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ABSTRACT 
The beam is assumed partitioned into several finite elements and 
the deflection of the beam is required to be a positive quantity 
along the whole beam so that the related fundamental fourth-
order ordinary differential equation can continuously holds 
good. In this paper, we apply Haar wavelet methods to solve 
finite-length beam differential equations with initial or boundary 
conditions known. An operational matrix of integration based on 

the Haar wavelet is established and the procedure for applying 
the matrix to solve the differential equations is formulated. The 
fundamental idea of Haar wavelet method is to convert the 
differential equations into a group of algebraic equations, which 
involves a finite number of variables. Illustrative example is 
given to confirm the efficiency and the accuracy of the proposed 
algorithm. The results show that the proposed way is quite 
reasonable when compared to exact solution. 
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1. INTRODUCTION 
The important problem of the bending of a beam on an elastic 
foundation has been the subject of a number of investigations. 
One of the earliest of these investigations was the work of 
Winkler [18] who assumed that, for the purposes of analysis, the 

elastic foundation could be replaced by a continuous set of 
springs, each of which can be deflected independently of the 
others.  

Elastic beams under bending conditions resting on an elastic 
foundation have been of great importance in applied and 
computational mechanics long ago mainly because of their 
practical applications in engineering, especially in civil 
engineering. The related fundamental treatise is still that by 
Hetrnyi [8], where the classical Winkler hypotheses about the 
elastic foundation were assumed valid. The related famous 
fourth-order ordinary differential equation has the well-known 
form [8]. 

   

4

04b

d y
E I k by bP x

dx ,              (1) 

 

where bE I
 is the elasticity modules and section moment of 

inertia for the material of the beam; b  is the width of the beam; 

0k
 is the centralized bending coefficient for the unit length of 

the beam; 
P x

 is the external load; 
y

 is the flexibility of 

the beam. Dynamic response of elastic-plastic continuous beams 
under short pulse loading was considered by Lepik [11,12,13]. 
The problem of an infinite length beam bonded to elastic half-
space has been investigated by Blot [2]. A different method and 
different assumptions are used herein for a finite length beam. 
AlvarezDíaz et. al [1] had solved beam and finite elements by 
using Daubechies wavelets. Pavlovid and Tsikkos [17] had 
discussed the Beams on quasi-Winkler foundations. Xia and 

Zhang [19] had established a numerical method for critical 
buckling load for a beam supported elastic foundation. 

Haar wavelets have been applied extensively for signal 

processing in communications and physics research, and more 
mathematically focused on differential equations and even 
nonlinear problems. After discretizing the differential equation 
in a convenient way like the finite difference approximation, 
wavelets can be used for algebraic manipulations in the system 
of equations obtained which may lead to better condition 
number of the resulting system.  

The previous work in system analysis via Haar wavelets was led 
by Chen and Hsiao [4], who first derived a Haar operational 
matrix for the integrals of the Haar function vector and put the 
application for the Haar analysis into the dynamical systems. 

Then, the pioneer work in state analysis of linear time delayed 
systems via Haar wavelets was laid down by Hsiao [10], who 
first proposed a Haar product matrix and a coefficient matrix. In 
order to take the advantages of the local property, many authors 
researched the Haar wavelet to solve differential and integral 
equations. 

 In this paper, our work stems mainly from the Haar wavelet 
method and we established a clear procedure for solving the 
differential equations via Haar wavelet. The Haar wavelet 
method, which will exhibit several advantageous features: 

i)Very high accuracy fast transformation and possibility of 
implementation of fast algorithms compared with other known 
methods. 

ii) The simplicity and small computation costs, resulting from 
the sparsity of the transform matrices and the small number of 
significant wavelet coefficients. 

iii)The method is also very convenient for solving the boundary 
value problems, since the boundary conditions are taken care of 
automatically. 

Haar wavelets (which are Daubechies of order 1) consists of 
piecewise constant functions and are therefore the simplest 
orthonormal wavelets with a compact support. The main 

advantage of the Haar wavelet is that simplicity gets to some 
extent lost [3].  Lepik [14,15,16] had solved higher order as well 
as nonlinear ODEs by using Haar wavelet method.  Dai and 
Cochran [5] had introduced wavelet collocation method for 
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optimal Control Problems. Hariharan et.al [7] had established 
the Haar wavelet method for depth profile of soil temperature. 
Hsiao and Wang [9] had solved nonlinear stiff systems by Haar 
wavelet method. 

We organized our paper as follows. In section 2, the Haar 
wavelet is introduced and an operational matrix is established. In 
section 3, we established operational matrix and use Haar 

wavelets to solve differential equation. Because of the local 
property of the powerful Haar wavelet, the new method is 
simpler in reasoning as well as in calculation. In section 4, we 
presented the product operational matrix of the Haar wavelet. In 
section 5, we established the Procedure of Haar wavelet method 
for ODE. In section 6, we implemented the Haar solution for the 
finite-length beam equation. Concluding remarks are given in 
Section 7.   

 

2. SOME PROPERTIES OF HAAR 

WAVELETS 
Haar wavelet is the simplest wavelet. Haar transform or Haar 
wavelet transform has been used as an earliest example for 
orthonormal wavelet transform with compact support. The Haar 
wavelet transform is the first known wavelet and was proposed 
in 1910 by Alfred Haar [6]. They are step functions (piecewise 
constant functions) on the real line that can take only three 
values. Haar wavelets, like the well-known Walsh functions 
(Rao 1983), form an orthogonal and complete set of functions 

representing discretized functions and piecewise constant 
functions. A function is said to be piecewise constant if it is 
locally constant in connected regions. 

The Haar transform is one of the earliest examples of what is 
known now as a compact, dyadic, orthonormal wavelet 
transform. The Haar function, being an odd rectangular pulse 
pair, is the simplest and oldest orthonormal wavelet with 
compact support. In the mean time, several definitions of the 
Haar functions and various generalizations have been published 
and used. They were intended to adopt this concept to some 
practical applications as well as to extend its applications to 

different classes of signals. Haar functions appear very attractive 
in many applications as for example, image coding, edge 
extraction, and binary logic design. 

After discretizing the differential equations in a conventional 
way like the finite difference approximation, wavelets can be 
used for algebraic manipulations in the system of equations 
obtained which lead to better condition number of the resulting 
system.  

 For applications of the Haar transform in logic design, 
efficient ways of calculating the Haar spectrum from reduced 
forms of Boolean functions are needed. 

The Haar wavelet family for 
[0,1]t

 is defined as follows.

    

 

0.5
1 , ,

0.5 1
( ) 1, ,

0,

i

k k
for t

m m

k k
h t for t

m m

elsewhere

(2) 

Integer 
2 ( 0,1,2... )jm j J

 indicates the level of the 

wavelet;  
0,1,2,..... 1k m

is the translation parameter. 

Maximal level of resolution is J. The index i  is calculated 

according the formula 1i m k ; in the case of minimal 

values 
1, 0m k

we have 2i , the maximal value of i  

is 
12 2Ji M . It is assumed that the value 1i  

corresponds to the scaling function for 

which 1 1 0,1h in
. Let us define the collocation points 

( 0.5) / 2 , ( 1,2....2 )lt l M l M
 and discretise the 

Haar function 
( );ih t

 in this way we get the coefficient 

matrix
( , ) ( ( ))i lH i l h t

, which has the dimension 

2 2M M
. 

 In the wavelet analysis for a dynamic system, all 
functions need to be transformed into Haar series. Since the 

differentiation of Haar wavelets always results in impulse 
functions, which should be avoided, the integration of Haar 
wavelets is preferred, which should be expandable into Haar 

series with Haar coefficient matrix P [4].  

 

It is assumed that the value 1i corresponds to the scaling 
function for which 

 

  
1 1,1 ,

0
i

for x
h x

elsewhere
 

             

The operational matrix of integration P , which is a 2M square 
matrix, is defined by the equation 

0

( ) ( ) , 0,1

x

i iP x h x dx x

,              (3) 

 In section 4 the second order differential equation was 
replaced with the system of first order equations. Here another 
variant of solution is demonstrated, by which the second order 
equation is directly solved. For this purpose the integral operator 

Q
 is introduced.  

0

x

i iQ x P x dx

               (4)  

This integral can be evaluated according to (6). For instance for 

2 4M  we have 

  

1 9 25 49

1 9 23 311

1 7 8 8128

0 0 1 7

QH
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The elements of the matrices 
,H P

 and 
Q

 can be evaluated 
according to (2), (3) and (4). 

   

  

2 , 2

1 1 2 11

1 1 1 04
H P

 

  

  

4

,

4

1 1 1 1

1 1 1 1

1 1 0 0

0 0 1 1

8 4 2 2

4 0 2 21

1 1 0 016

1 1 0 0

H

P

 

         
 

8

32 16 8 8 4 4 4 4

16 0 8 8 4 4 4 4

4 4 0 0 4 4 0 0

4 4 0 0 4 4 0 01

1 1 2 0 0 0 0 064

1 1 2 0 0 0 0 0

1 1 0 2 0 0 0 0

1 1 0 2 0 0 0 0

P

 

Chen and Hsiao [4] derived that the following matrix equation 

for calculating the matrix P of order m  holds 

  

/2 /2

1

/2

21

2

m m

m

m

mP H
P

H Om
 

  where O  is a null matrix of order   

2 2

m m

 ,                

0 1 1( ), ( ),..., ( )m m m mm m
H h x h x h x

,  (5)  

1ii
t

m m  

and  

1 1
( )T

m m m m
H H diag r

m  

Here a diagonal matrix 
diag r

 is defined as 

  

1 0

0 n

r

diag r

r

 

, r  is the 

row vector (or column vector) with elements 1 2, ,... nr r r
. 

It should be noted that calculations for m
P

 and m
H

must be 
carried out only once; after that they will be applicable for 
solving whatever differential equations. 

 

Table 1 Comparison of algorithmic complexity of the of the 
proposed method with FFT and WT 

 

Series Numbers of 
additions 

Numbers of 
multiplications 

Haar Transform 
(HT) 

2 2m  
m  

Walsh 
Transform (WT) 2logm m

 
m  

Fast Fourier 
Transform 
(FFT) 

2logm m
 2log 1m m

 

 

The fast capability of HT should be impressive. Since H  and 
1H contain many zeros, this phenomenon makes the Haar 

transform faster than the Fourier transform, and it is even faster 
than the Walsh transform. This is one of the reasons for rapid 
convergence of the Haar wavelet series. The number of 
additions and multiplications for these three transforms are 
shown in Table 1. 

 In practical applications, a small number of terms 
increases the calculation speed and saves memory storage; a 
large number of terms improve resolution accuracy. Therefore, a 
trade-off between calculation speed, memory saving, and the 
resolution accuracy must be considered in the analysis. 

 

3. FUNCTION APPROXIMATION 

Any square integrable function 
( )y x

in the interval 
0,1

 can 
be expanded by a Haar series of infinite terms 

0

( ) ( ), 0 ,i i

i

y x c h x i N

  (6) 

where the Haar coefficients ic
are determined as, 

           

1

0 0

0

( ) ,c y x h x dx

 

1

0

2 ( ) ( )j

n ic y x h x dx

, 

2 , 0, 0 2 , 0,1j ji k j k x
   (7) 
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such that the following integral square error  is minimized: 

    

21 1

00

,

2 , 0 .

m

i i

i

j

y x c h x dx

m j N
  (8) 

 

 Usually, the series expansion of (7) contains infinite 

terms for smooth
( )y x

. If 
( )y x

is piecewise constant by itself, 

or may be approximated as piecewise constant during each 

subinterval, then 
( )y x

 will be terminated at finite m  terms, 
that is  

1

( )

0

( ) ( ) ( )
m

T

i i m m
i

y x c h x c h x

             (9) 

where the coefficients 

T

m
c

 and the Haar function vector 

( )
m

h x
are defined as  

   ( ) 0 1 1[ , ,...., ]T

m mc c c c
  

 and  
0 1 1( ) [ ( ), ( ),....., ( )]T

mm
h x h x h x h x

  

where ‘T’ means transpose and 2 jm . 

 

4. HAAR WAVELET METHOD FOR 

SOLVING ODEs 

For solving linear ordinary differential equation with 
thn  order, 

say 
               

1

1 2 ... ,
n n

na y x a y x a y x f x  

         where ,x A B  and initial conditions 

                
1 2

, ...,
n n

y a y a y a  are known. 

 
    We follow the work done by Lepik [14]. Say we intend to do 

until j  level of resolution, hence we let 2 2 .jm  The 

interval ,A B  will be divided into m  subintervals, hence 

B A
x

m
 and the matrices are in the dimension of 

.m m  Here we suggest the step-by-step procedures for easy 

understanding. Mainly, there are 5 steps in the procedure as 
follow. 

 

Step 1:  Let 

1

m
n

i i

i

y x a h x , where h  is Haar 

matrix and ia  is the wavelet  

              coefficients. 
 

Step 2:  Obtain appropriate v  order of y x  by using  

               

,

1

1

0

0

1

!

m
v

i n v i

i

n v
v

y x a P x

x A y

  

Step 3: Replace 
n

y x  and all the value of 
v

y x  into 

the problem. 
 

Step 4:  Calculate the wavelet coefficients, ia . 

 

Step 5:  Obtain the numerical solution for y x .  

 
Fig.1 Algorithm for solving ordinary differential equation by 
Haar wavelet method 
 

                 Step 2 is the key procedure where matrix 
,n v iP x  

will be counted.  

 

5. FINITE-LENGTH BEAM  

    EQUATION USING HAAR  

    WAVELETS 

 
 By the medium of Winkler, the basic differential 
equation for the flexibility of the beam is  

 

4

04b

d y
E I k by bP x

dx         (10) 

where bE I
 is the elasticity modules and section moment of 

inertia for the material of the beam; b  is the width of the beam; 

0k
 is the centralized bending coefficient for the unit length of 

the beam; 
P x

 is the external load; 
y

 is the flexibility of 
the beam. 

 The boundary conditions of finite-length beam cannot 
only be divided into the free end. Simple-supported and fixed 
end, but also be divided into any two terms among the three 
kinds conditions. 

  

Table.1 All kinds of the conditions 

Fixed  

End 

0 1x or
  

0y y
 

Simple-
supported 

0 1x or
 

2
0y y

 

Free end 0 1x or
 

2 3
0y y

 

   

 For clarity in presentation, in the illustrative example, 
we assume that 

01, 1, 4, cos(2 ).bE I b k P x x
 The basic 

differential equation for the flexibility of the beam is  
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4
4 cos 2y x y x x

            
(11)  

For solving this problem by the Haar wavelet method, we 

assume that 

4
y x

 can be expanded in terms of Haar 
wavelets as formula (2). That is 

 

1
4

0

m
T

n n m m
n

y x c h x c h x

 (12) 

 The function 
cos 2x

 can be expanded into Haar 

series over the interval 
0,1

. 

 

1

0

cos 2
m

T

n n m m
n

x d h x d h x

  (13) 

where the vector 

T

m
d

 can be obtained using formula (13). 

 Integrating formula (12) from 0 to x  and using 

formula (2), the variables 

3 2
, ,y x y x y x

 and 

y x
 can be expressed as  

 

3 4 3

0

0

x

y x y t dt y

 

                         

3
0T T

m m m
c P f y h x

  (14) 

  

 

2 3 2

0

0

x

y x y t dt y

 

                         

3 22 0 0T T T

m m m

m

c P f y P f y

h x
  (15) 

       

           

2

0

0

x

y x y t dt y

 

                  

3 23 20 0

0

T T T

m m m m

T

m

c P f y P f y P

f y

h x
      (16) 

 

0

3 24 3 2

0

0 0

0 0

x

T T T

m m m m

T T

m

m

y x y t dt y

c P f y P f y P

f y P f y

h x
                                                           

(17) 

 

         where the vector 
f

 is defined as 

  


1

[1, 0,...,0 ]

m elements

f

 

 Substituting (12),(13) and (11) into formula (11), we 
transfer the equation 

 

4
4 cos 2y x y x x

            (18) 

            

into a matrix equation, that is 

 

4 3 3

2 2

4 4 0

4 0

4 0 4 0

T T T

m m m m m

T

m

T T

m

c I P d f y P

f y P

f y P f y
(19) 

where m
I

 is identity matrix. 

 

 Then, we choose four cases, which involve to the 
ordinary differential equation (11) to perform the Haar wavelet 
method. 

 

Case 1 Simple-supported at both ends 

 
Using boundary conditions  

 
2 2

0 0 0, 1 1 0y y y y  

we can gain 

 
3

0 T

m m
y c P f  

 
3 20 T T T

m m m m m
y c P f f c P f P f  

 

Case 2 Fixed end at one and simple-supported at the other 

one 
 

     Using boundary conditions  

 
2

0 0 0, 1 1 0y y y y  

we can gain 
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3

3

2
0

T T T

m m m m m

T T

m m

c P f f P f c P f
y

f P f f P f
 

 
2

3

2

0 T

m m

T T T

m m m m m

T T

m m

y c P f

c P f f P f c P f

f P f f P f

  

 

Case 3 Fixed end at one and free end at the other one 

 
Using boundary conditions  

 
2 3

0 0 0, 1 1 0y y y y  

we can gain 
3

0 T

m
y c f  

2
0 T T

m m m
y c P f c f  

 

Case 4 Fixed end at both ends 

Using boundary conditions  

 
2 3

0 0 0, 1 1 0y y y y  

we can gain 
  
 

2 3

3

2
2

2 2

2
2 3

2
2

0

0

T T T

m m m m m

T T

m m

T

m m

T T T T

m m m m m m

T T

m m

c P f f P f c P f
y

f P f f P f

y c P f

c P f f P f c P f f P f

f P f f P f

 

Substituting  
3 2

0 , 0 , 0y y y  and 0y  into 

formula (19), we can gain 
T

m
c  via solving the matrix equation, 

then we have y x  by formula (17) respectively. 

 

The comparison of analytic solution and the Haar solution is 

shown in Table.2. It is seen that even when 32m  and 

64m  the Haar direct method quite satisfactory.  
 

 

Table 2 Comparison of the analytic solution and the Haar 
solution for simple-supported at both ends 

 
x  Exact 

solution 
Haar 
solution 

32m  

Haar 
solution 

64m  

 

0.0 0.0 0.0 0.0 

0.0625 
0.1875 
0.3125 
0.4375 

0.5625 
0.6875 
0.8125 
0.9375 

1.0 
 

0.0013 
0.0037 
0.0054 
0.0061 

0.0059 
0.0048 
0.0031 
0.0010 

0.0 

0.0014 
0.0038 
0.0055 
0.0059 

0.0060 
0.0047 
0.0033 
0.0011 

0.0 

0.0013 
0.0037 
0.0054 
0.0061 

0.0059 
0.0048 
0.0032 
0.0010 

0.0 
 

 
 
Table 3 Comparison of the analytic solution and the Haar 
solution for fixed end at one and simple-supported at the other 
one 
   

x  Exact 
 solution 

Haar 
solution 
    

32m  

Haar solution 

64m  

 

0.0 
0.0625 
0.1875 
0.3125 
0.4375 
0.5625 
0.6875 

0.8125 
0.9375 

1.0 

0.0 
0.00012 
0.00080 
0.00160 
0.00210 
0.00230 
0.00200 

0.00140 
0.00057 

0.0 

0.0 
0.00014 
0.00072 
0.00140 
0.00200 
0.00210 
0.00190 

0.00130 
0.00052 

0.0 

0.0 
0.00013 
0.00078 
0.00150 
0.00210 
0.00230 
0.00200 

0.00140 
0.00056 

0.0 

 
Table 4 Comparison of the analytic solution and the Haar 
solution for fixed end at one and free end at the other end 

   

x  Exact 
solution 

Haar solution 

32m  

Haar solution 

64m  

 

    
0.0 

0.0625 
0.1875 
0.3125 
0.4375 
0.5625 
0.6875 

0.8125 
0.9375 

1.0 

0.0 
0.00017 
0.00120 
0.00260 
0.00400 
0.00520 
0.00620 

0.00700 
0.00770 
0.00790 

0.0 
0.00012 
0.00130 
0.00250 
0.00380 
0.00530 
0.00610 

0.00690 
0.00760 
0.00780 

0.0 
0.00016 
0.00120 
0.00260 
0.00390 
0.00510 
0.00620 

0.00690 
0.00770 
0.00780 

 
 
Table 5 Comparison of the analytic solution and the Haar 

solution for fixed end at both ends 
 

x  Exact 
solution 

Haar solution 

32m  

Haar solution 

64m  

 

    
0.0 

0.0625 
0.1875 
0.3125 
0.4375 
0.5625 

0.0 
0.0001 
0.0006 
0.0011 
0.0014 
0.0013 

0.0 
0.0002 
0.0005 
0.0012 
0.0016 
0.0012 

0.0 
0.0001 
0.0006 
0.0011 
0.0014 
0.0013 
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0.6875 
0.8125 
0.9375 

1.0 

0.0009 
0.0004 
0.0001 

0.0 

0.0008 
0.0005 
0.0002 

0.0 

0.0009 
0.0004 
0.0001 

0.0 

 
 
It follows from Tables 2, 3,4 and 5 that already in the cases 

32 64m or m  we get the results pertaining to our 

algorithm is closer to analytic solution. The error is negligible. 
 

6. NUMERICAL TEST 

Illustrative Example: 

A cantilever beam of length l  and weighing  . /lb unit is 

subjected to a horizontal compressive force P  applied at the 
free end. Taking the origin at the free end and y -axis upwards, 

we establish the differential equation of the beam  
  

  

2

2
.
2

d y x
EI Py x

dx
  

   (or) 

2 2

2 2

d y x
EI Py

dx
            (20) 

Solving the above equation, the complete solution is  

1 2

2 2

2

cos sin

2
,

2

y c nx c nx

P
x where n

P n EI

,    (21) 

 
The boundary conditions at the fixed end are 

 , ,x l y  the maximum deflection 

0.dy dx  

Using the condition ,x l y , equation (18) gives 

 
2

1 2 2

2
cos sin

2
c nl c nl l

P n
 ….(22) 

Applying the condition 0,
dy

dx
 it gives 

1 20 sin cos
l

n c nl c nl
P

 

Also imposing the boundary condition for the free end 

(
2 2. . 0, 0i e x d y dx ) on  

 

2
2

1 22
cos sin ,

d y
n c nx c nx

dx P
 

we get 

 
2 2

1 10 , . . / .n c i e c Pn
P

 

 Then  2 2
sec tan

l
c nl nl

pn Pn
 

The maximum deflection 

2 2

2
1 sec tan

2

l n
nl nl nl

Pn
       (23) 

 

Equation (20) can be written as 
 

2
2 2 2,

2

x P
y x n y x where n

EI
   (24) 

For solving this problem by the Haar wavelet method, we 

assume that 
2

y x  can be expanded in terms of Haar 

wavelets as formula (2). That is 
 

1
2

0

m
T

n n m m
n

y x c h x c h x             (25) 

 The function 

2

2

x
 can be expanded into Haar 

series over the interval 0,1 . 

  

 

2 1

02

m
T

n n m m
n

x
d h x d h x       (26) 

where the vector 
T

m
d  can be obtained using formula (3). 

Integrating formula (25) from 0 to x  and using formula (5), the 

variables y x  and y x  can be expressed as  

2

0

0

x

y x y t dt y  

                         

3 23 20 0

0

T T T

m m m m

T

m

c P f y P f y P

f y

h x

   (27) 

 

0

3 24 3

2

0

0 0

0 0

x

T T T

m m m

T T

m m

m

y x y t dt y

c P f y P f y

P f y P f y

h x

   (28) 

 

         where the vector f  is defined as 

  
1

[1, 0,...,0 ]

m elements

f  

 Substituting (25), (26) and (28) into formula (24), we 
transfer the equation 

 

2 2

2
2,

2

y x n y x

x P
where n

EI

  (29) 

 
           into a matrix equation, that is 
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n f y P

n f y P n f y

 (30) 

 

where 
m

I  is identity matrix. 

From the above formula the wavelet coefficients 
( )

T

mc can be 

successively calculated. 

 
This process is started with 
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Fig.2 Comparison between  Haar and exact solutions for m=64. 
   

Fig.2 shows the comparison between the Haar and exact 

solutions of equation (18).  In this example, 64m  is used. If 

a larger m  is chosen, a better estimation is expected.  

 

7. CONCLUSION 
The main goal of this paper was to demonstrate that the Haar 
wavelet method is a powerful tool for solving finite length beam 

differential equation. The algorithm and procedure have been 
applied to use Haar wavelet method in solving ODEs. The result 
is comparable to the exact solution. The method with far less 
degrees of freedom and with smaller CPU time provides better 
solutions than classical ones.  
 
It is worth mentioning that Haar solution provides excellent 

results even for small values of ., 64m ie m . For larger 

values of m , we can obtain the results closer to the real values. 

The main advantages of the presented method are its simplicity 
and small computation costs: it is due to the sparcity of the 

transform matrices and to the small number of significant 
wavelet coefficients. The method is also very convenient for 
solving the boundary value problems, since the boundary 
conditions are taken care of automatically. In our opinion the 

method is wholly competitive in comparison with the classical 
methods. 

 

8. REFERENCES 

 
[1] L.AlvarezDíaz, M.T.Martín, V.Vampa, Daubechies wavelet 

beam and plate finite elements, Finite Elements in Analysis 
and Design 45 (2009) 200-209. 

[2] M. A. Biot, J. appl. Mech. A.S.M.E. 4, A-1 (1937). 

[3] C. Cattani, Haar wavelet spline, J.Interdisciplinary Math.4 
(2001), 35-47. 

[4] C.F.Chen, C.H.Hsiao, Haar wavelet method for solving 

lumped and distributed-parameter systems, IEEE Proc.Pt.D 
144(1) (1997) 87-94. 

[5] R. Dai , J. E. Cochran, Wavelet Collocation Method for 

Optimal Control Problems, J Optim. Theory Appl.  doi 
10.1007/s10957-009-9565-9. 

[6] A. Haar, Zur theorie der orthogonalen 
Funktionsysteme.Math. Annal  69:(1910) 331-371. 

[7] G. Hariharan, K.Kannan,  Kal Renganathan Sharma., Haar 

wavelet in estimating depth profile of soil temperature, 
Appl. Math.  Comput. 210, (2009) 119-125. 

[8] M. Hetdnyi, Beams on Elastic Foundation: Theory with 

Applications in the Fields of Civil and Mechanical 
Engineering, The University of Michigan Press, Ann 
Arbor, MI, 1946 ( printing: 1993). 

[9] C.H. Hsiao, W.J.Wang, Haar wavelet approach to nonlinear 
stiff systems, Math.Comput.Simulat, 57, (2001) pp.347-
353. 

[10] C.H.Hsiao, Haar wavelet approach to linear stiff systems, 
Mathematics and Computers in simultion ,Vol 64, 2004, 
pp.561-567. 

[11] U. Lepik, Dynamic response of elastic-plastic beams with 
axial constraints. Int. J. Impact Engg 15, 3-16 (1994). 

[12] U. Lepik, Impulsively loaded fully fixed-ended elastic-
plastic beams by Galerkin’s  method. Int. J. Impact Engng 
15, 17-23 (1994). 

[13] U. Lepik, Vibrations of elastic-plastic fully clamped beams 
and flat arches under  impulsive loading. Int. J.on-Linear 
Mech. 29, 613-623 (1994).  

[14] U.Lepik, Numerical solution of differential equations using 
Haar wavelets,  Math. Computers in Simulation 68 (2005) 
127–143. 

[15]  U.Lepik, Numerical solution of  evolution equations by the 
Haar wavelet method,  Appl. Math. Comput. 185 (2007) 
695–704. 

[16] U. Lepik, Application of the Haar wavelet transform to 
solving integral and differential Equations, Proc.Estonian-
Acad. Sci.Phys.Math., 56, 1, (2007)28-46. 

[17] M.N. Pavlovid, S.Tsikkos, Beams on quasi-Winkler 
foundations, Eng.  Struct, Vol. 4, (1982). 

[18] E. Winkler, Die Lehre yon der Elastizitat und FestigIceit, p. 
182. Prague (1867). 

[19] G.P. Xia, Z. Zhang, A Numerical Method for Critical 
Buckling Load for a Beam  Supported Elastic Foundation, 
EJGE, 1-11(2009). 

 
 


