way, ns(G)  ns(T)  ns(H) 

Hence the proof. 

 

(b) BOUNDS ON s(G) AND ns(G) 

Theorem 1.2.11 
Let G be any graph of order  3. Then  

(i) s(G)  n – 1 when G is a K4 – free graph  

(ii) ns(G)  n – 2 

where n is the number of vertices 

Proof  
(i) Let D  be an inverse split dominating set of G.  

Then, we have D  is an inverse dominating set of 

G.   This implies that, for every vertex v  V-D , 

NG(v)  D  = .  It means that D  is an inverse 

dominating set in G-v.  To prove the required 
result, it is enough to prove that the induced 

subgraph <V-D >G-v is disconnected. By 

assumption, the induced subgraph <V-D >G is 
disconnected implies that G is a K4 – free graph 

and every path in <V-D > contains no vertex from 

D .  Also, the removal of the vertex v from G does 
not change the above relationship and hence the 

induced subgraph <V-D >G-v is also disconnected. 

Thus, s (G)  n-1 where n is the number of 
vertices of G. 

(ii) Since G is connected, there is a spanning tree T of 
G with (n-1) vertices. If v is a pendant vertex of T 
then (n-2) vertices of T other than v form a 
minimal inverse non-split dominating set of G, 

hence ns(G)  n – 2. 

 

Theorem 1.2.12   

If T is a tree which is not a star then ns(T)  n-2  

n  3. 

Proof: 

Since T is not a star, there exists two adjacent cut 

vertices u and v with degree u and degree v  2. This implies 

that V – {u, v} is an Inverse non-split dominating set of T.  
Thus the theorem is true. 
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1.3.   CHARACTERIZATION AND 

NORDHAUS – GADDUM TYPE 

RESULTS 

(a) Characterization of Minimal Inverse 

Non-split dominating set 
 

Theorem 1.3.1 
An inverse non-split dominating set D  of G is 

minimal if and only if for each vertex v  D , one of the 

following conditions is satisfied. 

(i) There exists a vertex u  V-D  such that 

 N(u)  D  = {v} 

(ii) v is not an isolated vertex in <D >  

(iii) u is not an isolated vertex in <V-D > 

 

Proof 

Suppose D  is a minimal inverse non-split dominating 

set of G. 

Suppose the contrary. 

That is, if there exists a vertex v  D  such that v does 

not satisfy any of the given conditions, then by theorem given 
by Kulli V .R and Janakiram. B (2000), there exists an inverse 

dominating set D =D -{v} such that the induced subgraph <V-

D > is connected. This implies that D  is an inverse non-split 

dominating set of G contradicting the minimality of D .  

Therefore, the condition is necessary. 

Sufficiency follows from the given conditions. 

(b) Nordhaus-Gaddum Type results 

Theorem 1.3.2   

Let G be a graph such that both G and G have no 

isolates. Then, 

i) s(G) + s( G )  2(n-1)  

ii) s(G) .  s( G )   (n-1)2. 

Proof  

 The results follow from Theorem 2.2.11(i). 

Theorem 1.3.3 

Let G and G be connected complementary graphs. 

Then 

i) ns(G) + ns( G )  2(n-2)  

ii) ns(G) .  ns( G )   (n-2)2. 

Proof  

 The results follow from Theorem 1.2.11 (ii). 

Remark 1.3.4  

 In a similar way, the edge-analog of the above two 

inverse parameters is studied meticulously.  These parameters 

are referred as co-edge split dominating set (CESD-set) and co-
edge non-split dominating set (CENSD-set) respectively. 

1.4 MAIN RESULTS IN CO-EDGE SPLIT 

AND NON-SPLIT DOMINATING SETS 

Definition 1.4.1 

 A co-edge split dominating set (CESD-set) of a 
graph G = (V,E) is a co-edge dominating set X of a graph G 
such that the edge induced subgraph <E \ X> is disconnected 

and the co-edge split domination number cs(G) is the minimum 

cardinality of the minimal co-edge split dominating set of G. 

Definition 1.4.2 

 A co-edge dominating set X of a graph G = (V, E) is a 
co-edge non-split dominating set (CENSD-set) if the edge 
induced subgraph <E \ X> is connected.  The co-edge non-split 

domination number is denoted by cens(G) and it is the 

minimum cardinality of the minimal co-edge non-split 
dominating set of G. 

Note 1.4.3 

 The concept of edge domination was introduced by 
Mitchell and Hedetniemi (1977) and further studied by 
Arumugam and Velammal (1988).  A subset of X of E is an 
edge dominating set (ED-set) of G if every edge in E \ X is 
adjacent to some edge in X.  The minimum cardinality of the 
minimal ED-set of G is called the edge domination number of G 

and is denoted by (G) (Mitchell and Hedetniemi, 1977). 

 Let X be the minimum edge dominating set of G.  If E 
\ X contains an edge dominating set X1, then X1 is called the 

complementary edge dominating set (or) co-edge 

dominating set of G with respect to X.  The co-edge 
domination number is the minimum cardinality of the minimal 
co-edge dominating set of G. 

 An edge dominating set X of G is called a connected 
edge dominating set (CED-set) if the edge induced subgraph 
<X> is connected.  The minimum cardinality of a minimal 
CED-set of G is called the connected edge domination number 

and it is denoted by c(G).  (Kulli and Sigarkanti, 1988). 

 We call a set of edges a -set if it is an ED-set with 

cardinality (G).  In a similar way, c-set, ces-set and cens-set 

are defined.  The degree of an edge e=uv of G is defined by 

deg(e) = deg(u)+deg(v) – 2.  The maximum and minimum edge 

degree of the graph G is denoted by (G) and (G) 

respectively.  An edge is said to be isolated if its degree is 0 and 
an edge is called a pendant edge if anyone of its and vertex has 
degree one.  The open neighbourhood of an edge e in a graph G 
is denoted by NG(e) and it is the set of all edges adjacent to e in 
G. The closed neighbourhood of an edge e in a graph G is 

denoted by NG[e] and it is defined as NG[e] = NG(e)  {e}.                      

Example 1.4.4 

 

Graph G : Figure 2. 
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 For this graph G, X1 = {e1, e5} is a CESD-set and 

hence cs(G) = 2. 

 Let (G)–set and cs(G)-set be respectively denote 

the minimum ED-set and minimum CESD-set of G.  We note 

that cs(G)-sets exist if the graph is not complete and either 

contains a non-complete component or contains atleast two 
non-trivial components.  For convenience we will assume that 
G contains a CESD-set.  Further we also note that in a 

disconnected graph any (G)–set is cs(G)–set.              

Example 1.4.5 

 

Graph G : Figure 3. 

For the above graph G, X = {e2, e4} is a minimum 

CENSD-set and hence cens(G) = 2. 

 We started with some elementary results. 

Theorem 1.4.6 

 For any graph G,   

 (G)  cens(G) 

Proof 

 Since every CENSD-set of G is an ED-set of G and 
hence the result. 

Theorem 1.4.7 

 For any graph G, 

 (G)  min { ces(G), cens(G)} 

Proof 

 Since every CESD-set and CENSD-set of G are ed-
set of G, which gives  

 (G)  ces(G) and (G)  cens(G) 

 and hence (G)  min { ces(G), cens(G)} 

Theorem 1.4.8 

 A censd-set X of G is minimal if and only if for each 

edge e  X, one of the following conditions is satisfied. 

i. There exist an edge f  E \ X such that N(f)  X = {e}. 

ii. e is an isolated edge in <X> and  

iii. N(e)  (E \ X) =  

Proof 

 Let X be a CENSD-set of G.  Assume that X is 

minimal.  Therefore, X-{g} is not a CENSD-set for any g  X.  

Now to prove that any one of the above three conditions is 

satisfied.  On the contrary, if there exists an edge e  X such 

that e does not satisfy any of the given conditions then X  = X-

{e} is an ED-set of G. Also N(e)  (E \ X)   gives <E \ X > is 

connected.  This implies that X  is a CENSD-set of G, which 

contradict the minimality of X.  This proves the necessity.  

Conversely, for connected G if any one of the given three 
conditions is satisfied gives the sufficiency. 

 Next, we obtained a relationship between cens(H) and 

cens(G), where H is any spanning connected subgraph of G. 

Theorem 1.4.9 

 For the graph G which is not a cycle graph with 

atleast 5 vertices, then cens(G)  cens(H) where H is any 

spanning connected subgraph of G. 

Proof 

 Since G is connected then any spanning tree T of G is 

the minimal connected subgraph of G such that cens(G)  

cens(T)  cens(H) and hence the result. 

 Here, we listed the exact values of cens for some 

standard graphs. 

Propositions 1.4.10 

i. For any complete graph Kn with n  3 

cens(Kn) = cens(Kn) = 2n  

ii. For any complete bipartite graph Km,n with 2  m  n, 

cens(Km,n) = cens(Km,n) = (Km,n) = min {m,n} and  

cens(K1,n) = 1, n  1. 

iii. For any cycle graph Cn, n  3 

cens(Cn) = n-2 = c(Cn) 

iv. For any wheel graph Wn, n  3 

cens(Wn) = 

n 1
,n 0mod3

3

n
,n 1,2mod3

3

 

v. For any path graph Pn, n  3   

cens(Pn) = 
n 3,n 5

n 2,n 3,4
 

vi. For any fan graph Fn, n  3        

cens(Fn) = 
n

3
 

vii. For any book graph Bn, 

cens(Bn) = 
n, n 2

2, n 1
 

viii. For one point union of t cycles of length n graph Cn
(t), 

t  1 (Joseph A. Gallian, 2008) 

cens(Cn
(t)) = 

(n 4)t 2, n 5

t 1,n 4

t,n 3

 

ix. For any triangular snake graph mC3, m  1 [8]  
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cens(mC3) = 

2
m,m 0mod3

3

m m
,m 1mod3

3 3

m m
,m 2mod3

2 4

 

 

Theorem 1.4.11 

 For any graph G, cens(G)  m - (G)+1 where (G) 

denote the size of the largest complete subgraph of G and m is 

the size of the graph G.  

Proof 

 Let Y be a set of edges of G such that <Y> is 

complete with Y (G).  Then for any e  Y, (E\Y)  {e} is 

a CENSD-set of G and hence cens(G)   E \ Y {e}.  That is, 

cens(G)  m - (G)+1. 

Theorem 1.4.12 (Arumugam and Velammal, 

1998) 

 For any connected unicyclic graph G=(V,E) with 

cycle C, cens(G)  m -  if and only if one of the following 

holds: 

i. G=C3 

ii. C=C3=(u1, u2, u3, u4), deg(u1)  3, deg(u2) = deg(u3) = 

2, d(u,w)  2 for all vertices w not on C and deg(w)  

3 for at most one vertex w not on C. 

iii. C=C3= (u1, u2, u3, u4), deg(u1)  3, deg(u2)  3, 

deg(u3) = 2, all vertices not on C adjacent to u1 have 
degree at most 2 and all vertices whose distance from 
u1 is 2 are pendant vertices. 

iv. C=C3, deg(u1)=3, deg(u2)  3, deg(u3)  3 and all 

vertices not on C are pendant vertices  

v. G=C4 

vi. C=C4, either exactly one vertex of C or two adjacent 
vertices of C have degree atleast 3 and all vertices not 

on C are pendant vertices. 

From Theorem 1.4.6 and Theorem 1.4.12 we have the 
following theorem. 

Theorem 1.4.13 

 For any connected unicyclic graph G=(V,E) with 

cycle c,  

    cens(G)  m -  if and only if one of the subdivision 

in Theorem 1.4.10 holds.  

 

Theorem 1.4.14 

 For any graph G of order  3, cens(G)  n-2.  Further 

for cyclic graphs the equality holds. 

Proof 

 Since G is connected there is a spanning tree T of G 
with n-1 edges.  If x is a pendant edge of T then n-2 edges of T 

other than x form a maximum co-edge non-split dominating set 

of G, hence cens(G)  n-2.  Also, the equality can be attained for 

Cn, n  3.   

Theorem 1.4.15 

 If G is a subdivision of star graph then cens(G) = m - 

1, where 1 is the edge independence number of G and m is the 

size of the graph G.   

Proof 

 Let G be a subdivision of the star graph K1,n  n  1.  

Then 1=n.  From the edge set of G, if we remove all these 1 

edges form the minimum CENSD-set of G.  Hence cens(G) 

=m- 1.  

Theorem 1.4.16 

 If (G) > 1G then cens(G) = (G) where (G) is the 

edge connectivity of G. 

Proof 

 Let X be a -set of G.  Since (G) > 1G  (G), 

implies that <E \ X> is connected.  This proves that X is a cens-

set of G.  Hence cens(G) = (G). 

Theorem 1.4.17 

 Let X be a cens-set of G.  If no two edges in E\X are 

adjacent to a common edge in X then cens(G) + (T)  m 

where (T) is the maximum number of pendant edges in any 

spanning tree T of G and m is the size of the graph G.  

Proof 

 Let X be a cens-set of G.  Assume that if any two 

edges e1, f1 in E \ X and e2, f2 in X such that e2 is adjacent to e1 
but not to f1 and f2 is adjacent to f1 but not to e2, this implies 
that there exists a spanning tree T of <E \ X> in which each 
edge of E\X is adjacent to an edge of X. This proves that  

(T)  E \ X . That is, (T)  m - cens(G). 

Theorem 1.4.18 

 If (G) + (G)  m+1 then cens(G) + c(G)  m 

where (G) is the minimum edge degree of G, (G) the size of 

the largest complete subgraph of G and m is the size of the 
graph G. 

Proof  

Let X be a cens-set of G.   By Theorem 1.4.11 we 

have cens(G)   (G) +1 and by using given hypothesis, we 

get cens(G)  (G).  Then every edge in X is adjacent to some 

edge in E\X gives E\X is an ED-set of G.  Since <E\X> is 

connected gives E\X is a CED-set of G and hence c(G)  

E \ X  = m- cens(G).  Hence the theorem. 

Theorem 1.4.19 

 For any tree T, if X is a cens-set and m1, n1 are the 

number of non-pendant and pendant edges of T in <E\X. 
respectively then 
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  = q – m1 – n1  if n1 < E \ X , m1  0   

cens (T) =  > q – m1 – n1  if n1 = E\X , m1  0 

  < q – n1   if n1 < E\X , m1 = 0 

  = q – n1   if n1 = E\X , m1 = 0 

Proof 

 Let X be cens-set of T.  Let m1 and n1 be denote 

number of non-pendant and pendant edges of T in <E\X> 
respectively. 

Case (i) 

 n1 < E \ X  and m1  0.  Then E\X has atleast one 

non-pendant edge of T and <E\X> is connected gives every 
non-pendant edge in <E\X. is a bridge of T.  Let S be a set of 

bridges which are adjacent to pendant edges of T with S =m1.   

Then  

E \ X  = S +n1 =m1+n1.  Hence cens(T) = X  = m – m1 – n1.     

  

Case (ii) 

 n1 = E \ X  and m1  0. Then all the edges in E\X are 

pendant edges of T and m1 > 0.  Therefore E \ X  < m1 + n1.  

Hence cens(G) = X  > m – m1 – n1.     

Case (iii)  

n1 = E \ X  and m1 = 0.  Then cens (G) = X  = q -

E \ X  = m – n1.   

Case (iv) 

n1 < E \ X  and m1 = 0.  Then cens (G) = X  <  

m – n1.   

Theorem 1.4.20: (Arumugam and Velammal 

1998) 

 For any tree T, c (T) = q1, where q1 is the maximum 

number of bridges of T. 

 By using the above theorem, we have the following 
relation. 

Theorem 1.4.21 

 For any tree T, c(T)  cens(T). Further if T is a path 

then equality holds. 

Proof 

 If T has no bridge then T = P3 and hence c(T) = 

cens(T) = 1.  Let S be the set of all bridges of T with 1S q  

and S1  S the set of all bridges such that each edge of S1 is 

adjacent to a pendant edge with 1 2S q .  Thus E(T) = q > 

q1+q2.  By Theorem 1.4.20, we have c(T) = q1.  Hence c(T)   

cens(T).  If T is a path with n  5 vertices then c(T) = cens(T). 

Theorem 1.4.22 

 For any tree T, cens (T)  
e E(T)
max {deg(e) - S(e) }+1 

where S(e) is the set of all pendant edges adjacent to e and m is 
the size of the graph G. 

Proof 

 Let e be an edge such that deg(e)- S(e)  being 

maximum. Then {E\{N[e]\S(e)}} {f} where f N(e) is a 

CENSD-set of T and hence the result. 

Corollary 1.4.23 

 For any tree T, cens(T)   m - (T) + q0 + 1, where 

(T) is the maximum edge degree of T, q0 is the minimum 

number of pendant edges adjacent to an edge of maximum 
degree and m is the size of the graph G. 

Proof 

 Since for any e in E(T), deg(e)  (T) and for the set 

of all pendant edges adjacent to e denoted by S(e), | S(e)|  q0 

gives the result by using the previous Theorem 1.4.22. 

Corollary 1.4.24 

 For the graph G which is not a cycle graph with 

atleast 5 vertices, cens(G)  m - 
e E(T)
max {deg(e) - S(e) }+1 

where S(e) is the set of all edges which are adjacent to e but not 
adjacent to any edge of E \ N(e). 

Proof 

 Since G is connected then there exists a spanning tree 

T such that cens(G)  cens(T)  by using Theorem 1.4.9.  Then 

the result follows from Theorem 1.4.22. 

 We established Nordhaus-Gaddum type results for the co-

edge non-split domination number. 

Theorem 1.4.25 

 If G and G  are connected complementary graphs, 

then  

(i) cens (G) + cens ( G )  2(n-2) and  

(ii) cens (G) . cens ( G )  (n-2)2 

   Further there exists a graph G for which equality 

holds. 

Proof 

 The results follows from Theorem 1.4.14 and equality 
is attained for C5.  

Theorem 1.4.26 

If X is a minimal ED-set of G then E\X is an ED-set 
of G. 

Proof  

Let f be any edge of X. If f is not adjacent to some 
edge of E\X and since G has no isolated edges, f is adjacent to 
some edge g in X; in this case X\{f} is an ED-set which 
contradicts the minimality of X. Hence E\X is an ED-set of G. 

 The following is an example to show that if X is an ED-set 

of G then E\X need not be an ED-set of G.                                       
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Graph G : Figure 4. 

Here X = {e2, e3, e4} is an ED-set of G but E\X =  
{e1, e5} is not an ED-set of G. 

Theorem 1.4.27 

Every edge of a graph is a minimal ED-set if and only 

if the graph is a star graph. 

Proof   

Since every edge of a graph is a minimal ED-set of G 
implies every other edge of G must be adjacent to each other, 
hence G must be a star graph. The converse follows 

immediately 

Definition 1.4.28 

 An edge dominating set X is said to be an 
independent edge dominating set (IED-set) if no two edges in X 

are adjacent.  The independent edge domination number i(G) 

of G is the minimum cardinality taken over all IED-sets of G. 

Proposition 1.4.29  

For any graph G, V((E\X)) =V(G) if and only if X is 
an independent set of edges of G. 

Theorem 1.4.30   

If X is an IED-set of G then X is both a minimal ED-
set and a maximal independent set. Conversely, if X is a 
maximal independent set then X is an IED-set of G. 

Proof  

Let X be an IED-set of G. If we take any edge out of 
X then this edge is not adjacent to any one of the remaining 
edges of X and hence X is a minimal ED-set of G. Since X is an 
IED-set, it cannot be enlarged further as an independent set and 
hence X is a maximal independent set of G. Conversely, for any 

f  E\X, it should be adjacent to atleast one edge in X ; 

otherwise X can be enlarged further as an independent set, 
which is a contradiction and hence the result. 

The following is an example to show that a minimal 
ED-set need not be an independent set of edges. 

 

Graph G : Figure 5. 

 For this graph X = {f, g} is an ED-set of G but it is 
not an independent set. 

Theorem 1.4.31 

 For any graph G, (i) cs (G)  1(G) where 1(G) is 

the edge covering number of G. 

Proof 

 Let X be a maximum independent set of edges in G.  
Then X has atleast two edges and every edge in X adjacent to 

some edge in E\X.  This implies that E\X is a CESD-set of G 
and hence the result. 

 We presented without proof a straightforward result 
that characterized ED-sets of G that are CESD-sets of G. 

Theorem 1.4.32 

 An ED-set X is a CESD-set if and only if there exist 
two vertices x1, x2 in V(<E\X>G) such that every pair P(x1, x2) 
contains an edge of X. 

Theorem 1.4.33 

 A CESD-set of G is minimal if and only if for each 

edge f in X, < (E\X)  {f}>G is connected.          

Theorem 1.4.34 

 For any graph G, cs(G)  m-n+2 

Proof 

  Let X be a cs(G)-set.  

Case(i) 

 Let X be an independent set.  Since <E(G)\X> is 
disconnected, the subset E\X has less than n-1 edges and hence 

X has greater than m-n+1 edges, hence the result. 

Case(ii) 

 Let X be non-independent set.  Take 

n1= G
V E \ X n , then |E\X| < n1-1, hence cs(G) = |X|  m-

n1+1 > m-n+1 and hence the theorem. 

 The exact values of cs(G) for several classes of 

graphs are given below. 

Proposition 1.4.35 

i. For the cycle Cn, n  3, cs(Cn) = 
n

3
            

ii. For the complete bipartite graph Km,n, m > 1, n > 1. 

cs(Km,n) = (m-1)n 

iii. For the path graph Pn, n  3, 

cs(Pn) = 

n
if n 1(mod3)

3

n
if n 0,2(mod3)

3

  

iv. For the fan graph Fn, n  3, cs(Fn) = n 

v. For the book graph Bn, n  1, cs(Bn) = n + 1 

vi. For the wheel graph Wn, n  3, cs(Wn) = n + 1 

 

Lemma 1.4.36 

 For any graph G, a subset X of E is an ED-set of G if 

and only if NG(f)  X   for every f  E \ X. 
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Proof 

 Assume that X is an ED-set of G and f  E \ X.  Then 

there exist an edge g in X such that g  NG(f) and hence the 

necessary part.  On the other hand, suppose for every f  E \ X, 

NG(f)  X   then for an edge g  X, NG(g)  X  .  It 

implies that there exist an edge f in NG(g)  X such that f and g 

are adjacent and hence f  X.  It shows that X is an ED-set of G 

and hence the proof. 

Theorem 1.4.37 

 Let X be a CESD-set of G and k  X such that NG(k) 

 X.  Then X – {k} is a CESD-set in G. 

Proof 

 Let X be a CESD-set of G.  First, we shall prove that 

X – {k} is an ED-set of G.  For, let f  {E(G) \ X}  {k}.  As k 

 X, f cannot be equal to k.  Therefore f  E(G) \ X then there 

exist g  X such that g  NG(f).  Again f  E(G) \ X, g  k 

implies g  X \ k}. Because NG(k)  X, k becomes an isolated 

edge in {E(G) \ X}  {k}.  Thus X\{k} is a CESD-set in G. 

 The graph obtained from G by subdividing each edge of G 

exactly once is called the subdivision graph of G. 

Theorem 1.4.38 

 For any tree T  K1,n, n  1, (T) = cs(T). 

Proof 

 Since every edge of tree is a bridge and hence the 
result follows. 

Theorem 1.4.39 

 For any tree T  K1,n of order n > 2, cs(G)  (n-1)/2; 

equality holds if and only if T is isomorphic to the subdivision 
of a star graph. 

Proof 

 The result follows from Theorem (G)  (n-1)/2 

when G is a tree T of order n > 2 (Arumugam and Velammal 
1998). 

Theorem 1.4.40 

 If X is an ED-set of G if and only if X is an ED-set of 
G-e. 

Proof 

 The necessary part follows from Lemma 2.4.36, since 

there exist an edge g different from e such that g is in NG-e(f)  

X, for every f  E \ X.  On the other hand, if X is not an ED-set 

of G then for e not in X, NG-e(e)  X = , which contradicts the 

fact that X is an ED-set of G-e and hence the proof. 

 We studied the behaviour of this inverse domination 

parameter after the deletion of an edge from the graph G.  

 

Theorem 1.4.41 

 Let X be a CESD-set of G and e={x,y} not an isolated 
edge in E(G)\X.  Suppose d, f are any two edges of G such that 

d is incident with x and f is incident with y then X is a CESD-
set of G-e. 

Proof 

 Since X is a CESD-set in G, we have X is an ED-set 

in G and for every h  E\X such that NG(h)  X  .  

Moreover, NG-e(h)  X   since d, f  X. It means that X is an 

ED-set in G-e.  Now to prove <E(G)\X>G-e is disconnected.  
Since <E(G)\X>G is disconnected implies that there exist an 

edge g  E(G)\X such that every path PG(x1,x2), x1,x2  V(E(G) 

\ X) contains no edge from X.  Also, the removal of the edge e 
from G does not change the above relationship and hence the 
subgraph <E(G) \ X>G-e is also disconnected.  This completes 
the proof. 

 1.5 CONCLUSION 

Graph theory serves as a model for any binary relation.  In 
domination, both dominating sets and their inverses have 
important roles to play.  Whenever, D is a dominating set, V-D 
is also a dominating set.  In an information retrieval system, we 
always have a set of primary nodes to pass on the information.  

In case, the system fails, we have another set of secondary 
nodes, to do the job in the complement.  When the complement 
set is connected, then there will be flow of information among 
the members of the complement.  Thus, the dominating sets and 
the elements in the inverse dominating sets can stand together 
to facilitate the communication process.  They play very vital 
role in coding theory, computer science, operations research, 
switching circuits, electrical networks etc.     

Thus in this paper, we defined the notions of inverse 

split and non split domination in graphs. We got many bounds 
on inverse split and non split domination numbers. Nordhaus-
Gaddum type results are also obtained for these new 
parameters. Edge analog of these two parameters are also 
discussed in a detailed manner. 
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