Even Vertex Gracefulness of Fan Graph

A. Solairaju

Associate Professor. Jamal Mohamed College Tiruchirappalli-20

Abstract: A graph is even vertex graceful if there exists an injective map $f: E(G) \rightarrow \{1,2,...,2q\}$ so that the induced map $f^+: V(G) \rightarrow \{0,2,4,...,2k-2\}$ defined by $f^+(x) = \sum f(xy) \pmod{2k}$ where k= max { p, q } makes all distinct.

In this paper, we prove that Fan graphs $F(nC_3)$, $F(nC_5)$ and $F(2nC_3)$ are all even vertex graceful, where n is any positive integer.

Introduction: A.Solairaju, and A.Sasikala [2008] got gracefulness of a spanning tree of the graph of product of P_m and C_n , A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A.Solairaju and C.Vimala [2008] also got gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n ,

A.Solairaju and P.Muruganantham [2009] proved that ladder $P_2 \times P_n$ is even-edge graceful (even vertex graceful). They found [2010] the connected graphs P_n o nC_3 and P_n o nC_7 are both even vertex graceful, where n is any positive integer. They also obtained [2010] that the connected graph $P_n \Delta nC_4$ is even vertex graceful, where n is any even positive integer.

P. Muruganantham

Head, Department Of Mathematics Kurinji College Of Arts & Science Tiruchirappalli-02

Section I : Preliminaries

Definition 1.1: Let G = (V,E) be a simple graph with p vertices and q edges.

The edges receive all the labels (numbers) from 1 to q where the label of an edge is the absolute value of the difference between the vertex labels at its ends.

A graph having a graceful labeling is called a graceful graph.

Definition 1.2: A graph is even vertex graceful if there exists an injective map $f : E(G) \rightarrow \{1,2,...,2q\}$ so that the induced map $f^+: V(G) \rightarrow \{0,2,4,...,2k-2\}$ defined by $f^+(x) = \sum f(xy) \pmod{2k}$ where $k = \max \{p, q\}$ makes all distinct.

Definition 1.3: A graph is odd-edge graceful if there exists an injective map $f : E (G) \rightarrow \{1,3,5, ..., 2q\}$ so that the induced map $f^+: V(G) \rightarrow \{0,1,2,3,..., 2k-2\}$ defined by $f^+(x) = \sum f(xy) \pmod{2k}$ where $k = \max \{p, q\}$ makes all distinct. **Example 1.4:** The following connected graph is even vertex graceful.

Definition 1.5: A fan graph or a friendship graph $F(nC_3)$ is defined as the following connected graph containing n copies of circuits of each length 3 with some arbitrary labeling of edges.

Section 2: Even vertex graceful of fan graph Few contributions on (friendship graph) fan graph are given below.

Notation: p and q denote the number of vertices and edges of a graph respectively.

Theorem 2.1: If $n = 0 \pmod{3}$, the fan graph $F(nC_3)$ is even vertex graceful.

Proof: The graph $F(nC_3)$ is chosen with some arbitrary labeling of edges as in definition (1.5).

Define a map f: E[F(nC₃)] $\rightarrow \{0, 1, 2, ..., 2q\}$ by f (e_i) = (2i-1), i=1,..., 3n.

Then the induced map $f^+(u) = \sum f(uv)$ (mod 2q) where the sum runs over all edges uv through v. Now, f and f^+ both satisfy even vertex graceful labeling as well as edge–odd graceful labeling. Thus the connected graph $F(nC_3)$ is both even vertex graceful and odd-edge graceful.

Theorem 2.2: If $n = 1 \pmod{3}$, the fan graph $F(nC_3)$ is even vertex graceful.

Proof: The graph $F(nC_3)$ is chosen with some arbitrary labeling of edges as in the following diagram.

Define a map f: E[F(nC₃)] \rightarrow {0, 1,2,..., 2q} by f (e_i) = 2i, i = 1,..., 3n. Then the induced map f⁺ (u) = \sum f(uv) (mod 2q) where the sum runs over all edges uv through v. Now, f and f⁺ both satisfy even vertex graceful labeling. Thus the connected graph F(nC₃) is even vertex graceful . **Theorem 2.3:** If $n = 2 \pmod{3}$, the fan graph $F(nC_3)$ is even vertex graceful.

Proof: The graph $F(nC_3)$ is chosen with some arbitrary labeling of edges as in the following diagram.

f (e_i) = 2i for i = 1,2,3; f(e_i) = (2i-1), i = 4,5,6; f (e_i) = (2i-6),i = 7, 8, 9, 13, 14, 15,..., (3n-5), (3n-4), (3n-3).

 $f(e_i) = 2i-7, i = 10, 11, 12, \dots, (3n-8), (3n-7),$ (3n-6).

Subcase (a): $n \equiv 2 \pmod{3} \equiv 2 \pmod{6}$

 $f(e_{3n-1}) = 2q$, $f(e_{3n}) = (2q-4)$, $f(e_{3n-2}) = (2q-8)$. Subcase (b): $n \equiv 2 \pmod{3} \equiv 5 \pmod{6}$

 $f(e_{3n-1}) = 2q$, $f(e_{3n}) = (2q-2)$, $f(e_{3n-2})=2q-6$.

Then the induced map $f^+(u) = \sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. Now, f and f^+ both satisfy even vertex graceful labeling. Thus the connected graph $F(nC_3)$ is even vertex graceful.

Main theorem 2.4: The fan graph $F(nC_3)$ is even vertex graceful.

Section 3 – Even vertex graceful of fan graph $F(nC_5)$.

Definition 3.1: The fan graph $F(nC_5)$ is a defined as the following connected graph containing n

copies of circuits of each length 5 with some arbitrary labeling of edges.

Proof: An arbitrary labeling of edges of $F(nC_5)$ is followed from definition (3.1).

Define f: E (F(nC₅)) \rightarrow { 1,2, ..., 2q} in the following manner:

Case (i) n is odd

$1(c_i) - (2i-1), i - 1, 2, 3,$

Case (ii) n is even

$$\begin{array}{ll} f\left(e_{i}\right)=2\;(i+2\;), & i=1,\,2,\,3,\,4,\,5;\\ f(e_{10k\,+\,i})\;=\;f\left(e_{i}\right)+10k,\;\;k{=}1,\,2\;,\ldots,,\,(n\,/\,2),\\ & i=1,\,2,\,3,\,4,\,5;\\ f(e_{i})\;=\;(2i{-}11), & i=6,\,7,\,8,\,9,\,10;\\ f(e_{10k+i})\;=\;f(e_{i})\;+\;(10k),\,k=1,\,2\;,\ldots,,\,(n\,/\,2),\\ & i=6,\,7,\,8,\,9,\,10. \end{array}$$

Then the induced map $f^+(u) = \sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. Now, f and f^+ both satisfy even vertex graceful labeling. Thus the connected graph $F(nC_5)$ is even vertex graceful

Definition 3.2: The fan graph $F(2nC_3)$ is a defined as the following connected graph containing 2n copies of circuits of each length 3 with some arbitrary labeling of edges.

Theorem 3.2: The fan graph $F(2nC_3)$ is even vertex graceful.

Proof: An arbitrary labeling of edges of F(2nC₃)

is followed from the definition (3.2).

Define f: E (F(2nC₃)) \rightarrow { 1,2, ..., 2q} in the

following manner:

 $f(e_i) = 2i, i = 1, 2, 3, ..., 4n;$

Case (1) $n \ge 8$ and n is even : $f(e_{4n+i}) = (2q-i)$

4i),
$$i = 1, 2, 3, ..., n$$

Case (2) $n \equiv 1 \pmod{4}$: $f(e_{4n+i}) = 2q-8(i-1)$,

Case (3)
$$n \equiv 3 \pmod{4}$$
: $f(e_{4n+1}) = (2q-2);$

 $f(e_{4n \ + \ i}) = f(e_{4n \ + \ 1}) - 8 \ (i\text{-}1), \ i = 2, \ 3 \ ,..., \ n.$

Then the induced map $f^+(u) = \sum f(uv)$ (mod 2q) where the sum runs over all edges uv through v. Now, f and f^+ both satisfy even vertex graceful labeling. Thus the connected graph $F(2nC_3)$ is even vertex graceful.

REFERENCES:

- 1. A. Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs, Electronics Notes in Discrete Mathematics Volume 33, April 2009, pp. 15.
- A. Solairaju and P.Muruganantham, evenedge gracefulness of ladder, The Global Journal of Applied Mathematics & Mathematical Sciences(GJ-AMMS). Vol.1.No.2, (July-December-2008):pp.149-153.
- A. Solairaju and P.Muruganantham, even vertex gracefulness of path merging circuits, Indian Journal of Mathematics and Mathematical Sciences, Vol. 6, No.1, (June, 2010), pp.27 – 31.
- A. Solairaju and P.Muruganantham, even vertex gracefulness of even number of copies of C₄, accepted for publication in Serials Publications, New Delhi, India.
- 5. A.Solairaju, and A.Sasikala, Gracefulness of a spanning tree of the graph of product of $_{Pm}$ and $_{Cn}$, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 133-136.
- 6. A.Solairaju, and C.Vimala, Gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n , The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp117- 120.