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Abstract: A   graph   is   even   vertex   graceful 

if       there       exists       an       injective     map 

f : E (G)  {1,2,…,2q} so that the induced map 

f+: V(G)  {0,2,4,…,2k-2} defined by              

f+ (x) =  f(xy) (mod 2k) where k= max { p, q } 

makes all distinct. 

In this paper, we prove that Fan graphs F(nC3), 

F(nC5) and F(2nC3) are all even vertex graceful, 

where n is any positive integer. 

Introduction: A.Solairaju, and A.Sasikala 

[2008] got gracefulness of a spanning tree of the 

graph of product of Pm and Cn, A.Solairaju and 

K.Chitra  [2009] obtained edge-odd graceful 

labeling of some graphs related to paths. 

A.Solairaju and C.Vimala [2008] also got 

gracefulness of a spanning tree of the graph of 

Cartesian product of Sm and Sn,  

A.Solairaju and P.Muruganantham 

[2009] proved that ladder P2 x Pn is even-edge 

graceful (even vertex graceful). They found 

[2010] the connected graphs Pn o nC3 and         

Pn o nC7 are both even vertex graceful, where n is 

any positive integer. They also obtained [2010] 

that the connected graph Pn Δ nC4 is even vertex 

graceful, where n is any even positive integer. 

 

 

 

 

 

 

 

Section I : Preliminaries 

 

Definition 1.1:  Let G = (V,E) be a simple graph 

with p vertices and q edges.  

A map f :V(G)  {0,1,2,…,q} is        

called a graceful labeling if                                                

f is one – to – one  

The edges receive all the labels (numbers) from 

1 to q where the label of an edge is the absolute 

value of the difference between the vertex labels 

at its ends. 

A graph having a graceful labeling is called a 

graceful graph. 

Definition 1.2:  A graph is even vertex graceful 

if there exists an injective map                                      

f : E (G)  {1,2,…,2q} so that the induced map 

f+: V(G)  {0,2,4,…,2k-2} defined by                          

f+ (x) =  f(xy) (mod 2k) where  k = max { p, q } 

makes all distinct.  

Definition 1.3:  A graph is odd-edge graceful if 

there exists an injective map                                      

f : E (G)  {1,3,5, …, 2q} so that the induced 

map f+: V(G)  {0,1,2,3 ,…, 2k-2} defined by  

f+ (x) =  f(xy) (mod 2k) where  k = max { p, q } 

makes all distinct.  
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Example 1.4: The following connected graph is 

even vertex graceful. 
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Definition 1.5: A fan graph or a friendship graph 

F(nC3) is defined as the following connected 

graph containing n copies of circuits of each 

length 3 with some arbitrary labeling of edges. 
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Section 2: Even vertex graceful of fan graph 

Few contributions on (friendship graph) fan 

graph are given below. 

Notation: p and q denote the number of vertices 

and edges of a graph respectively.  

Theorem 2.1: If n = 0 (mod 3), the fan graph 

F(nC3) is even vertex graceful. 

Proof: The graph F(nC3) is chosen with some 

arbitrary labeling of edges as in definition (1.5).  

Define a map f: E[F(nC3)]  {0, 1,2,…, 2q} by  

f (ei) = (2i-1), i=1 ,…, 3n. 

Then the induced map f+ (u) = ∑ f(uv)   

(mod 2q) where the sum runs over all edges uv 

through v. Now, f and f+ both satisfy even vertex 

graceful labeling as well as edge–odd graceful 

labeling. Thus the connected graph F(nC3)  is  

both  even vertex graceful and odd-edge 

graceful. 

Theorem 2.2: If n = 1 (mod 3), the fan graph 

F(nC3) is even vertex graceful. 

Proof: The graph F(nC3) is chosen with some 

arbitrary labeling of edges as in the following 

diagram.  
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Define a map f: E[F(nC3)]  {0, 1,2,…, 2q} by  

f (ei) = 2i,      i  = 1 ,…,  3n. 

Then the induced map f+ (u) = ∑ f(uv) (mod 2q) 

where the sum runs over all edges              uv 

through v. Now, f and f+  both satisfy even 

vertex graceful labeling. Thus the connected 

graph F(nC3) is even vertex graceful . 
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Theorem 2.3: If n = 2 (mod 3), the fan graph 

F(nC3) is even vertex graceful. 

Proof: The graph F(nC3) is chosen with some 

arbitrary labeling of edges as in the following 

diagram. 
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f (ei) = 2i for i = 1,2,3; f(ei) = (2i-1), i = 4,5,6; 

f (ei) = (2i-6),i = 7, 8, 9, 13, 14, 15,…, (3n-5), 

(3n-4), (3n-3). 

f(ei) = 2i-7, i = 10, 11, 12 ,…, (3n-8), (3n-7),   

(3n-6). 

Subcase (a):  n ≡ 2 (mod 3) ≡ 2 (mod 6) 

f(e3n-1) = 2q, f(e3n) = (2q-4), f(e3n-2) = (2q-8). 

Subcase (b):  n ≡ 2 (mod 3) ≡ 5 (mod6) 

f(e3n-1) = 2q, f(e3n) = (2q-2), f(e3n-2)=2q-6. 

Then the induced map f+ (u) = ∑ f(uv)   (mod 2q) 

where the sum runs over all edges uv through v. 

Now, f and f+  both satisfy even vertex graceful 

labeling. Thus the connected graph F(nC3) is 

even vertex graceful.  

Main theorem 2.4: The fan graph F(nC3) is even 

vertex graceful. 

Section 3 – Even vertex graceful of fan graph 

F(nC5). 

Definition 3.1: The fan graph F(nC5) is a defined 

as the following connected graph containing n 

copies of circuits of each length 5 with some 

arbitrary labeling of edges. 

 

 
 

Theorem 3.1: The fan graph F(nC5) is even 

vertex graceful. 

Proof: An arbitrary labeling of edges of F(nC5) 

is followed from definition (3.1). 

Define f: E (F(nC5) )  { 1,2, …, 2q} in the 

following manner: 

Case (i) n is odd 

       f (ei)= (2i-1),                   i = 1, 2 ,3 ,..., q. 

Case (ii) n is even 

       f (ei)= 2 (i + 2 ),    i = 1, 2, 3, 4, 5; 

       f(e10k + i)  = f (ei) + 10k,  k=1, 2 ,…., (n / 2),

                                 i = 1, 2, 3, 4, 5; 

       f(ei)  = (2i-11),               i = 6, 7, 8, 9, 10; 

       f(e10k+i)  = f(ei)  + (10k), k = 1, 2 ,…., (n / 2),   

      i = 6, 7, 8, 9, 10.                                                                                                                                     

Then the induced map f+ (u) = ∑ f(uv) (mod 2q) 

where the sum runs over all edges uv through v. 

Now, f and f+  both satisfy even vertex graceful 

labeling. Thus the connected graph F(nC5) is 

even vertex graceful  

Definition 3.2: The fan graph F(2nC3) is a 

defined as the following connected graph 

containing 2n copies of circuits of each length 3 

with some arbitrary labeling of edges. 
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Theorem 3.2: The fan graph F(2nC3) is even 

vertex graceful. 

Proof: An arbitrary labeling of edges of F(2nC3) 

is followed from the definition (3.2). 

Define f: E (F(2nC3) )  { 1,2, …, 2q} in the 

following manner: 

f(ei) = 2i,  i = 1, 2, 3 ,..., 4n;  

Case  (1)   n  ≥  8 and n is even :  f(e4n + i)  =  (2q-

4i),  i = 1, 2, 3 ,..., n. 

Case  (2)  n ≡ 1 (mod4) :  f(e4n+i) = 2q-8(i-1),       

i = 1, 2, 3 ,..., n. 

Case   (3) n ≡ 3 (mod4) :  f(e4n + 1)  =  (2q-2); 

f(e4n + i) = f(e4n + 1) – 8 (i-1), i = 2, 3 ,..., n. 

Then the induced map f+ (u) = ∑ f(uv)   

(mod 2q) where the sum runs over all edges uv 

through v. Now, f and f+ both satisfy even vertex 

graceful labeling. Thus the connected graph 

F(2nC3) is even vertex graceful. 
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