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ABSTRACT 
 

Electricity industries around the world have significantly 
restructured in order to improve their economic efficiency, 
reliability of power systems and accountability. Accurate 
prediction of day-ahead electricity nodal price has now become an 
important activity to address the system operations and price 
volatility in the restructured electricity market. This will facilitate 

the market participants to estimate the risk and have better market 
oriented decision making.  

In order to meet the electricity demand and other benefits, many 
developing countries including India are adopting HVDC 
transmissions in their existing system.  Developing countries need 
to address this practice while adopting suitable electricity nodal 
pricing scheme and its accurate prediction. This study aims at (1) 

motivations and relevance of present study, (2) presenting AC-DC 
OPF based nodal pricing and formulation of day-ahead nodal price 
prediction using Artificial Neural Networks, (3) presenting and 
comparing numerical results for a real system of developing 
country like India to demonstrate the rationality and feasibility of 
the proposed methodology. 

 

General Terms 
 

Nodal Price Prediction 
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1. INTRODUCTION 

The electricity supply industries around the world have 
experienced extensive restructuring process from the vertically 
regulated monopoly to the competitive market to improve their 
economic efficiency, reliability of power systems and 
accountability [1-2]. Under it, the nodal or locational marginal 
pricing (LMP) is emerged as an important mode of energy pricing 
[3]. LMPs reveal vital information to the market participants about 
their bidding strategies and risk management and to the system 

operators to perform market dispatch and clearing decisions in 
network congested electricity markets.   
In developing countries, the electricity demand have expected to 
more that double in coming years as compared to about 30 to 40% 
increase in developing countries is due to insufficient transmission 
and distribution capacity. Also in order to meet the electricity 
demand and to gain techno-economic benefits of investment, many 
developing countries now adopting HVDC transmissions in the 
existing AC transmission system [2]. Developing countries in this 

regard address these issues while adopting suitable electricity nodal 
pricing scheme and its accurate prediction.      
The application of nodal pricing in this environment is to 
accurately predict the electricity prices. Market participants need 
price prediction information to maximize their profits in spot 
markets, to negotiate bilateral contracts so that they can hedge 
against risks of price volatility in spot market, to ensure 

investments recovery in the facility planning and measures to 
predict possible exercises of market power and detect gaming 
behaviors which leads to unreasonable prices [2, 3]. Also, 
forecasted prices provide system operators with measures to 
predict possible exercises of market power and detect gaming 

behaviors leading to unreasonable prices [2]. 
Several hard computational techniques like time series models, 
auto regressive and auto regressive integrated moving average 
(ARIMA) models [5], [6] and combination of wavelet transform 
(WT) and ARIMA techniques have been tried to predict electricity 
prices [7]. A generalized autoregressive conditional heteroskedastic 
(GARCH) methodology is used to predict next-day electricity 
prices [8]. Though these techniques are found accurate, but are 
limited to a large amount of historical information and the 

computational cost. 
Besides, several soft computational techniques based on Artificial 
Intelligence approach are also been proposed. [3] suggested Neural 
Networks (NNs) and fuzzy-c-means approach to forecast LMPs. 
[4] presented a WT based NN model to forecast price to improve 
the forecasting accuracy. [5] proposed a feedforward NNs for 
forecasting next-week electricity prices. [9] proposed self-
organized map and support-vector machine for forecasting short-

term electricity price. [10] employed fuzzy inference system and 
least-squares estimation for short-term price forecasting in 
wholesale electricity markets. [11] proposed the use of two ANNs: 
the first to predict the day-ahead load and second to forecast the 
day ahead market clearing price (MCP). [12] suggested NNs and 
fuzzy logic modeling for forecasting energy prices. [13] developed 
Bayesian framework to analyze the uncertainties involved in a 
MCP prediction. [14] used NNs extended Kalman filter to predict 

MCP and confidence interval in a deregulated power market. A 
sensitivity analysis of similar day parameters is used to increase the 
accuracy of NNs and to forecast hourly electricity prices [15]. As 
these techniques do not require modeling the system; instead, they 
find an appropriate mapping between the several inputs and the 
output, usually learned from historical examples, thus being 
computationally more efficient. The advantages of ANNs of being 
able to approximate any nonlinear function and being able to solve 

problems where the input–output relationship is neither well 
defined nor easily computable, as ANNs are data-driven. 
Since, relation between nodal prices and its influencing variables 
i.e. real and reactive demands, bus voltages and angles are non-
linear, therefore; NNs are well suited for the problem under study 
due to their ability to model the complex and non-linear 
relationship involved in price prediction. This paper demonstrated 
AC-DC OPF based nodal price methodology and used neural 
networks to predict peak day-ahead electricity nodal price in a 

restructured electricity markets. Several NNs like Feedforward 
Neural Network (FFN) with Back-propogation (BP) algorithm, 
Cascade Feedforward Neural Network (CFN) networks are used to 
predict day-ahead nodal prices.  
This paper is organized as follows: Section II discusses the need of 
modeling electricity nodal price and applications of price 
prediction; Section III demonstrate the AC_DC OPF based nodal 
pricing methodology and day-ahead electricity price prediction by 

ANNs; Section IV evaluates the numerical results for real 

AC-DC OPF based Day-Ahead Electricity Nodal Price 
Prediction using an ANN  
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transmission system of India. Finally, section V gives the 
conclusion of this paper. 
 

2. MOTIVATION OF PRESENT STUDY  

Under electricity restructuring environment and in various time 
horizons, the applications of price forecasting are different. In the 
short-term horizon, market participants use price forecasts to 

decide their bidding strategies to maximize their profits in the day-
ahead or short-term forward market. Generating companies have to 
make decisions regarding unit commitment. They will only want 
their generators to be dispatched if it is profitable, and as these 
decisions are often required hours or days in advance, so they 
require price forecast in order to determine profitability. For the 
medium-term horizon, suppliers and consumers use price forecasts 
to optimize the proportions of forward market and bilateral 

contracts in their asset allocations. Price forecasts are also 
references in the negotiation of bilateral contracts. Also scheduled 
maintenance of generating plants have to be decided based on price 
forecast to manage offline period that will have the least impact on 
profitability. For the long-term time horizon, facility owners use 
the long-term price trends to ensure recovery and profitability of 
their investments in generation, transmission, and distribution. 
Also often forecast and models of nodal prices serve various 

applications in the operation of electricity markets. Many industries 
use and pay for electricity as an important input in their operations, 
they also require forecasts of prices to determine their own 
profitability. In many markets around the world, users are able to 
purchase contracts for electricity at a fixed price over a specified 
time. The valuation of such financial derivatives requires 
estimation of both the likely levels and volatility of nodal prices in 
order to determine fixed and fair price for the contract itself. 
Market or independent system operator needs accurate prediction 

of energy prices for market monitoring because the exercise of 
market power can increase the volatility of electricity prices. This 
also can be used to predict market monitoring indexes and 
measurements. The market power indexes such as The Herfindahl–
Hirschman Index (HHI) is used to measure the concentration of 
market shares, the Residual Supply Index (RSI) is used to identify 
pivotal suppliers, and the price-cost margin index, i.e., Lerner 
Index, is used to calculate the markup of prices over marginal costs 

are commonly used indexes by market operator [9]. 

3. AC-DC OPF BASED NODAL PRICE 

AND ANN PREDICTION 
 

3.1: Electricity Nodal Price Formulation 
The AC-DC OPF based nodal pricing problem is formulated as 
follows 

 
3.1.1 AC System Equations: Let P = (p1,…..,pn) and Q = 
(q1,…..,qn) for n bus system, where pi and qi be active and reactive 
power demands of bus-i respectively. The variables in power 

system operation to be X = (x1,….,xm), i.e. real and imaginary bus 
voltages. Then the operational problem of a power system for 
given load (P, Q) can be formulated as OPF problem  

Minimize  ƒ (X, P, Q)          for X           (1) 
Subject to  S (X, P, Q)   =  0        (2) 
      T (X, P, Q)   ≤  0        (3) 

where S (X) = (s1(X, P, Q),…….,sn1 (X, P, Q))T and T (X) = (t1(X, 
P, Q),……., tn2(X, P, Q))T have n1 and  n2  equations respectively, 

and are column vectors. Here AT represents the transpose of vector 
A.   
ƒ (X, P, Q) is a scalar, short term operating fuel cost. The generator 

cost function )(PGiif in $/MWh is considered to have cost 

characteristics represented by 

GN

1i
Gi

2
Gi icPibPiaf           (4) 

where, PGi  is the real power output; ia , ib  and ic  is the 

cost coefficient of the ith generator,  GN is the generation buses. 

The constraints to be satisfied during optimization are  
(A) Vector of equality constraint such as power flow balance has 
represented as 

S (X, P, Q)   = 0   or    

PPPP LdcDG  and  QQQQ LdcDG          (5) 

where D is demand, G is generation, ‘ dc ’is dc terminal and L  is 

the transmission loss.  
(B) The vector of inequality constraints includes upper and lower 
bounds of transmission lines, generation outputs, stability and 
security limits is represented as 

T (X, P, Q)   ≤ 0        or            (6) 
(i) The max and min real and reactive power outputs of the 
generating sources are given by 

PPP GiGiGi
maxmin  ( GBi )  

and  QQQ GiGiGi
maxmin

   ( GBi )               (7) 

(ii) Bus voltage limits (Min/Max) to remain within a narrow range  

VVV iii
maxmin    (i= 1,……,NB)                (8) 

 where  NB represents number of buses.   
(iii) Power flow limits is the transmission line’s thermal or stability 
limits capable of transmitting maximum power (MVA) flow 
through the lines and it is  

PPP
max
ff

min
f     (f= 1,…, Noele )             (9)   

where Noele  is No. of transmission lines. 

Then, operating conditions of a combined ac-dc power system may 
described by the vector 

tVX xx dc ],,,[                        (10) 

where,  and V are the vectors of the phases and magnitude of 

the phasor bus voltages; xc  is the vector of control variables 

and xd   is the vector of dc variables. 

 
3.1.2 DC System Equations: The following relationship is for the 
dc variables. Using the per unit (PU) system [15], the average 
value of the dc voltage of a converter connected to bus ‘i’ is 

IrVaV diciiiidi cos          (11) 

where, i is the gating delay angle for rectifier operation or the 

extinction advance angle for inverter operation; rci is the 

commutation resistance, and ai  is the converter transformer tap 

setting. By assuming a lossless converter, the equation of the dc 
voltage written as 

iiidi VaV cos          (12) 

where, i  = δi - ξi, and is the angle by which the fundamental 

line current lags the line-to-neutral source voltage. 
The real and reactive power flow in or out of the dc network at 
terminal ‘i’ may express as 

iiidi IVP cos    or   IVP dididi   and 

iiidi IVQ sin    or   iiidi IVQ a sin                    (13) 

Equation (13) can substitute in the equation (5) to form part of the 
equality constraints. Based on these relationships, the operating 
condition of the dc system can describe by the vector 

taIVX ddd ],cos,,,[         (14) 

The dc currents and voltages have related by the dc network 
equations. In ac case, references bus usually the bus of the voltage 
controlling dc terminal operating under constant voltage (or 

constant angle) control is specified for each separate dc system. 
Here equations (1) – (3) are an OPF problem for the demand (P, 
Q). Newton’s OPF method is used to get an optimal solution.  
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3.1.3 Electricity Nodal Price: The real and reactive power prices 

at bus ‘ i ' is the Lagrangian multiplier value of the equality and in-

equality constraints. These values have calculated by solving the 
first order condition of the Lagrangian, partial derivatives of the 

Lagrangian with respect to every variable concerned [16]. 
Therefore the Lagrangian function (or system cost) of equation 
defined as 

),,(),,(),,(),,,,( QPXTQPXSQPXfQPXL
  
 

                      (15) 

where, λ= (λ1, …….,λn) is the vector of Lagrange multipliers 
concerning the equality constraints; ρ = (ρ1, ……….,ρn) are the 
Lagrange multipliers concerning to the inequality constraints. Then 

at an optimal solution ),,(X and for a set of given ),( QP , the 

nodal price of real power for each bus is expressed below for i = 

1,…..…,n. 

pi
ip

QPXL ),,,,(
, = 

pipipi

TSf
      (16) 

Here ip,  is the active nodal prices at bus ‘ i ’, respectively. 

Equation (16) can be view as the system marginal cost created by 

an increment of real power load at bus i .  The above formulation is 

programmed in MATLAB. 

 

3.2 Artificial Neural Network  
 

ANNs are highly interconnected processing units inspired in the 
human brain and its actual learning process. Interconnections 
between units have weights that multiply the values which go 
through them. Also, units normally have a fixed input called bias. 
Each of these units forms a weighted sum of its inputs, to which 

the bias is added. This sum is then passed through a transfer 
function. Prediction with NNs involves two steps: training and 
learning. Training of NNs is normally performed in a supervised 
manner. In the learning process, a neural network constructs an 
input–output mapping, adjusting the weights and biases at each 
iteration based on the minimization or optimization of some error 
measure between the output produced and the desired output. This 
process is repeated until an acceptable criterion for convergence is 

reached.  
This study used Feedforward Neural Networks to predict day-
ahead electricity nodal prices. The theoretical formulations are as 
follows  

 

3.2.1 FeedForward Neural Network (FFN) with 
Backpropogation (BP) algorithm: A three layered feed forward 
NN with BP training algorithm possesses the ability to classify 

mixed datasets and can be used effectively in obtaining the correct 
prediction. For generalization, the randomized data is fed to the 
network and is trained for different hidden layers. The numbers of 
processing elements in the hidden layer are varied. The input is 
passed layer through layer until the final output is calculated, and it 
is compared to the real output to find the error. The error is then 
propagated back to the input adjusting the weights and biases in 
each layer. In order to accelerate the learning process, two 
parameters i.e. the learning rate and the momentum of the BP 

algorithm can be adjusted. The learning rate is the proportion of 
error gradient by which the weights should be adjusted. Larger 
values can give a faster convergence to the minimum. The 
momentum determines the proportion of the change of past weights 
that should be used in the calculation of the new weights.  
The FFN consists of an input, hidden and output layers. Each 
neuron in a layer is connected to other neurons of the previous 
layer through adaptable synaptic weights w and biases b, shown in 

Figure 1.  
If the inputs of neuron j are the variables x1, x2, . . , xi, .. . , xN, the 
output uj of neuron j is obtained as 

)bxw(u ji

N

1i
ijj

 

                     (17) 

where wij is the weight of the connection between neuron j and i-

th input; bj is the bias of neuron j and is the transfer (activation) 

function of neuron j.  
 

  

 

 
 

 

 

 

 

 

Figure 1(a): Information processing in a NN 

 

 

Figure 1(b): Proposed FFN for predicting nodal prices 

 
An FFN is considered with N, M and Q neurons for the input, 
hidden and output layers, respectively. The input patterns of the 
ANN represented by a vector of variables x = x1, x2, . .  , xi, . . . , 
xN) submitted to the NN by the input layer are transferred to the 
hidden layer. Using the weight of the connection between the input 
and the hidden layer and the bias of the hidden layer, the output 
vector u = (u1, u2, . . . ,uj , . .. ,uM) of the hidden layer is determined.  

The output uj of neuron j is obtained as 

)bxw(hidu
hid
ji

N

1i
j

hid
ij        (18) 

where w
hid
ij is the weight of connection between neuron j in the 

hidden layer and the i-th neuron of the input layer, b
hid
j

represents 

the bias of neuron j and hid is the activation function of the 

hidden layer. 

The values of the vector u of the hidden layer are transferred to the 
output layer. Using the weight of the connection between the 
hidden and output layers and the bias of the output layer, the output 
vector y = (y1, y2, . . . , yk, . . . , yQ) of the output layer is 
determined. 
The output yk of neuron k (of the output layer) is obtained as 

)buw(outy out
kj

M

1j
k

out
jk        (19) 

where w
out
jk is the weight of the connection between neuron k in 

the output layer and the j-th neuron of the hidden layer,  b
out
k

is the 

bias of neuron k and  is the activation function of the output 

layer. 

The output yk is compared with the desired output (target value) 

y
d
k . The error E in the output layer between yk and y

d
k  ( y

d
k  − 

yk ) is minimized using the mean square error at the output layer 

(which is composed of Q output neurons), defined by 
Q

1k

2
k

d
k )yy(

2

1
E         (20) 
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Training is the process of adjusting connection weights w and 
biases b. In the first step, the network outputs and the difference 
between the actual (obtained) output and the desired (target) output 

(i.e., the error) is calculated for the initialized weights and biases 
(arbitrary values). In the second stage, these weights in all links 
and biases in all neurons are adjusted to minimize the error by 
propagating the error backwards (the BP algorithm). The network 
outputs and the error are calculated again with the adapted weights 
and biases, and this training process is repeated at each epoch until 

a satisfied output yk is obtained corresponding with minimum 

error. This is by adjusting the weights and biases of the BP 
algorithm to minimize the total mean square error and is computed 
as 

w

E
www oldnew    and 

b

E
bbb oldnew         (21) 

where   is the learning rate. Equation (21) reflects the generic 

rule used by the BP algorithm. Equations (22) and (23) illustrate 
this generic rule of adjusting the weights and biases. For the output 
layer, we have, 

yww kk
old
jk

new
jk

and 

k
old
k

new
k bb ,        (22) 

where  is the momentum factor (a constant between 0 and 1) and  

yy k
d
kk For the hidden layer, we get, 

yww jj
old
ij

new
ij

and  

j
old
j

new
j bb

       

(23) 

where Q
k jkkj w and  yy k

d
kk

     

 

 
3.2.2 Cascade Feedforward Neural Network (CFN): In the 
cascading neural network, there are three types of nodes: input 
nodes, inner nodes and output nodes, denoted as ui, i=1,2,...,p , ei, 
i=1,2 ,..., n and yi, i=1,2 ,..., q respectively. The function describing 

inner nodes may be represented as 

),bewuw(e
e

ik

1i

1k

ee

ik
j

p

1j

eu

ij
j

      (24) 

 

where, (•) is the activation function, w
eu

ij
, w

ee

ik
 are adjustable 

weightings, u j , ek  are outputs from input and inner nodes 

respectively, b
e

i
 is the bias term. The function describing the 

output nodes is purely linear and may be described as 

),bewuw(y y
ik

n

1k

ye

ikj

p

1j

uy
ijj

      (25) 

where, yj is the output of the output node, w
yu

ij
, w

ye

ik
 are 

adjustable weightings, u j , ek  are outputs from input and inner 

nodes respectively, and b
y
i

is the bias term.  

The training of CFN may be achieved using back propagation. The 
advantage of this NN is that it fully exploits the potentials of the 
links between neurons. Compared with other networks, this 
network uses less neuron for the same modeling or control 

problems. 

 

 3.3. Price Prediction by ANNs 
 

The short-term electricity price prediction is determined by a 

balance between demand and supply. In a competitive electricity 

market, the objective of price formulation is either to minimize the 

generation cost or maximize the consumer benefits. So prices is 

most optimally obtained at various nodes or location of the 

network depending on the availability of low cost generation, real 

and reactive demands and availability of sufficient transmission 

capacity. In this study AC-DC OPF based nodal pricing 

methodology is used to obtained electricity prices at various nodes 

at hourly peak demands obtained for several days. The obtained 

data are real nodal prices, bus voltages and angles, available real 

and reactive demands are used as input to above neural networks to 

predict the day-ahead prices. The neural network toolbox in 

MATLAB is selected and trained for various NNs with the ANN 

parameters as shown in Table 1. 
 

Table 1: ANN Parameters for Best Price Prediction 
 

Particulars Method/Value Particulars Method/Value 

For FFN and CFN 

Neural 
network  

‘MLP’ –BP 
Algorithm 

Training 
method 

‘Trainlm’  
(Levenberg-

Marquardt BP) 

No. of Input 
neurons 

4 
Learning 
method 

‘learngdm’  
(Gradient 
decent  
function) 

No. of 
output 

Neurons 

1 Learning rate 0.5 

No. of 
hidden 
Layer 

1 Momentum 0.3-0.8 

  
No. of 
iterations 

100 

No. of 
hidden 
Neurons 

16 
Data 
dividation 
method 

Dividerand 

Transfer 
function 

‘Tangent’ 
sigmoid’, 
‘Purelin’ 

Data used for 
training 

60% 

Data used for 
validation 

10% 

Data used for 
testing 

30% 

 

For the purpose of quantifying out-of sample prediction capability 
of the developed model, the nodal price prediction accuracy is 
evaluated and measured by using root mean square error (RMSE), 
mean absolute percentage error (MAPE), error variance, Forecast 

Mean Square Error (FMSE) and Standard Deviation (SD). The 
RMSE and MAPE are calculated, respectively, by 
 

)icePrNodalicePrNodal(
N

1
RMSE alRe

N

1i
predicted  

                               (21) 
                     

N

1i alRe

alRepredicted

icePrNodal

|icePrNodalicePrNodal|

N

100
MAPE  

                                (22) 
Robustness of the applied methodology can be measured by means 
of statistical index, i.e., variance of error. The smaller the variance, 
the more precise is the predictions of nodal prices. The error 
variance is calculated by 

2
MAPE

icePrNodal

|icePrNodalicePrNodal|

N

1 N

1i alRe

alRepredicted2

                                 (23) 
In addition, FMSE, which is the square root of the average of 
number of sample peak electricity nodal prices (daily), is the 
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square differences between the predicted prices and the actual 
ones. A lower error indicates a better result. It is computed by  

2)icePrNodalicePrNodal(
N

1
FMSE predicted

N

1i
real   

     (24) 
where N is the number of sample peak electricity nodal prices 
(daily). 
 

4. NUMERICAL RESULTS 

A CASE STUDY OF INDIAN ELECTRICITY MARKET 

India’s installed power generation capacity has increased from just 
1.4 GW in 1947 to over 150 GW in 2009. To improve the techno-
financial performances of this sector, GoI enacted Electricity Act 
2003 to enable framework for the overall development of 
wholesale electricity market. On the electricity transmission front, 
the National grid in the country is characterized by interconnection 
between Western, Northern, and North-Eastern regions of India, 
whereas Southern region is operating in asynchronous mode. Each 

one has number of constituent sub grids formed by state and 
private utility networks. All these sub grids and networks have 
connected to form a 400 kV national grid. Maharashtra State utility 
has owned the largest installed capacity of 15,580 MW in India. In 
2005, it was unbundled into Generation, Transmission and 
Distribution companies.  
This study considered a real network of 400 kV Maharashtra State 
Electricity Transmission Company Limited (MSETCL), India 

shown in Figure A1 (Appendix). It consists of 19 intra-state buses 
(i.e. Bus No. 1 to 19) and 8 inter-state buses. To fulfill power 
demand, additional power is imported from inter-state generators. 
The generation data, fuel cost function of intra and inter-state 

generators expressed as )( 2
icPibPiaif GiGi  in ($/MWh) 

and operating data for HVDC link are shown in Table A1 and 
Table A2 (Appendix). The bus voltages have bounded between 
0.95 and 1.05 PU.  

The AC-DC OPF methodology is simulated for this real system for 

daily hourly average peak real and reactive power demands at 

various buses in the year 2008 are shown in Figure A1 (Appendix). 

The resulted bus voltages, angles and real electricity nodal prices 

are shown in Figure 2 and Figure 3.  

To predict the day-ahead electricity nodal prices, the input 

variables mentioned in example 1 are assigned to various NNs and 

its parameters are selected as shown in Table I. Figure 3 shows the 

simulated results and comparison of average nodal price at various 

buses and predicted nodal prices. All the NNs attended more 

accurate nodal price prediction. 

 

 
Figure 2: Average Voltage and Angle Variation 

 

 
Figure 3: Electricity Nodal Price Prediction comparison 

 

The performance of proposed NNs is evaluated by computing 
RMSE and MAPE. The resulted values for various buses are 
shown in Table II. Compared to other NNs, the RMSE in FFN is 
attended all positive values show more accurate prediction as 
compared to CFN neural networks. The error variance and FMSE 
comparison for various NNs is shown in Table II. FFN neural 

networks attended smaller variance gives more precise nodal prices 
predictions. FFN attended smaller FMSE values at several buses 
indicate a better prediction result. 

 
Table 2: Error comparison 

 

Bu
s 

No
. 

RMSE 
MAPE 

(%) 
FMSE Variance 

FF
N 

CF
N 

FF
N 

CF
N 

FF
N 

CF
N 

FF
N 

CF
N 

1 0.4 0.4 0.3 0.6 0.4 0.6 0.1 0.4 

2 0.1 -0.3 0.4 0.3 0.4 0.4 0.2 0.1 

3 0.4 0.6 0.9 0.8 0.8 0.8 0.8 0.7 

4 0.3 -0.3 0.5 0.3 0.4 0.3 0.2 0.1 

5 0.1 0.6 0.7 0.8 0.7 0.7 0.5 0.6 

6 0.1 0.1 0.8 0.6 0.9 0.5 0.6 0.4 

7 0.5 0.2 0.5 0.6 0.8 0.7 0.2 0.3 

8 0.5 0.5 0.8 0.9 0.7 0.8 0.6 0.8 

9 0.3 0.4 0.6 0.9 0.9 0.8 0.4 0.8 

10 0.3 -0.2 0.3 0.3 0.4 0.4 0.1 0.1 

11 0.4 0.4 0.6 0.9 0.7 0.9 0.3 0.8 

12 0.1 0.1 0.6 0.6 0.7 0.7 0.4 0.3 

13 0.4 0.3 0.3 0.4 0.7 0.4 0.1 0.2 

14 0.1 0.1 0.7 0.8 0.8 0.7 0.5 0.6 

15 0.3 0.4 0.5 0.8 0.5 0.7 0.2 0.6 

16 0.4 0.4 0.2 0.3 0.3 0.5 0.1 0.1 

17 0.4 0.2 0.5 0.5 0.7 0.4 0.3 0.2 

18 0.4 0.2 0.8 0.5 0.6 0.7 0.7 0.3 

19 0.4 -0.1 0.6 0.8 0.9 0.6 0.3 0.7 

 

 

CONCLUSION 
 

This study proposed new AC-DC OPF based methodology and 

use of ANN to predict day-ahead electricity nodal prices. The said 

methodology is implemented on real system of India and results 

are computed. 

This paper demonstrates that NN can be suitably used to realize 

forecasting tasks, given its ability of simulating complex and 

nonlinear process, and its capacity to forecast. 

The performances of the FFN network depend on the BP training 

algorithm. This study compares the performance of FFN with CFN. 

The simulation shows that the Levenberg-Marquardt algorithm has 

the fastest convergence in terms of iteration number and is able to 

obtain lower RMSE and MAPE error compared to CFN. Also FFN 

requires the lower amount of computation for low MSE for system 
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under study. This advantage is mainly noticeable if very accurate 

quality level is required. The nodal price predictions obtained are 

accurate enough to be used by market participants to estimate the 

risk of price volatility in spot market, to ensure investments 

recovery and to predict exercises of market power etc. The 

proposed methodology is rational and more feasible for such 

developing countries to develop and maintain their wholesale 

market.  
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APPENDIX 

  
Table A1: Generator and HVDC Link Data 

  

Bus 

No 
Generator 

Real 

Generation 

(PU) 

Generation Cost 

($/MWh) 

ai bi ci 

Intra-State Generator 

1 CHDPUR 2.30 0.20 20.4 10.2 

2 KORDY 1.06 0.20 22.4 10.2 

12 DABHOL 1.50 1.02 71.4 10.2 

14 KOYNA-4 1.50 0.20 20.4 10.2 

Inter-State Generator 

 BHILY  0.20 36.9 10.2 

 KHANDWA  1.02 36.9 10.2 

 SDSRV  1.02 77.6 10.2 

 BOISR  1.02 55.7 10.2 

 BDRVT  0.20 22.5 10.2 

 TARAPUR  1.02 58.6 10.2 

 SATPR  1.02 55.7 10.2 
 

 

Table A2: 400 kV MSETCL:  ±500kV CHDPUR-PADGE HVDC 

Link 
 

Particulars Data Particulars Data Particulars Data 

Power 

Flow 

 Rating 

1500  

MW  
Resistance  

(1-Pole) 

(2-Pole) 

Metallic  

 

Return 

 

7.5 

Ω  

7.5 

Ω  

15 

Ω  

Converter X’mer 

Voltage of each 

pole  

Rated power/ unit 

 

500 

kV 

298.6 

MVA 

Thyristor  

Valves 
Max. 

voltage  

Rated 

current  

 

 

7 kV 

 

1700  

Adc 

HVDC 

Line 

Length of 

line 

No. of 

poles 

 

 

 

753 

Km 

 

2 

Operation 

CHDPUR-

Converter/Rectifier 

PADGE-Inverter 

 

12.5 

to 15 ° 

17 to 

22 ° 

http://ijcaonline.org/


34 

 

 

 
 

Figure A1: A Real 400 kV MSETCL, India 

 

 
 

Figure A2: 400 kV MSETCL System: Electricity Demand Variation 


