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ABSTRACT 

In this paper we discuss solution of Linear Programming 

problems through neural network. Without having location 

restriction this network uses only simple hardware. Here we 

proved to be completely stable to exact solution without any 

multipliers. Moreover using this network we can solve linear 

programming problems and its dual simultaneously. These linear 

programming problems use circuit implementation. 
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1. INTRODUCTION  
Hopfield and Tank proposed a recurrent neural network for 

solving linear programming problems [1]. Sudharsanan and 

Sundareshan [2] introduced a method to programming a single 

layered recurrent neural network to execute optimization via 

quadratic minimization. The optimization method employed by 

generalized network is shown to descend in to the usual class of 

Gradient method for restrained nonlinear optimization. In 

contrast with penalty function method [3]. The optimization  

variables problem which can get up  in such various topics as 

rigid body  Mechanics, Fluid dynamics and elastic-plastic torsion 

[4]. The global exponential stability of different neural networks 

have been deliberate [5] in which weight matrices need to be 

accepted some sufficient conditions. The optimization of the new 

Back-Propagation algorithm by using imitative information [9].    

Our work inspired Youshen Xia [6] and Youshen Xia, Jun Wang 

[7] Here we use neural network method for solving different type 

of linear programming problems. We use basic problem for 

mathematical formulation to extend a new network. Here we 

describe circuit implementation of proposed network for 

proportional analysis. 

 

2. LINEAR PROGRAMMING PROBLEMS 

OF THE GENERAL FORM  

The general form of the linear programming problems, that is 

considered for the solution purpose is an mentioned below; 

                     Minimize,    cTx  +  dTx      

      Subject to:   A11 xI + A12 xII+A13 xIII + A14 xIV  ≥ bI 

                         A21 xI + A22 xII+A23 xIII + A24 xIV  ≥ bII 

                         A31 xI + A32 xII+A33 xIII + A34 xIV  ≥ aI              (1) 

                         A41 xI + A42 xII+A43 xIII + A44 xIV  = aII 

 

                                                         x  ≥ 0 

Where, 

 

x =   Rn  ,   c  =   Rm ,     d =   Rm ,  

       a =   Rm ,  b =   Rm   

 

By the duality  theory [7] the dual problem of the primal problem 

(1) is of the following form; 

 

                 Maximize,    bTx  +  aTx      

 

       Subject to:   AT
11 yI + AT

21 yII + AT
31 yIII + AT

41 yIV   ≤ cI 

                          AT
12 yI + AT

22 yII + AT
32 yIII + AT

42 yIV  ≤  cII 

                          AT
13 yI + AT

23yII + AT
33 yIII + AT

43 yIV    ≤ dI        (2) 

                          AT
14 yI + AT

24 yII + AT
34 yIII + AT

44 yIV   = dII 

 

                                                         y  ≥ 0 

Where,     y =   Rm   

Both the special type cases (1) and (2) are of the following linear 

programming problem in its standard forms; 

 

                   Minimize,    cTx  +  dTx      

                   Subject to:   Ax  ≥ a 

                                      Ax  ≥ b                       (3) 

                                        x  ≥ 0 

Where,  A   ,  c, d  Rn  and  a, b  Rm  and its dual   
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  Maximize,    bTx  +  aTx        

                                                                                                                                                                                                                                                                                                       
Subject to:  AT y   ≤ c                     (4) 

                                        AT y   ≤ d 

 

By the duality of convex programming [7]. If x* is a solution of 

(1) then there exists y* such that y* is a solution of (2). Let, 

 

                  D = { u* = ( x*,y*)T   x* solves (1) y* solve (2) }  

then a necessary and sufficient condition for u = (x,y)T   is 

following 

                           cTx  +  dTx   =   bTx  +  aTx      

 

(A11,A12,A13, A14 ) x  ≥ bI ,      (A21, A22,A23, A24)x   ≥ bI    

(A31, A32,A33, A34)x  ≥ aI           (A41, A42,A43, A44 ) x  = aII ,  

(AT
11,A

T
21,A

T
31,A

T
41)y ≤ cI,   (A

T
12,A

T
22,A

T
32,A

T
42)y ≤ cII,      (5) 

 (A
T

13,A
T

23,A
T

33,A
T

43)y ≤ dI ,  (A
T

14,A
T

24,A
T

34,A
T

44)y  = dII 

 

Thus we define,  

E(x,y)= (cTx–bTy)2+ (dTx–y)2+  

 

 

  

  

 

Where,  

A1 = (A11,A12,A13, A14 ) ,        A2 = (A21, A22,A23, A24),   

 A3 = (A31, A32,A33, A34),          A4 =(A41, A42,A43, A44 ) , 

 A5 = (A
T

11 ,A
T

21, A
T

31, A
T

4 1 ), A6 = (AT
12 , A

T
22, A

T
32, A

T
42)          

 A7 = (AT
13,A

T
23, A

T
33, A

T
43)  , A8 = (AT

14, A
T

24 , A
T

34, A
T

44) 

And x = ( x1…….xn )
T, then it is easy to see that a necessary and 

sufficient condition for (x,y)T  D can be expressed as E(x,y) = 0 

 

3. CIRCUIT IMPLEMENTATION OF THE 

NETWORK  
Consider new neural network for solving (1) and (2) whose state 

vector u = (x,y)T is governed by following differential equation  

                     =   E (u) ,       u    R n+m                      (6) 

 

 

 

                                                                                             X 

 

 

                                     AT (A x – b)                         (-2x)+ 

               

-          + 

                                               -              ∑ 

       (cT x – bT y)              c       

                                                         

                                       b          +         ∑                 2A (AT
 y – 

c)+        

                                                     

 

 

 

                                     AT (A x – a)                         (-2x)+ 

               

-          + 

                                               -              ∑ 

       (dT x – aT y)             d       

 

                                      a        +               ∑              2A (AT
 y – 

d)+          

 

 

                                                                                             y 

 

 

 

Where E(u) is the gradient of energy function E(u) defined as 

in section 2.  

We know that x - x = 2(x)-, then the dynamics of projected 

network in (6) is represented as, 

 

 = {(cT x – bT y)cI + 2(xI)
- + A21

T (A2 x – bII) + 2A11
 T  (A1x – 

b1)
- }+{(dT x – aT y )cI + 2(xI)

-+ A23
T  (A2 x – bII) + 2A13

 T (A1x –

b1)
- } 

 = {(cT x – bT y)dI + 2(xI)
- + A41

T (A4 x – aII) + 2A31
 T (A3x 

–a1)
- }+{(dT x – aT y )dI + 2(xI)

- + A43
T  (A4 x – aII) + 2A33

 T (A3x –

a1)
- } 
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 = - {(cT x – bT y)cII  + 2A12
T (A1 x – bI)

- + A22
 T (A2x –bII) }- 

{(dT x – aT y )cII  + 2A14
T   (A1 x – bI)

- + A24
 T (A2x –b1I)

 } 

 = -{(cT x – bT y)dII +2 A32
T (A3 x – aI)

- + A42
 T (A4x –a1I) }- 

{(dT x – aT y )dII +2 A34
T  (A3 x – aI)

- + A44
 T (A4x –aII)

 }  

 = -{(bT x – cT y)bI + 2(yI)
- -2 A11 (A5 y – cI)

- + A12
  (A6y –

c1I)} -{(aT x – dT y )bI + 2(yI)
-   -2A31 (A5 y – cI)

- + A32
  (A6y –cII)

 } 

 = -{(bT x – cT y)aI + 2(yI)
- -2 A13 (A7 y – dI)

- + A14
  (A8y –

d1I)} -{(aT x – dT y )aI + 2(yI)
- -2A33 (A7 y – dI)

- + A34
 (A8y –dII)

 } 

 = -{(bTy – cT x)bII -2 A21 (A5 y – cI)
- + A22

  (A6y –c1I)} -  

{(aTzy – dT x )bII  -2A41 (A5 y – cI)
-   + A42

  (A6y –cII)
 } 

   = -{(bT y – cT x)aII -2 A23 (A7 y – dI)
- + A24

  (A6y –d1I)} -

{(aT y – dT x )aII  -2A43 (A7 y – dI)
-  A44

 (A6y –dII)
 }                  (7) 

 

Where, (x)-  = (x1
-, x2

-, …..xn
-)T, xi

- = min {0,xi} and A1, A2, A3, 

A4, A5, A6, A7, A8 are defined in section 2. Here this network uses 

only simple hardware and non of the multipliers and dividers are 

necessary. For expediency, we only give the network circuit 

implementation for solving (3) and (4) whose dynamics are 

governed by the following, 

 = -{(cT x – bT y)c + 2(x)-+ AT (A x – b) }-{(dT x – aT y )d + 

2(x)-  + AT  (A x – b) } 

 = -{(bT y – cTx )b -2A(c - ATy)- } -{(aT y – dT x )a -2A  

( d- AT y )- }                                                                  (8) 

 

Note that (x)- = -(-x)+, then (8) may be restated as, 

 = -{(cT x – bT y)c - (-2x)+ + AT (A x – b) }-{(dT x – aT y )d – 

 (-2x)+ + AT  (A x – b) } 

 = (cT x – bT y)b  - 2 A (ATy- c )+ + (dT x – aT y )a -2A ( AT y - 

d)+ }                                                                                        (9) 

 

Where, (x)+ = (x1)
+,……. (xn)

+  T  (xi)
+ = max {0,xi}, a simplified 

network diagram of (9) which  is shown in figure where vector 

a,b,c,d are external input and x,y are of  the network out put. 

  

4. THEOREM 

Assume that (3) and (4) have unique optimal solution. Then the 

primal dual neural network in given function F(Z) is globally 

exponentially stable i.e; 

   =  - F (Z)  =         
{(cT x – bT y)c - (-x)+ +AT (A x – b)  

  (dT x – aT y )d - (-x)+ AT (Ax – a) -(cT x – bT y)b +  A (AT
 y – c)+ 

- (dT x – aT y )a + A (ATy – d)+  }                                        (10) 

                                                                

Proof : Because (3) and (4) have unique optimal solution of 

system (10) that has unique equilibrium point. Let Z* = (x*,y*) 

be an optimal solution to (3) and (4) and V(Z) =  / 2 

 

 F(Z)   

 

   

 

 

 

 
 

 

 

And   

 

 

 

Thus 
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     +   

 

From the  well known Hoffman inequality [8]. It follows,  

 

 

 

 

Then  

 

 

 

When  0 and   thus  V(Z) ≤ - 2  V(Z)  

Hence  , so the primal 

dual neural network (10) is globally exponentially stable.   

 

5. CONCLUSION 

Providing solution of the linear programming problems through 

neural network approach is an interesting area of research. The 

research suggested in this paper is defining an energy function of 

the linear programming and its dual problem. A circuit has been 

designed for the purpose. A new neural network is discussed in 

circuit implementation. Further, in this paper we have proved 

that the primal dual neural network is globally exponentially 

stable. It is useful for solving many optimization and related 

problems.   
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