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ABSTRACT 

We explore in this paper the dynamics of the inverse 

complex function using the Ishikawa iterates. The z plane 

fractal images generated from the generalized 

transformation function
1( )nz z c   2n are 

analyzed.   

 Keywords:. Complex dynamics, Relative Superior 

Mandelbrot Set, Relative Superior Julia set, Ishikawa 

Iteration.. 

 

1.  INTRODUCTION 

Several programs and papers have used escape-time 

methods to produce images of fractals based on the 

complex mapping
1( )nz z c  , where exponent n is 

a positive integer. The  fractals generated  from  the  self-

squared function, 
2z z c   where z and c are 

complex quantities, have been  studied  extensively  in  

the  literature[I3, 4, 5, 6 & 8]. Recently, the generalized 

transformation function 
nz z c  for positive 

integer values of n  has been considered by K. W. Shirriff 

[8]. The z plane  fractal  images  for the  function 

1 nnz z c  for  positive  and  negative, both  

integer  and non-integer values of n  have been  presented  

by Gujar et al. along with  some  conjectures  about  their  

visual characteristics[4, 5].  In this  paper,  we  consider  

the transformation of the function  
1( )nz z c ,  for 

2n  , and analyze the  z  plane  fractal  images  

generated  from  the iterations  of  this  function  using 

Ishikawa iteration procedure and analyze the  drastic  

changes  that  occur  in  the  visual  characteristics of the  

images from n = 2, 3, 4,... 

 

2.  PRELIMINEARIES 

The  process  of generating  fractal  images  from 

1( )nz z c  is similar  to  the  one employed  for 

the self-squared  function[10].  Briefly, this process 

consists of iterating these function upto N times. Starting 

from a value 0z  we obtain 1, 2, 3, 4,...z z z z    by applying 

the transformation
1( )nz z c  

Definition2.1:  Ishikawa Iteration [7]: Let X be a subset 

of real or complex numbers and :f X X  

for 0x X , we have the sequences{ }nx and { }ny  in X 

in the following manner: 

( ) (1 )n n n n ny s f x s x  

1 ( ) (1 )n n n n nx s f y s x  

where 0 1ns , 0 1ns and 
ns & 

ns are 

both convergent to non zero number. 

Definition 2.2: The sequences
nx and 

ny constructed 

above is called Ishikawa sequences of iterations or 

Relative Superior sequences of iterates. We denote it 

by 0( , , , )n nRSO x s s t .  

 Notice that 0( , , , )n nRSO x s s t  with ns =1 is 

0( , , )nSO x s t  i.e. Mann’s orbit and if we place 

1n ns s  then 
0( , , , )n nRSO x s s t  reduces to

0( , )O x t . 

           We remark that Ishikawa orbit 

0( , , , )n nRSO x s s t with 1/ 2ns  is relative superior 

orbit. 

Now we define Mandelbrot sets for function with respect 

to Ishikawa iterates. We call them as Relative Superior 

Mandelbrot sets  

Definition 2.3: Relative Superior Mandelbrot set RSM for 

the function of the form ( ) n

cQ z z c , where n = 1, 2, 

3, 4… is defined as the collection of c C for which the 

orbit of 0 is bounded i.e.                          

{ : (0) : 0,1, 2...}k

cRSM c C Q k is bounded. 

 In functional dynamics, we have existence of two 

different types of points. Points that leave the interval after 

a finite number are in stable set of infinity. Points that 

never leave the interval after any number of iterations 

have bounded orbits. So, an orbit is bounded if there exists 

a positive real number, such that the modulus of every 

point in the orbit is less than this number. 
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             The collection of points that are bounded, i.e. 

there exists M, such that | ( ) |nQ z M , for all n, is 

called as a prisoner set while the collection of points that 

are in the stable set of infinity is called the  escape set. 

Hence, the boundary of the prisoner set is simultaneously 

the boundary of escape set and that is Julia set for Q. 

 

Definition 2.4:  The set of points RSK whose orbits are 

bounded under relative superior iteration of the function Q 

(z) is called Relative Superior Julia sets. Relative Superior 

Julia set of Q is boundary of Julia set RSK. 

 

2.1 Generation Process: The  basic  principle  of 

generating  fractals  employs the  iterative  formula: 

1 ( )n nz f z where  0z  =  the  initial value of z,  and  

iz  =  the  value of the  complex  quantity  z  at  the  ith  

iteration.  For example, the Mandelbrot’s self-squared 

function for generating fractals is: 
2( )f z z c , 

where  z  and c  are  both  complex quantities.  

We propose the use of the transformation 

function
1( )nz z c  for generating fractal images 

with respect to Ishikawa iterates, where z and c are the 

complex quantities and n is a real number.  Each of these 

fractal images is constructed as a two-dimensional array of 

pixels.  Each pixel is represented by a pair of 

( , )x y coordinates.  The complex quantities z and  c   

can be represented as:  

                                 
x y

x y

z z iz

c c ic
 

where  ( 1)i and  xz , xc are  the  real parts  and  

yz  & yc are  the  imaginary  parts  of  z and  c ,  

respectively.  The pixel coordinates ( , )x y may be 

associated with ( xc , yc ) or ( xz , yz ). 

Based on this concept, the fractal images can be classified 

as follows:  (a) c-plane fractals, wherein ( , )x y is a 

function of ( xc , yc ) 

(b)  z-plane fractals, wherein ( , )x y   is  a function 

of ( xz , yz ).                                                                                    

In the  literature, the  fractals  for  n = 2  in z plane are  

termed  as  the Mandelbrot  set while the fractals  for       

n = 2  in c  plane are known  as  Julia  sets  [10].   

2.2 Generating the fractals: Fractals have been 

generated from 
nz z c using escape-time 

techniques, for example by Gujar etal.[4, 5] and Glynn [6]. 

We have used in this paper escape time criteria of Relative 

Superior Ishikawa iterates for function
1( )nz z c . 

 Escape Criterion for Quadratics: Suppose 

that | | max{| |,2 / ,2 / }z c s s , then 

| | (1 ) | |n

nz z  and | |nz as n .So, 

| | | |z c and | | 2 /z s as well as | | 2 /z s  shows 

the escape criteria for quadratics. 

 

Escape Criterion for Cubics:  Suppose 
1/2 1/2| | max{| |, (| | 2 / ) , (| | 2 / ) }z b a s a s  

then | |nz   as n . This gives an escape criterion 

for cubic polynomials 

 

General Escape Criterion: Consider 
1/ 1/| | max{| |, (2 / ) , (2 / ) }n nz c s s  then | |nz   

as n is the escape criterion. (Escape Criterion 

derived in [12]). 

Note that the initial value 0z  should be infinity, since 

infinity is the critical point of 1( )nz z c . However 

instead of starting with 0z = infinity, it is simpler to start 

with 1z  = c , which yields the same result. (A critical 

point of z F(z) c is a point where ( ) 0F z ). 

The role of critical points is explained in [1]. 

3. GEOMETRY OF RELATIVE 

SUPERIOR MANDELBROT SETS AND 

RELATIVE SUPERIOR JULIA SETS:  

The fractals generated from the equation 1( )nz z c  

possesses rotational as well as reflection symmetry. As 

conjectured by Gujar and Bhavsar in [4], the fractals 

generated with the exponent n are (n+1) way rotationally 

symmetric.  

Relative Superior Mandelbrot sets:  

 Here we notice that the number of wings in the Relative 

Superior Mandelbrot sets of inverse function is n + 1, 

where n is the power of
1( )nz z c .  

   As the value of s tend to 1 and s' tends to 1, the Relative 

Superior Mandelbrot sets of inverse function converts to 

the general Mandelbrot sets of inverse function, hence 

we can say that the Relative Superior Mandelbrot sets of 

inverse function is the general case of the usual    

Mandelbrot sets of inverse function. 

 

 We observe in the z plane that Relative Superior 

Mandelbrot sets looks as the lace like structures 

having mini circles containing different colors, along 

each wing.  
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 For quadratic function, we have triangular like structures 

representing symmetry along X axis. For Cubic function, 

we have symmetry along both X and Y-axis which also 

represents reflection as well as rotational symmetry. 

Similarly for the bi quadratic function, we have reflection 

as well as rotational symmetry. 

Relative Superior Julia sets:  

 Geometrical analysis of the Relative Superior Julia 

sets of inverse function shows that the boundary of the 

fixed point region forms a (n + 1) hypocycloid (A 

hypocycloid is a curve formed by rolling a smaller circle 

inside a larger circle and tracing a fixed point on the 

circumference of the smaller circle). The radius of the 

outer fixed circle for hypocycloid can be computed 

as | | | |nz z , where z satisfies the 

condition
1/( 1)| | nz n , resulting in a radius of 

/( 1)( 1) n nnn  . The radius of inner moving circle is 

| |nz  yielding
/( 1)n nn . 

  For each value of c, we can iterate the mapping and test  

if the resulting sequence of z approaches a cycle. Points 

leading to a cycle can be colored according to the length of 

the cycle and the points that never enter the cycle but 

wander chaotically are colored. Figures[All figures of 6.1, 

6.2 & 6.3] shows this process. Here white color regions 

represent stable points while black colored regions 

represent unstable points. 

   Relative Superior Julia sets of inverse function for 

quadratic function shows triangular symmetry. For cubic 

function Relative Superior Julia sets shows symmetry 

along X and Y axes both. Moreover this function also 

describes reflection and rotational symmetry. The 

biquadratic function shows us the fascinating results. Here 

we have central planet with satellite like structures 

obtained that represents reflection and rotational 

symmetry. 

4. FIXED POINTS  

4.1 Fixed points of quadratic polynomial  

Table 1: Orbit of F(z) at s=1 and s’=1 for 

(z0=-0.06870369332+0.04414015615i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.081661 11 0.24478 

2 0.24251 12 0.24468 

3 0.27198 13 0.24464 

4 0.24936 14 0.24467 

5 0.23735 15 0.24468 

6 0.24377 16 0.24467 

7 0.24647 17 0.24467 

8 0.24491 18 0.24467 

9 0.24422 19 0.24467 

10 0.24461 20 0.24467 

Here we observe that the value converges to a fixed 

point after 16 iterations 

Figure  1.  Orbit of F(z) at s=1 and s’=1 for  

(z0=-0.06870369332 + 0.04414015615i) 

 
Table 2: Orbit of F(z) at s=0.5 and s’=0.1 for 

 (z0= -0.01192288639 + 0.01042379668i ) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.015837 6 0.85943 

2 0.98458 7 0.85943 

3 0.86429 8 0.85942 

4 0.85883 9 0.85942 

5 0.85933 10 0.85942 

Here we observe that the value converges to a fixed 

point after 08 iterations 

Figure 2.  Orbit of F(z) at s=0.5 and s’=0.1 for 

 (z0= -0.01192288639 + 0.01042379668i ) 

 

Table 3: Orbit of F(z) at s=0.5 and s’=0.4 for 

(z0= -0.002169194079 + 0.0465750756i ) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.046626 11 0.85953 

2 0.62449 12 0.85947 

3 0.82831 13 0.85944 

4 0.85955 14 0.85943 

5 0.86349 15 0.85943 
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6 0.8626 16 0.85942 

7 0.86131 17 0.85942 

8 0.86042 18 0.85942 

9 0.85991 19 0.85942 

10 0.85965 20 0.85942 

Here the value converges to a fixed point after 16 

iterations 

Figure 3.  Orbit of F(z) at s=0.5 and s’=0.4 for 

(z0= -0.002169194079 + 0.0465750756i ) 

 

Table 4 Orbit of F(z) at s=0.8 and s’=0.4 for 

(z0= -0.01605953579+0.01879439217i ) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.024721 7 0.85938 

2 1.292 8 0.85943 

3 0.76997 9 0.85942 

4 0.87184 10 0.85942 

5 0.85748 11 0.85942 

6 0.85972 12 0.85942 

Here the value converges to a fixed point after 09 

iterations 

Figure 4.  Orbit of F(z) at s=0.8 and s’=0.4 for 

(z0= -0.01605953579+0.01879439217i ) 

 

4.2  Fixed points of Cubic  polynomial  

Table 1: Orbit of F(z) at s=1 and s’=1 for  

(z0= 0.01410390589+0.04994371026i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.051897 5 0.11876 

2 0.11758 6 0.11876 

3 0.11873 7 0.11876 

4 0.11876 8 0.11876 

Here we observe that the value converges to a fixed 

point after 04 iterations 

 

Figure  1.  Orbit of F(z) at s=1 and s’=1 for  

(z0= 0.01410390589+0.04994371026i) 

 

Table 2: Orbit of F(z) at s=0.5 and s’=0.1 for 

 (z0 0.00888346751+0.01650347336i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.018742 6 0.86749 

2 0.97928 7 0.86747 

3 0.85738 8 0.86747 

4 0.86871 9 0.86747 

5 0.86732 10 0.86747 

Here we observe that the value converges to a fixed 

point after 07 iterations 

 

Figure 2 Orbit of F(z) at s=0.5 and s’=0.1 for 

 (z0 0.00888346751+0.01650347336i) 

 

Table 3: Orbit of F(z) at s=0.5 and s’=0.3 for 

(z0 -0.02051433067 + 0.012696182776i) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.024125 8 0.86716 

2 0.7014 9 0.86736 

3 0.803 10 0.86743 

4 0.84433 11 0.86746 
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5 0.85947 12 0.86747 

6 0.86474 13 0.86747 

7 0.86655 14 0.86747 

Here the value converges to a fixed point after 12 

iterations 

Figure 3.  Orbit of F(z) at s=0.5 and s’=0.3 for 

(z0 -0.02051433067 + 0.012696182776i) 

 

Table 4 Orbit of F(z) at s=0.8 and s’=0.3 for 

(z0= -0.02051433067+0.01746730516i) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.026943 6 0.86748 

2 1.1347 7 0.86747 

3 0.81968 8 0.86747 

4 0.86911 9 0.86747 

5 0.86737 10 0.86747 

Here the value converges to a fixed point after 07 

iterations 

 

Figure 4.  4 Orbit of F(z) at s=0.8 and s’=0.3 for 

(z0= -0.02051433067+0.01746730516i) 

 

4.3  Fixed points of Bi-quadratic polynomial 

Table 1: Orbit of F(z) at s=1 and s’=1 for  

(z0= -0.6424739888-0.5146558799i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.82319 5 0.062468 

2 0.52011 6 0.062468 

3 0.075665 7 0.062468 

4 0.062484 8 0.062468 

 

Here we observe that the value converges to a fixed 

point after 05 iterations 

 

Figure  1 Orbit of F(z) at s=1 and s’=1 for  

(z0= -0.6424739888-0.5146558799i) 

 

Table 2: Orbit of F(z) at s=0.5 and s’=0.1 for  

(z0= -0.01573769494+ 0.03678871897i ) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.040014 8 0.8968 

2 0.98215 9 0.89704 

3 0.90556 10 0.89699 

4 0.88426 11 0.89699 

5 0.90308 12 0.89699 

6 0.89476 13 0.89699 

7 0.8977 14 0.89699 

Here we observe that the value converges to a fixed 

point after 10 iterations 

Figure 2.  : Orbit of F(z) at s=0.5 and s’=0.1 for  

(z0= -0.01573769494+ 0.03678871897i ) 

 

Table 3: Orbit of F(z) at s=0.5 and s’=0.3 for 

(z0= -0.0227144337+ 0.04376545773i ) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.049309 11 0.89688 

2 0.97756 12 0.89695 

3 0.92815 13 0.89698 

4 0.90685 14 0.89699 
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5 0.89864 15 0.897 

6 0.89615 16 0.897 

7 0.89585 17 0.89699 

8 0.89616 18 0.89699 

9 0.89651 19 0.89699 

10 0.89675 20 0.89699 

Here the value converges to a fixed point after 17 

iterations 

Figure 3.  Orbit of F(z) at s=0.5 and s’=0.3 for 

(z0= -0.0227144337+ 0.04376545773i ) 

 

Table 4 Orbit of F(z) at s=0.8 and s’=0.3 for 

(z0= -0.008760956177+ 0.05074219649i) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.051493 9 0.897 

2 1.5711 10 0.89704 

3 0.68507 11 0.897 

4 0.91356 12 0.89699 

5 0.93446 13 0.89699 

6 0.89932 14 0.89699 

7 0.89522 15 0.89699 

8 0.8964 16 0.89699 

Here the value converges to a fixed point after 21 

iterations 

Figure 4.  Orbit of F(z) at s=0.8 and s’=0.3 for 

(z0= -0.008760956177+ 0.05074219649i) 

 

5. GENERATION OF RELATIVE 

SUPERIOR MANDELBROT SETS 
We present here some Relative Superior Mandelbrot sets 

for quadratic, cubic and biquadratic function.  

 

 

5.1 Relative Superior Mandelbrot Sets for Quadratic 

function: 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1    

 
Figure 2: Relative Superior Mandelbrot Set for s=0.8, 

s'=0.3 

 

 

Figure 3: Relative Superior Mandelbrot Set for 

s=0.5,s'=0.1 

 
 

   

 5.2 Relative Superior Mandelbrot Sets for Cubic 

function: 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1  

 
Figure 2: Relative Superior Mandelbrot Set for s=0.8, 

s'=0.3 
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Figure 3: Relative Superior Mandelbrot Set s=0.5, 

s'=0.1 

 
 

5.3 Relative Superior Mandelbrot Sets for Bi-

quadratic function: 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1       

 
 

Figure 2: Relative Superior Mandelbrot Set for s=0.5, 

s'=0.3 

 
Figure 3: Relative Superior Mandelbrot Set for s=0.5, 

s'=0.1   

 

6. GENERATION OF RELATIVE 

SUPERIOR JULIA SETS: 
6.1 Relative Superior Julia sets for Quadratic: 

Figure 1: Relative Superior Julia Set for s=0.5, s'=0.1, 

c=-0.01192288639+0.01042379668i 

 

Figure 2: Relative Superior Julia Set for s=0.5, s'=0.4, 

c=-0.002169194079+0.0465750756i 

 
Figure 3: Relative Superior Julia Set for s=0.8, s'=0.4,  

c=-0.01605953579+0.01879439217i 

 
 

 6.2 Relative Superior Julia sets for Cubic function: 

Figure 1: Relative Superior Julia Set for s=0.5, s'=0.1, 

c=0.00888346751+0.01650347336i 

 

Figure 2: Relative Superior Julia Set for s=0.5, s'=0.3, 

c=-0.02051433067+0.012696182776i 
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Figure 3: Relative Superior Julia Set for s=0.8, s'=0.3,  

c=-0.02051433067+0.01746730516i 

 
6.3 Relative Superior Julia sets for Bi-quadratic 

function: 

Figure 1: Relative Superior Julia Set for s=0.5, s'=0.1, 

c=-0.01573769494+0.03678871897i 

 

Figure 2: Relative Superior Julia Set for s=0.5, s'=0.3, 

c=-0.0227144337+0.04376545773i 

 
Figure 3: Relative Superior Julia Set for s=0.8, s'=0.3,  

c=-0.008760956177+0.05074219649i 

 
 

7.  CONCLUSION 

In  this  paper,  we  have  considered  the  generalized 

transformation function  
1( )nz z c ,  for  2n , 

and mathematically  analyzed  the  visual  characteristics  

of the  fractal  images  in  the  complex  z and c planes 

respectively. Relative Superior Mandelbrot of inverse 

function showed lace like structures with multicolored 

small circles. Geometrical analysis of the Relative 

Superior Julia sets of inverse function shows that the 

boundary of the fixed point region forms a (n + 1) 

hypocycloid. The geometry of Relative Superior 

Mandelbrot and Relative Superior Julia sets of inverse 

function showed their rotational as well as reflection 

symmetry.  One of the most fascinating results is the 

central planet with satellite like structures obtained for 

biquadratic Relative Superior Julia sets. 
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