
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.10, November 2010

14

Framework for Evaluating Reusability of Procedure

Oriented System using Metrics based Approach

Sonia Manhas
HOD, Information and Technology

SSCET, Badhani, Pathankot
Punjab

Rajeev Vashisht
Lecturer, Information and Technology

DAVIET, Jalandhar
Punjab

Reeta Bhardwaj
Lecturer, MCA Deptt
DAVIET, Jalandhar

Punjab

ABSTRACT

In this paper, we present the application of the neural network

for the identification of Reusable Software modules in Procedure

Oriented Software System. Metrics are used for the structural

analysis of the different procedures. The proposed metrics for

Procedure oriented paradigm are Cyclometric Complexity Using

Mc Cabe‟s Measure, Halstead Software Science Indicator,

Regularity Metric, Reuse frequency metric, Coupling Metric.

The values of these Metrics will become the input dataset for the

different neural network systems. Neural Network Based

Approach is used to establish the relationship between different

attributes of the reusability and serve as the automatic tool for

the Evaluation of the reusability of the procedures by calculating

the relationship based on its training. Different Eleven Training

Algorithms of neural network are experimented and the results

are recorded in terms of Accuracy, Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE). The results show that

Conjugate Gradient with Powell/Beale Restarts (CGB) is best for

the evaluation of reusable modules of procedure oriented

software systems. Hence the proposed model can be used to

improve the productivity and quality of software development.

Keywords

Software reusability, Neural Networks, MAE, RMSE, Accuracy,

CGB.

1. INTRODUCTION
Software reuse is the important factor to enhance the

improvement efforts of the productivity of the software because

reuse can result in higher quality software at a lower cost and

delivered within a shorter time [1]. Reused software is more

accurate than new software because already it has been tried and

tested in working systems. The initial use of the software reveals

many design and implementation faults but when reused

software are used then there are lesser number of faults. With

the existence of the software there is less uncertainty in the cost

of reusing which is an important factor for project management

as it reduces the margin of error in project cost estimation. This

is particularly true when relatively large software components

such as sub-systems are reused. Reusing software can speed up

system production because both development and validation time

should be reduced. Thus the reuse of software in systems

development is a strategy that increases productivity and quality.

Reuse is an act of synthesizing a solution to a problem based

on predefined solutions to sub problems. The reuse activity is

divided into six major steps performed at each phase in

preparation for the next phase. These steps are:

 Developing a reuse plan or strategy after studying

the problem and available solutions to the problem,

 Identifying a solution structure for the problem

following the reuse plan or strategy,

 Reconfiguring the solution structure to improve the

possibility of using predefined components available

at the next phase,

 Acquiring, instantiating, and modifying predefined

components,

 Integrating the components into the products for this

phase, and

 Evaluating the products.

. There are two approaches for reuse of code: develop the

reusable code from scratch or identify and extract the reusable

code from already developed code. The organization that has

experience in developing software, but not yet used the software

reuse concept, there exist extra cost to develop the reusable

components from scratch to build and strengthen their reusable

software reservoir [2]. The cost of developing the software from

scratch can be saved by identifying and extracting the reusable

components from already developed and existing software

systems or legacy systems [3]. But the issue of how to identify

reusable components from existing systems has remained

relatively unexplored. In both the cases, whether we are

developing software from scratch or reusing code from already

developed projects, there is a need of evaluating the quality of

the potentially reusable piece of software. The main purpose of

procedure oriented software metrics is to predict the quality of

the software modules. The various attributes that determine the

quality of software modules are maintainability,

understandability, readability, fault tolerance, reusability etc

Neural networks have seen an explosion of interest over the

years, and are being successfully applied across a range of

problem domains, in areas as diverse as finance, medicine,

engineering, geology and physics. Indeed, anywhere that there

are problems of prediction, classification or control, neural

networks are being introduced. It can learn by example. In order

to make a neural network useful, the user needs to gather

representative data, and then invokes training algorithms to train

the neural network.

Neural network learns about its environment through a set of

input-output training samples and is an interactive process of

adjustment applied to its synaptic weights and bias levels.

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.10, November 2010

15

 The learning algorithm involves the following steps:

 The neural network receives the normalized inputs

that are available in the input-output training data

samples.

 The output of the artificial neural network is then

computed.

 The output of the network is then compared with

that given in the training data samples. The error in

the output is computed by taking the difference of

the desired output and computed output from the

network.

 The synaptic weights and biases are then changed so

as to decrease the error based on the error gradient

with respect to the different synaptic weights.

The process is repeated until the desired error goal is achieved.

2. RELATED WORK

Normal One possible measure of a component‟s reusability

comes from its success; how many other applications modules

access this common code? Other measures come from static code

metrics. There are basically two approaches to evaluate software

reusability: qualitative and empirical. The qualitative methods

require substantial manual effort, as these methods generally rely

on a subjective value attached to how well the software adheres

to some guidelines or principles. On the other hand, empirical

methods depend on the objective data that can be collected

automatically and cheaply with the help of some tool [4].

Selby [5] identified a number of characteristics of those

components, from existing systems, that are being reused at

NASA laboratory and reported that the developers were

successful in achieving a 32 percent reusability index. Selby‟s

recent experimental study has identified two categories of factors

that characterize successful reuse-based software development of

large-scale systems: module design factors and module

implementation factors [6]. The module design factors that

characterize module reuse without revision were: few calls to

other system modules (i.e. low coupling), many calls to utility

functions (i.e. high cohesion), few input-output parameters, few

reads and writes, and many comments. The module

implementation factors that characterize module reuse without

revision were small in size (source lines) and with many

assignment statements (i.e. low Cyclometric Complexity). The

modules reused without revision had the fewest faults, fewest

faults per source line, and lowest fault correction effort. The

modules reused with major revision had the highest fault

correction effort.

Reformat et al have used decision tree based approach to the

problems of identification of good or bad software based on Java

and C++ objects. In the study fifteen metrics have been used and

55 to 72% accuracy has been reported [7].

Prieto-Diaz and Freeman encouraged white-box reuse and

identified five program attributes for evaluating reusability [8].

The attributes used are:

Program Size

Program Structure

Program Documentation

Programming Language

Reuse Experience

Chen and Lee developed about 130 reusable C++ components

and used these components in a controlled experiment to relate

the level of reuse in a program to software productivity and

quality [9]. In contrast to Selby, who worked with professional

programmers, Chen and Lee‟s experiment involved a team of 19

students, who had to design and implement small database

system. The software metrics collected included the Halstead

size, program volume, program level, estimated difficulty and

effort. They found that lower the value of the software

complexity metrics, the higher the programmer productivity [10].

Dunn and Knight also experimented and reported the

usefulness of reusable code scavenging [11]. Chen, Nishimoto

and Ramamoorty discussed the idea of subsystem extraction by

using code information stored in a relational database [12]. They

also described a tool called the C Information Abstraction System

to support this process. Esteva and Reynolds [13] proposed the

use of Inductive Learning techniques based on software metrics

used to identify reusable modules. Their system was able to

recognize reusable components.

Caldiera and Basili [14] proposed a tool called „Care‟ that was

used to identify reusable components according to a set of

“reusability attributes” based on software metrics. The paper

proposed four candidate measures of reusability based largely on

McCabe and Halstead metrics. These attributes include

measurement of utilization of the component in the problem

domain, the cost of reuse and its quality. The „Care‟ is expected

to do the initial identification of the components having strong

reusability characteristics; and then a domain expert will do a

further examination of these components to determine their

appropriateness to the domain, and package them to reuse.

Mayobre [15] described how these techniques can be extended

and used to help in identifying data communication components

of Hewlett-Packard.

Arnold [16] [17] mentioned a number of heuristics that can be

used for locating reusable components in the Ada source code.

The heuristics count the number of references to a particular

procedure, identifying the loosely coupled modules and

identifying modules that carry high cohesion.

The ESPRIR-2 project called REBOOT (Reuse Based on

Object-Oriented Techniques) developed a taxonomy of

reusability attributes. They listed Portability, Flexibility,

Understandability and Confidence as four reusability factors. A

list of criteria for each factor and metrics for each criteria, are

also mentioned [18]. Although, some of the metrics depend on

the subjective items such as checklists, an analyst can compute

many of these metrics directly from the code. The analyst

combines the individual metric values into an overall value of

reusability.

The NATO Standard for the Software Reuse Procedures

recommended tracking “Number of Inspections”, “Number of

Reuses”, “Complexity” and “Number of Problem Reports” as

indicators of software quality and reusability [19].

Hislop used function, form and similarity measures, to evaluate

the software [20]. Torres and Samadzadeh [21] [22] conducted a

study to determine the relation of information theory metrics and

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.10, November 2010

16

reusability metrics. The study examined the effects of two

information theory metrics, entropy loading and control structure

entropy, on the software reusability and found that high entropy

loading (Coupling) had a negative effect, while low control

structure entropy (Complexity) had a positive effect on reuse.

3. METHODOLOGY OF WORK
Reusability evaluation System for Procedure oriented Software

Components can be framed using following steps

3.1 Selection of Metric Suit for Procedure

Oriented Paradigm

A framework of metrics is proposed for structural analysis of

procedure or function-oriented software. The code of software is

parsed to calculate the metric values. The following suits of

metrics are able to explore different structural dimensions of

procedure oriented components.

The proposed metrics for Function Oriented Paradigm are as

follows:

 Cyclometric Complexity Using Mc Cabe‟s

Measure [23][24]

 Halstead Software Science Indicator [23] [25]

 Regularity Metric [23][25]

 Reuse-Frequency Metric [23][25]

 Coupling Metric [23]:

Generate the values of these mentioned metrics which

will become the input dataset of different neural network

systems to evaluate the reusability.

3.2 Design & Evaluate Neural Network

System

The following eleven Neural Network algorithms are

experimented:

 Batch Gradient Descent

 Batch Gradient Descent with momentum

 Variable Learning Rate

 Variable Learning Rate training with momentum

 Resilient Backpropagation

 Scaled Conjugate Gradient

 Conjugate Gradient with Powell/Beale Restarts

 Fletcher-Powell Conjugate Gradient

 Polak-Ribiére Conjugate Gradient

 Levenberg-Marquardt

 BFGS Quasi-Newton

The following are the steps for each Neural Network based

system:

 Perform the training of the different neural networks

with the training dataset.

 The trained Neural Network is evaluated against the

testing data on the different comparison criteria as

described in the next step.

3.3 Comparison Criteria

The comparisons are made on the basis of value of MAE,

RMSE and Accuracy values of the neural network model. The

details of the MAE and RMSE are given below:

 Mean absolute error (MAE)

Mean absolute error, MAE is the average of the difference

between predicted and actual value in all test cases; it is the

average prediction error. The formula for calculating MAE is

given in equation shown below:

n
MAE

cacaca nn
...

2211

(1)

Assuming that the actual output is a, expected output is c

 Root mean-squared error (RMSE)

RMSE is frequently used measure of differences between

values predicted by a model or estimator and the values actually

observed from the thing being modeled or estimated. It is just the

square root of the mean square error as shown in equation given

below:

n
RMSE

cacaca nn
...

2211

(2)

3.4 Conclusions Drawn

The conclusions are made on the basis of the results

calculated in the previous section.

4. IMPLEMENTATION AND RESULTS

In this paper, the implementation of the algorithm is done in

Matlab 7.0 environment and Neural Network toolbox for Matlab

is used. The dataset of procedure oriented software is collected

and Batch Gradient Descent, Batch Gradient Descent with

momentum, Variable Learning Rate, Variable Learning Rate

training with momentum , Resilient Backpropagation, , Scaled

Conjugate Gradient, Conjugate Gradient with Powell/Beale

Restarts, Fletcher-Powell Conjugate Gradient ,Polak-Ribiére

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.10, November 2010

17

Conjugate Gradient ,Levenberg-Marquardt, BFGS Quasi-Newton

based neural networks are experimented to obtain the results in

terms of Accuracy, MAE and RMSE values. These neural

networks are run with metric values as input and the tables I is

showing the Results of different Neural Network Based

algorithms for Identification of Reusable Modules in the function

based software systems in terms of Accuracy, MAE, RMSE.

The result values of algorithms under study as shown in table-

I depict that the Accuracy, MAE and RMSE values of the

Conjugate Gradient with Powell/Beale Restarts(CGB) algorithm

is the best among other neural network based algorithms

experimented in the study with 90%, 0.0525 and 0.0556 as

Accuracy, MAE and RMSE values respectively for procedure

oriented software systems. The performance of Resilient

Backpropagation(RB), Levenberg-Marquardt(LM), Fletcher-

Powell Conjugate Gradient(CGF) ,Polak-Ribiére Conjugate

Gradient(CGP) and BFGS Quasi-Newton(BFG) is not good as

compared with Conjugate Gradient with Powell/Beale Restarts

algorithm. The performance of Batch Gradient Descent, Batch

Gradient Descent with momentum algorithms, Variable Learning

Rate and Variable Learning Rate training with momentum in

the study is not satisfactory with between 50%-65% Accuacy

values in case of all these four algorithms.

Table I. Results of Various Neural Network Algorithms for Identification

of Reusable Modules.

Algorithm Accuracy MAE RMSE

BGD
32 0.17282 0.21134

BGDWM
44 0.12664 0.168

VLR
52 0.09706 0.13138

VLRM
64 0.07782 0.10288

RB
76 0.05616 0.07046

SCG
70 0.0681 0.0751

CGB
90 0.0525 0.0556

CGF
70 0.0586 .0772

CGP
80 0.0660 0.0839

LM
80 0.0558 0.0607

BFG
80 0.0589 0.0651

BAR CHART TO REPRESENT THE ACCURACY

OF ALGORITHMS.

0

10
20

30

40
50

60

70

80
90

100

BG
D

BG
D
W

M
VLR

VLRM R
B

SC
G

C
G
B

C
G
F

C
G
P LM

BFG

Accuracy

Fig. 1 Accuracy of Algorithms for Reusability Dataset

BAR CHART TO REPRESENT THE MAE VALUE

OF ALGORITHMS.

0

0.02
0.04

0.06

0.08
0.1

0.12

0.14

0.16
0.18

0.2

B
G
D

B
G
D
W

M
V
LR

V
LR

M R
B

S
C
G

C
G
B

C
G
F

C
G
P

LM B
FG

MAE

Fig. 2 MAE of Algorithms for Reusability Dataset

BAR CHART TO REPRESENT THE RMSE

VALUE OF ALGORITHMS.

0

0.05

0.1

0.15

0.2

0.25

B
G
D

B
G
D
W

M
V
LR

V
LR

M R
B

S
C
G

C
G
B

C
G
F

C
G
P

LM B
FG

RMSE

Fig. 3 RMSE Values of Algorithms for Reusability Dataset

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.10, November 2010

18

0 50 100 150 200 250 300
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

300 Epochs

T
ra

in
in

g
-B

lu
e

G
o
a
l-
B

la
c
k

Performance is 0.00374218, Goal is 1e-005

Fig.4 Training Performance of Conjugate Gradient with

Powell/Beale Restarts (CGB) Algorithm for Reusability

Evaluation

The graphical representation of the values of the performance

results of the algorithms for the evaluation of the reusability

value of procedure based software modules is shown in Fig. 1,

Fig. 2 and Fig. 3 for the Accuracy, MAE and RMSE values

respectively.

5. CONCLUSION
In this paper, eleven Neural Network based algorithms are

experimented to develop the reusability evaluation system for

procedure oriented software systems like c componenets.

McCabe‟s Cyclometric Complexity Measure for Complexity

measurement, Regularity Metric, Halstead Software Science

Indicator for Volume indication, Reuse Frequency metric and

Coupling Metric are used for structural analysis of a software

module. Batch Gradient Descent, Batch Gradient Descent with

momentum, Variable Learning Rate, Variable Learning Rate

training with momentum, Resilient Backpropagation, Scaled

Conjugate Gradient, Conjugate Gradient with Powell/Beale

Restarts, Fletcher-Powell Conjugate Gradient ,Polak-Ribiére

Conjugate Gradient ,Levenberg-Marquardt and BFGS Quasi-

Newton algorithms are experimented. The algorithm Conjugate

Gradient with Powell/Beale Restarts (CGB) is the best among

eleven neural network based algorithms experimented in the

study with 90%, 0.0525 and 0.0556 as Accuracy, MAE and

RMSE values respectively. The performance of the Resilient

Backpropagation (RB) algorithm is found to be best as compare

to other algorithms that are recorded to calculate the mean result

values. So, Resilient Backpropagation (RB) algorithm based

approach can be used for the Modeling of the reusable

component based on metrics discussed in this paper.

It can be further to other programming languages using other

metrics and also more algorithms can be experimented to find the

best algorithm.

6. REFERENCES
[1] I. Jacobson, M. Griss, and P. Johnsson, 1997 Software

Reuse, Architecture, Process, and Organization for Business

Success. Addison-Wesley.

[2] W. Lim, 1994 “Effects of Reuse on Quality, Productivity,

and Economics,” IEEE Software, vol. 11, no. 5, pp. 23-30.

[3] G. Caldiera and V. R. Basili, 1991 “Identifying and

Qualifying Reusable Software Components”, IEEE

Computer, pp. 61-70.

[4] Poulin, J. S., 1997 Measuring Software Reuse–Principles,

Practices and Economic Models, Addison-Wesley.

[5] Selby, R. W., 1988 Empirically Analyzing Software Reuse

in a Production Environment in Software Reuse: Emerging

Technology, W. Tracz, ed., IEEE Computer Society Press,

[6] Selby, Richard W., 2005 "Enabling Reuse-Based Software

Development of Large-Scale Systems", IEEE Trans. on

Software Eng., vol. 31, no. 6, pp. 495-510.

[7] Reformat, M., Prdrycz, W. and Pizzi, N. J., 2003 “Software

Quality Analysis with use of Computational Intelligence”,

Journal of Information and Software Technology, 45, pp.

405-417.

[8] Prieto-Diaz, Ruben Freeman, P., 1987 “Classifying

Software for Reusability”, IEEE Software, vol. 4, no. 1, pp.

6-16.

[9] Chen, Deng-Jyi and Lee, P.J., 1993 “On the Study of

Program Reuse using Reusable C++ Components”, Journal

of Software System, vol. 20, no. 1, pp. 19-36.

[10] Poulin, J. S., 1997. Measuring Software Reuse–Principles,

Practices and Economic Models, Addison-Wesley,

[11] Dunn, M. F. and J. C. Knight, 1993. “Software reuse in

Industrial Setting: A Case Study”, Proceeding 13th

International Conference on Software Eng., Baltimore, MA.

[12] Chen, Y. F., Nishimoto, M. Y., and Ramamoorty, C. V.,

1990 “The C Information Abstraction System”, IEEE Trans.

on Software Eng., vol. 16, no. 3.

[13] Esteva, J. C. and Reynolds, R. G., 1991 “Identifying

Reusable Components using Induction”, International

Journal of Software Eng. and Knowledge Eng., vol. 1, no. 3,

, pp. 271-292.

[14] Caldiera, G. and V. R. Basili, 1991 “Identifying and

Qualifying Reusable Software Components”, IEEE

Computer, pp. 61-70.

[15] Mayobre, G., 1991 “Using Code Reusability Analysis to

Identify Reusable Components from Software Related to an

Application Domain”, Proceedings 4th Workshop on

Software Reuse, Reston. VA.

[16] Arnold, R.S., 1990 “Heuristics for Salvaging Reusable Parts

From Ada Code”, SPC Technical Report, ADA_REUSE_

HEURISTICS-90011-N.

[17] Arnold, R.S., 1990 “Salvaging Reusable Parts From Ada

Code: A Progress Report”, SPC Technical Report,

SALVAGE_ADA_ PARTS_PR-90048-N.

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.10, November 2010

19

[18] Karlsson, Even-Andre, Sindre, G. and Stalhane, T., 1992

“Techniques for Making More Reusable Components”,

REBOOT Technical Report, #41.

[19] Poulin, J. S.,, 1997 Measuring Software Reuse–Principles,

Practices and Economic Models, Addison-Wesley.

[20] Hislop, G. W., 1993 “Using Existing Software in a Software

Reuse Initiative”, Proceedings 6th Annual Workshop on

Software Reuse (WISR‟93), Owego, New York.

[21] Poulin, J. S., 1997 Measuring Software Reuse–Principles,

Practices and Economic Models, Addison-Wesley.

[22] Torres, W. R. and Samadzadeh, Mansur H., 1991 “Software

Reuse and Information Theory based on Metrics”,

Proceedings Symposium on Applied Computing, Kansas

City, MO, April 3-5, , pp. 437-446.

[23] Parvinder Singh Sandhu and Hardeep Singh,

2006,“Automatic Reusability Appraisal of Software

Components using Neuro-Fuzzy Approach”, International

Journal Of Information Technology, vol. 3, no. 3, pp. 209-

214.

[24] T. MaCabe, 1976 “A Software Complexity measure”, IEEE

Trans. Software Eng., vol. SE-2 pp. 308-320.

[25] G. Caldiera and V. R. Basili, (1991), Identifying and

Qualifying Reusable Software Components, IEEE

Computer, pp. 61-70.

[26] Herenji, H. R. and Khedkar, P (1992), “Learning and

Tuning Fuzzy Logic Controllers through Reinforcements”,

IEEE Transactions on Neural Networks, vol. 3, 1992, pp.

724-740.

[27] Challagulla, V.U.B., Bastani, F.B., I-Ling Yen, Paul,

(2005), “Empirical assessment of machine learning based

software defect prediction techniques”, 10th IEEE

International Workshop on Object-Oriented Real-Time

Dependable Systems, WORDS 2005, 2-4 Feb 2005, pp.

263-270.

http://ijcaonline.org/

